MODIFIED LIKELIHOOD RATIO TEST FOR HOMOGENEITY IN A TWO-SAMPLE PROBLEM

Yuejiao Fu, Jiahua Chen and John D. Kalbfleisch

York University, University of British Columbia, University of Michigan

Supplementary Material

Lemma 1 Under the conditions of Theorem 1, $\log(\hat{\lambda}) = O_p(1)$ and the modified MLEs, $\hat{\theta}_1$ and $\hat{\theta}_2$, both converge to θ_0 in probability.

Lemma 2 Under the same assumptions as in Theorem 2, $\log(\hat{\lambda}) = O_p(1), \hat{\theta}_j \rightarrow \theta_0$ for j = 1, 2, and $\hat{\xi} \rightarrow \xi_0$, in probability.

It can be seen that Lemma 1 is a special case of Lemma 2. Thus, we prove Lemma 2 only.

Proof of Lemma 2. The key step of the proof is to show that $\sup R_{1n} = \sup R_{1n}(\lambda, \theta_1, \theta_2, \xi) = O_p(1)$. We consider the following two cases: (1) $|\theta_2 - \theta_0| \le \epsilon$ and (2) $|\theta_2 - \theta_0| > \epsilon$.

For case (1), applying the classical asymptotic technique (Wolfowitz, 1949), we can easily get that for any $\epsilon > 0$

$$\sup_{|\theta_1 - \theta_0| > \epsilon} \left[\sum_{i=1}^{n_1} \log \left\{ \frac{f(x_{1i}; \theta_1, \xi)}{f(x_{1i}; \theta_0, \xi_0)} \right\} + \sum_{i=1}^{n_2} \log \left\{ \frac{f(x_{2i}; G, \xi)}{f(x_{2i}; \theta_0, \xi_0)} \right\} \right] \le -n\rho$$

for some $\rho > 0$. Hence, with a negative penalty $2C \log \lambda$, $\sup\{R_{1n} : |\theta_1 - \theta_0| > \epsilon\} \le O_p(1)$, bounded above by $O_p(1)$. At the same time, it is easy to see that $\sup\{R_{1n} : |\theta_1 - \theta_0| \le \epsilon, |\theta_2 - \theta_0| \le \epsilon\} = O_p(1)$. Hence, $\sup\{R_{1n} : |\theta_2 - \theta_0| \le \epsilon\} = O_p(1)$ for some small enough ϵ .

We now consider case (2). For any given $\epsilon > 0$, classical consistency results (Wald, 1949) for the MLEs over the restricted region $|\theta_2 - \theta_0| > \epsilon$ imply that the un-modified MLE of λ goes to 0 in probability. Hence, asymptotically, we need only consider the sup R_{1n} over the region of $|\theta_2 - \theta_0| > \epsilon$ and $\lambda \leq \epsilon$.

Using the same inequality as before, we have

$$R_{1n} - 2C \log \lambda = 2 \sum_{i=1}^{n_1} \log\{f(x_{1i}; \theta_1, \xi) / f(x_{1i}; \theta_0, \xi_0)\} + 2 \sum_{i=1}^{n_2} \log(1 + \delta_i)$$

$$\leq 2 \sum_{i=1}^{n_1} \log\{f(x_{1i}; \theta_1, \xi) / f(x_{1i}; \theta_0, \xi_0)\}$$

$$+ 2 \sum_{i=1}^{n_1} \delta_i - \sum_{i=1}^{n_2} \delta_i^2 + \frac{2}{3} \sum_{i=1}^{n_2} \delta_i^3,$$

where $\delta_i = f(x_{2i}; G, \xi) / f(x_{2i}; G_0, \xi_0) - 1$. Due to the regularity conditions on $f(x; \theta, \xi)$, there is a quadratic expansion for $\sum_{i=1}^{n_1} \log\{f(x_{1i}; \theta_1, \xi) / f(x_{1i}; \theta_0, \xi_0)\}$ in $\theta_1 - \theta_0$ and $\xi - \xi_0$.

Our aim is to expand terms related to the second sample as quadratic functions of $\theta_1 - \theta_0$, $\xi - \xi_0$ and λ . (Because $\theta_2 - \theta_0$ cannot be regarded as a small-o term, it is not part of the targeted quadratic function.) Toward this end, we write $\delta_i = (1 - \lambda)(\theta_1 - \theta_0)Y_{2i} + \lambda\theta_2Y_{2i}(\theta_2, \xi_0) + (\xi - \xi_0)U_{2i} + e_i$ with

$$e_i = (1 - \lambda)(\theta_1 - \theta_0) \{ Y_{2i}(\theta_1, \xi) - Y_{2i} \} + \lambda \theta_2 \{ Y_{2i}(\theta_2, \xi) - Y_{2i}(\theta_2, \xi_0) \} + (\xi - \xi_0) \{ U_{2i}(\xi) - U_{2i} \}.$$

We now establish the asymptotic orders of $\sum e_i$, $\sum e_i^2$ and $\sum |e_i|^3$. Notice that

$$Y_{2i}(\theta_1,\xi) - Y_{2i} = \{Y_{2i}(\theta_1,\xi) - Y_{2i}(\theta_0,\xi)\} + \{Y_{2i}(\theta_0,\xi) - Y_{2i}\}.$$

With some abuse of notation, we have

$$\sum \{Y_{2i}(\theta_1,\xi) - Y_{2i}\} = (\theta_1 - \theta_0) \sum Y'_{\theta}(\theta^*,\xi) + (\xi - \xi_0) \sum Y'_{\xi}(\theta_0,\xi^*)$$
$$= (\theta_1 - \theta_0) O_p(n_2^{1/2}) + (\xi - \xi_0) O_p(n_2^{1/2}),$$

where the tightness condition (B5) is used in the last step. Hence, we have

$$\sum (\theta_1 - \theta_0) \{ Y_{2i}(\theta_1, \xi) - Y_{2i} \} = \{ (\theta_1 - \theta_0)^2 + (\xi - \xi_0)^2 \} O_p(n_2^{1/2}).$$

In a similar way, we find

$$\sum \lambda \theta_2 \{ Y_{2i}(\theta_2, \xi) - Y_{2i}(\theta_2, \xi_0) \} = \lambda(\xi - \xi_0) O_p(n_2^{1/2}) = \{ \lambda^2 + (\xi - \xi_0)^2 \} O_p(n_2^{1/2})$$

and $\sum (\xi - \xi_0) \{ U_{2i}(\xi) - U_{2i} \} = (\xi - \xi_0)^2 O_p(n_2^{1/2})$. Taking these results together, we obtain $\sum e_i = \{ (\theta_1 - \theta_0)^2 + \lambda^2 + (\xi - \xi_0)^2 \} O_p(n_2^{1/2})$.

Next, we examine the order of $\sum e_i^2$. By the condition of uniform convergence in ${Y'_{\theta}}^2$ and ${Y'_{\xi}}^2$, we have

$$\sum (\theta_1 - \theta_0)^2 \{ Y_{2i}(\theta_1, \xi) - Y_{2i} \}^2 \leq (\theta_1 - \theta_0)^2 \{ (\theta_1 - \theta_0)^2 + (\xi - \xi_0)^2 \} O_p(n_2)$$

= $(\theta_1 - \theta_0)^2 o(1) O_p(n_2).$

Here, o(1) means a quantity that shrinks to 0 as $\theta_1 - \theta_0 \to 0$ and $\xi - \xi_0 \to 0$. Along the same line, we have

$$\sum \lambda^2 \theta_2^2 \{ Y_{2i}(\theta_2, \xi) - Y_{2i}(\theta_2, \xi_0) \}^2 = \{ (\theta_1 - \theta_0)^2 + (\xi - \xi_0)^2 \} o(1) O_p(n_2)$$

and $\sum (\xi - \xi_0)^2 \{ U_{2i}(\xi) - U_{2i} \} = (\xi - \xi_0)^2 o(1) O_p(n_2)$. These order assessments lead to $\sum e_i^2 = \{ (\theta_1 - \theta_0)^2 + \lambda^2 + (\xi - \xi_0)^2 \} o(1) O_p(n_2)$, and similarly we also obtain $\sum |e_i|^3 = \{ (\theta_1 - \theta_0)^2 + \lambda^2 + (\xi - \xi_0)^2 \} o(1) O_p(n_2)$. Further, since we focus on small values of λ , we have $(1 - \lambda)(\theta_2 - \theta_0) = (\theta_2 - \theta_0)(1 + o(1))$.

Hence

$$R_{1n} - 2C \log \lambda$$

$$\leq 2(\theta_1 - \theta_0) \sum_{i=1}^{n_1} Y_{1i} + 2(\xi - \xi_0) \sum_{i=1}^{n_1} U_{1i}$$

$$+ 2(\theta_1 - \theta_0) \sum_{i=1}^{n_2} Y_{2i} + 2\lambda\theta_2 \sum_{i=1}^{n_2} Y_{2i}(\theta_2, \xi_0) + 2(\xi - \xi_0) \sum_{i=1}^{n_2} U_{2i}$$

$$- \left[\sum_{i=1}^{n_1} \{(\theta_1 - \theta_0)Y_{1i} + (\xi - \xi_0)U_{1i}\}^2 + \sum_{i=1}^{n_2} \{(\theta_1 - \theta_0)Y_{2i} + \lambda\theta_2Y_{2i}(\theta_2, \xi_0) + (\xi - \xi_0)U_{2i}\}^2 \right]$$

$$+ \{(\theta_1 - \theta_0)^2 + \lambda^2 + (\xi - \xi_0)^2\}o(1)O_p(n).$$

After division by n, the quadratic term in the above expression converges to

$$\begin{pmatrix} \theta_1 - \theta_0 \\ \xi - \xi_0 \\ \lambda \theta_2 \end{pmatrix}^{\tau} \begin{pmatrix} \sigma_Y^2 & \sigma_{YU} & \rho \sigma_{Y(\theta_2)Y} \\ \sigma_{YU} & \sigma_U^2 & \rho \sigma_{Y(\theta_2)U} \\ \rho \sigma_{Y(\theta_2)Y} & \rho \sigma_{Y(\theta_2)U} & \rho \sigma_{Y(\theta_2)}^2 \end{pmatrix} \begin{pmatrix} \theta_1 - \theta_0 \\ \xi - \xi_0 \\ \lambda \theta_2 \end{pmatrix},$$

where $\sigma_{Y(\theta_2)Y} = \text{Cov}(Y_{2i}(\theta_2, \xi_0), Y_{2i})$ and $\sigma_{Y(\theta_2)U} = \text{Cov}(Y_{2i}(\theta_2, \xi_0), U_{2i})$. The

symmetric matrix can be further written as

$$(1-\rho) \begin{pmatrix} \sigma_Y^2 & \sigma_{YU} & 0\\ \sigma_{YU} & \sigma_U^2 & 0\\ 0 & 0 & 0 \end{pmatrix} + \rho \begin{pmatrix} \sigma_Y^2 & \sigma_{YU} & \sigma_{Y(\theta_2)Y}\\ \sigma_{YU} & \sigma_U^2 & \sigma_{Y(\theta_2)U}\\ \sigma_{Y(\theta_2)Y} & \sigma_{Y(\theta_2)U} & \sigma_{Y(\theta_2)}^2 \end{pmatrix}.$$

The identifiability condition, $\sigma_{YU}^2 < \sigma_Y^2 \sigma_U^2$, implies that it is positive definite, regardless of the value of θ_2 .

Thus, due to tightness of $\sum Y_{2i}(\theta)$, we have

$$\sup_{\substack{|\theta_2 - \theta_0| > \epsilon}} R_{1n} \leq \frac{1}{n} \left(\sum_{\substack{\sum U_{1i} + \sum U_{2i} \\ \sum U_{1i} + \sum U_{2i} \\ \sum Y_{2i}(\theta_2, \xi_0)} \right)^{\tau} \left(\begin{array}{cc} \sigma_Y^2 & \sigma_{YU} & \rho\sigma_{Y(\theta_2)Y} \\ \sigma_{YU} & \sigma_U^2 & \rho\sigma_{Y(\theta_2)U} \\ \rho\sigma_{Y(\theta_2)Y} & \rho\sigma_{Y(\theta_2)U} & \rho\sigma_{Y(\theta_2)}^2 \end{array} \right) \left(\begin{array}{c} \sum Y_{1i} + \sum Y_{2i} \\ \sum U_{1i} + \sum U_{2i} \\ \sum Y_{2i}(\theta_2, \xi_0) \end{array} \right) + o_p(1) \\ = O_p(1).$$

It follows that $\sup R_{1n} = O_p(1)$. Let $\hat{\lambda}$ be the maximizer of $R_{1n}(\lambda, \theta_1, \theta_2, \xi)$, it follows that $\log(\hat{\lambda}) = O_p(1)$. Thus, for any given small positive number $\epsilon > 0$, we can find some $\delta > 0$ such that $P(\hat{\lambda} > \delta) > 1 - \epsilon$. For asymptotic considerations, this result allows us to discuss the problem further under the constraint $\lambda > \delta$ for some $\delta > 0$. With this restriction, the parameter space for G is compact, and the penalty term $\log(\lambda)$ has negligible influence in the modified likelihood. The consistency of \hat{G} for G is the consequence of the classical result of Wald (1949). With $\hat{\lambda} > \delta > 0$ in probability, we must have $\hat{\theta}_j \to \theta_0$ for j = 1, 2. This completes the proof.

References

- Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20, 595-601.
- Wolfowitz, J. (1949). On Wald's proof of the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20, 601-602.