MODIFIED LIKELIHOOD RATIO TEST FOR HOMOGENEITY IN A TWO-SAMPLE PROBLEM

Yuejiao Fu, Jiahua Chen and John D. Kalbfleisch
York University, University of British Columbia, University of Michigan
\section*{Supplementary Material}

Lemma 1 Under the conditions of Theorem 1, $\log (\hat{\lambda})=O_{p}(1)$ and the modified MLEs, $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$, both converge to θ_{0} in probability.

Lemma 2 Under the same assumptions as in Theorem 2, $\log (\hat{\lambda})=O_{p}(1), \hat{\theta}_{j} \rightarrow$ θ_{0} for $j=1,2$, and $\hat{\xi} \rightarrow \xi_{0}$, in probability.

It can be seen that Lemma 1 is a special case of Lemma 2. Thus, we prove Lemma 2 only.
Proof of Lemma 2. The key step of the proof is to show that $\sup R_{1 n}=$ $\sup R_{1 n}\left(\lambda, \theta_{1}, \theta_{2}, \xi\right)=O_{p}(1)$. We consider the following two cases: $(1)\left|\theta_{2}-\theta_{0}\right| \leq \epsilon$ and (2) $\left|\theta_{2}-\theta_{0}\right|>\epsilon$.

For case (1), applying the classical asymptotic technique (Wolfowitz, 1949), we can easily get that for any $\epsilon>0$

$$
\sup _{\left|\theta_{1}-\theta_{0}\right|>\epsilon}\left[\sum_{i=1}^{n_{1}} \log \left\{\frac{f\left(x_{1 i} ; \theta_{1}, \xi\right)}{f\left(x_{1 i} ; \theta_{0}, \xi_{0}\right)}\right\}+\sum_{i=1}^{n_{2}} \log \left\{\frac{f\left(x_{2 i} ; G, \xi\right)}{f\left(x_{2 i} ; \theta_{0}, \xi_{0}\right)}\right\}\right] \leq-n \rho
$$

for some $\rho>0$. Hence, with a negative penalty $2 C \log \lambda, \sup \left\{R_{1 n}:\left|\theta_{1}-\theta_{0}\right|>\right.$ $\epsilon\} \leq O_{p}(1)$, bounded above by $O_{p}(1)$. At the same time, it is easy to see that $\sup \left\{R_{1 n}:\left|\theta_{1}-\theta_{0}\right| \leq \epsilon,\left|\theta_{2}-\theta_{0}\right| \leq \epsilon\right\}=O_{p}(1)$. Hence, $\sup \left\{R_{1 n}:\left|\theta_{2}-\theta_{0}\right| \leq \epsilon\right\}=$ $O_{p}(1)$ for some small enough ϵ.

We now consider case (2). For any given $\epsilon>0$, classical consistency results (Wald, 1949) for the MLEs over the restricted region $\left|\theta_{2}-\theta_{0}\right|>\epsilon$ imply that the un-modified MLE of λ goes to 0 in probability. Hence, asymptotically, we need only consider the $\sup R_{1 n}$ over the region of $\left|\theta_{2}-\theta_{0}\right|>\epsilon$ and $\lambda \leq \epsilon$.

Using the same inequality as before, we have

$$
\begin{aligned}
R_{1 n}-2 C \log \lambda= & 2 \sum_{i=1}^{n_{1}} \log \left\{f\left(x_{1 i} ; \theta_{1}, \xi\right) / f\left(x_{1 i} ; \theta_{0}, \xi_{0}\right)\right\}+2 \sum_{i=1}^{n_{2}} \log \left(1+\delta_{i}\right) \\
\leq & 2 \sum_{i=1}^{n_{1}} \log \left\{f\left(x_{1 i} ; \theta_{1}, \xi\right) / f\left(x_{1 i} ; \theta_{0}, \xi_{0}\right)\right\} \\
& +2 \sum_{i=1}^{n_{1}} \delta_{i}-\sum_{i=1}^{n_{2}} \delta_{i}^{2}+\frac{2}{3} \sum_{i=1}^{n_{2}} \delta_{i}^{3},
\end{aligned}
$$

where $\delta_{i}=f\left(x_{2 i} ; G, \xi\right) / f\left(x_{2 i} ; G_{0}, \xi_{0}\right)-1$. Due to the regularity conditions on $f(x ; \theta, \xi)$, there is a quadratic expansion for $\sum_{i=1}^{n_{1}} \log \left\{f\left(x_{1 i} ; \theta_{1}, \xi\right) / f\left(x_{1 i} ; \theta_{0}, \xi_{0}\right)\right\}$ in $\theta_{1}-\theta_{0}$ and $\xi-\xi_{0}$.

Our aim is to expand terms related to the second sample as quadratic functions of $\theta_{1}-\theta_{0}, \xi-\xi_{0}$ and λ. (Because $\theta_{2}-\theta_{0}$ cannot be regarded as a small-o term, it is not part of the targeted quadratic function.) Toward this end, we write $\delta_{i}=(1-\lambda)\left(\theta_{1}-\theta_{0}\right) Y_{2 i}+\lambda \theta_{2} Y_{2 i}\left(\theta_{2}, \xi_{0}\right)+\left(\xi-\xi_{0}\right) U_{2 i}+e_{i}$ with

$$
\begin{aligned}
e_{i}= & (1-\lambda)\left(\theta_{1}-\theta_{0}\right)\left\{Y_{2 i}\left(\theta_{1}, \xi\right)-Y_{2 i}\right\}+\lambda \theta_{2}\left\{Y_{2 i}\left(\theta_{2}, \xi\right)-Y_{2 i}\left(\theta_{2}, \xi_{0}\right)\right\} \\
& +\left(\xi-\xi_{0}\right)\left\{U_{2 i}(\xi)-U_{2 i}\right\} .
\end{aligned}
$$

We now establish the asymptotic orders of $\sum e_{i}, \sum e_{i}^{2}$ and $\sum\left|e_{i}\right|^{3}$. Notice that

$$
Y_{2 i}\left(\theta_{1}, \xi\right)-Y_{2 i}=\left\{Y_{2 i}\left(\theta_{1}, \xi\right)-Y_{2 i}\left(\theta_{0}, \xi\right)\right\}+\left\{Y_{2 i}\left(\theta_{0}, \xi\right)-Y_{2 i}\right\} .
$$

With some abuse of notation, we have

$$
\begin{aligned}
\sum\left\{Y_{2 i}\left(\theta_{1}, \xi\right)-Y_{2 i}\right\} & =\left(\theta_{1}-\theta_{0}\right) \sum Y_{\theta}^{\prime}\left(\theta^{*}, \xi\right)+\left(\xi-\xi_{0}\right) \sum Y_{\xi}^{\prime}\left(\theta_{0}, \xi^{*}\right) \\
& =\left(\theta_{1}-\theta_{0}\right) O_{p}\left(n_{2}^{1 / 2}\right)+\left(\xi-\xi_{0}\right) O_{p}\left(n_{2}^{1 / 2}\right)
\end{aligned}
$$

where the tightness condition (B5) is used in the last step. Hence, we have

$$
\sum\left(\theta_{1}-\theta_{0}\right)\left\{Y_{2 i}\left(\theta_{1}, \xi\right)-Y_{2 i}\right\}=\left\{\left(\theta_{1}-\theta_{0}\right)^{2}+\left(\xi-\xi_{0}\right)^{2}\right\} O_{p}\left(n_{2}^{1 / 2}\right)
$$

In a similar way, we find

$$
\sum \lambda \theta_{2}\left\{Y_{2 i}\left(\theta_{2}, \xi\right)-Y_{2 i}\left(\theta_{2}, \xi_{0}\right)\right\}=\lambda\left(\xi-\xi_{0}\right) O_{p}\left(n_{2}^{1 / 2}\right)=\left\{\lambda^{2}+\left(\xi-\xi_{0}\right)^{2}\right\} O_{p}\left(n_{2}^{1 / 2}\right)
$$

and $\sum\left(\xi-\xi_{0}\right)\left\{U_{2 i}(\xi)-U_{2 i}\right\}=\left(\xi-\xi_{0}\right)^{2} O_{p}\left(n_{2}^{1 / 2}\right)$. Taking these results together, we obtain $\sum e_{i}=\left\{\left(\theta_{1}-\theta_{0}\right)^{2}+\lambda^{2}+\left(\xi-\xi_{0}\right)^{2}\right\} O_{p}\left(n_{2}^{1 / 2}\right)$.

Next, we examine the order of $\sum e_{i}^{2}$. By the condition of uniform convergence in $Y_{\theta}^{\prime 2}$ and $Y_{\xi}^{\prime 2}$, we have

$$
\begin{aligned}
\sum\left(\theta_{1}-\theta_{0}\right)^{2}\left\{Y_{2 i}\left(\theta_{1}, \xi\right)-Y_{2 i}\right\}^{2} & \leq\left(\theta_{1}-\theta_{0}\right)^{2}\left\{\left(\theta_{1}-\theta_{0}\right)^{2}+\left(\xi-\xi_{0}\right)^{2}\right\} O_{p}\left(n_{2}\right) \\
& =\left(\theta_{1}-\theta_{0}\right)^{2} o(1) O_{p}\left(n_{2}\right)
\end{aligned}
$$

Here, $o(1)$ means a quantity that shrinks to 0 as $\theta_{1}-\theta_{0} \rightarrow 0$ and $\xi-\xi_{0} \rightarrow 0$. Along the same line, we have

$$
\sum \lambda^{2} \theta_{2}^{2}\left\{Y_{2 i}\left(\theta_{2}, \xi\right)-Y_{2 i}\left(\theta_{2}, \xi_{0}\right)\right\}^{2}=\left\{\left(\theta_{1}-\theta_{0}\right)^{2}+\left(\xi-\xi_{0}\right)^{2}\right\} o(1) O_{p}\left(n_{2}\right)
$$

and $\sum\left(\xi-\xi_{0}\right)^{2}\left\{U_{2 i}(\xi)-U_{2 i}\right\}=\left(\xi-\xi_{0}\right)^{2} o(1) O_{p}\left(n_{2}\right)$. These order assessments lead to $\sum e_{i}^{2}=\left\{\left(\theta_{1}-\theta_{0}\right)^{2}+\lambda^{2}+\left(\xi-\xi_{0}\right)^{2}\right\} o(1) O_{p}\left(n_{2}\right)$, and similarly we also obtain $\sum\left|e_{i}\right|^{3}=\left\{\left(\theta_{1}-\theta_{0}\right)^{2}+\lambda^{2}+\left(\xi-\xi_{0}\right)^{2}\right\} o(1) O_{p}\left(n_{2}\right)$. Further, since we focus on small values of λ, we have $(1-\lambda)\left(\theta_{2}-\theta_{0}\right)=\left(\theta_{2}-\theta_{0}\right)(1+o(1))$.

Hence

$$
\begin{aligned}
R_{1 n} & -2 C \log \lambda \\
& \leq 2\left(\theta_{1}-\theta_{0}\right) \sum_{i=1}^{n_{1}} Y_{1 i}+2\left(\xi-\xi_{0}\right) \sum_{i=1}^{n_{1}} U_{1 i} \\
& +2\left(\theta_{1}-\theta_{0}\right) \sum_{i=1}^{n_{2}} Y_{2 i}+2 \lambda \theta_{2} \sum_{i=1}^{n_{2}} Y_{2 i}\left(\theta_{2}, \xi_{0}\right)+2\left(\xi-\xi_{0}\right) \sum_{i=1}^{n_{2}} U_{2 i} \\
& -\left[\sum_{i=1}^{n_{1}}\left\{\left(\theta_{1}-\theta_{0}\right) Y_{1 i}+\left(\xi-\xi_{0}\right) U_{1 i}\right\}^{2}\right. \\
& \left.+\sum_{i=1}^{n_{2}}\left\{\left(\theta_{1}-\theta_{0}\right) Y_{2 i}+\lambda \theta_{2} Y_{2 i}\left(\theta_{2}, \xi_{0}\right)+\left(\xi-\xi_{0}\right) U_{2 i}\right\}^{2}\right] \\
& +\left\{\left(\theta_{1}-\theta_{0}\right)^{2}+\lambda^{2}+\left(\xi-\xi_{0}\right)^{2}\right\} o(1) O_{p}(n)
\end{aligned}
$$

After division by n, the quadratic term in the above expression converges to

$$
\left(\begin{array}{c}
\theta_{1}-\theta_{0} \\
\xi-\xi_{0} \\
\lambda \theta_{2}
\end{array}\right)^{\tau}\left(\begin{array}{ccc}
\sigma_{Y}^{2} & \sigma_{Y U} & \rho \sigma_{Y\left(\theta_{2}\right) Y} \\
\sigma_{Y U} & \sigma_{U}^{2} & \rho \sigma_{Y\left(\theta_{2}\right) U} \\
\rho \sigma_{Y\left(\theta_{2}\right) Y} & \rho \sigma_{Y\left(\theta_{2}\right) U} & \rho \sigma_{Y\left(\theta_{2}\right)}^{2}
\end{array}\right)\left(\begin{array}{c}
\theta_{1}-\theta_{0} \\
\xi-\xi_{0} \\
\lambda \theta_{2}
\end{array}\right)
$$

where $\sigma_{Y\left(\theta_{2}\right) Y}=\operatorname{Cov}\left(Y_{2 i}\left(\theta_{2}, \xi_{0}\right), Y_{2 i}\right)$ and $\sigma_{Y\left(\theta_{2}\right) U}=\operatorname{Cov}\left(Y_{2 i}\left(\theta_{2}, \xi_{0}\right), U_{2 i}\right)$. The
symmetric matrix can be further written as

$$
(1-\rho)\left(\begin{array}{ccc}
\sigma_{Y}^{2} & \sigma_{Y U} & 0 \\
\sigma_{Y U} & \sigma_{U}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)+\rho\left(\begin{array}{ccc}
\sigma_{Y}^{2} & \sigma_{Y U} & \sigma_{Y\left(\theta_{2}\right) Y} \\
\sigma_{Y U} & \sigma_{U}^{2} & \sigma_{Y\left(\theta_{2}\right) U} \\
\sigma_{Y\left(\theta_{2}\right) Y} & \sigma_{Y\left(\theta_{2}\right) U} & \sigma_{Y\left(\theta_{2}\right)}^{2}
\end{array}\right)
$$

The identifiability condition, $\sigma_{Y U}^{2}<\sigma_{Y}^{2} \sigma_{U}^{2}$, implies that it is positive definite, regardless of the value of θ_{2}.

Thus, due to tightness of $\sum Y_{2 i}(\theta)$, we have

$$
\begin{aligned}
& \sup _{\left|\theta_{2}-\theta_{0}\right|>\epsilon} R_{1 n} \leq \\
& \frac{1}{n}\left(\begin{array}{c}
\sum Y_{1 i}+\sum Y_{2 i} \\
\sum U_{1 i}+\sum U_{2 i} \\
\sum Y_{2 i}\left(\theta_{2}, \xi_{0}\right)
\end{array}\right)^{\tau}\left(\begin{array}{ccc}
\sigma_{Y}^{2} & \sigma_{Y U} & \rho \sigma_{Y\left(\theta_{2}\right) Y} \\
\sigma_{Y U} & \sigma_{U}^{2} & \rho \sigma_{Y\left(\theta_{2}\right) U} \\
\rho \sigma_{Y\left(\theta_{2}\right) Y} & \rho \sigma_{Y\left(\theta_{2}\right) U} & \rho \sigma_{Y\left(\theta_{2}\right)}^{2}
\end{array}\right)\left(\begin{array}{c}
\sum Y_{1 i}+\sum Y_{2 i} \\
\sum U_{1 i}+\sum U_{2 i} \\
\sum Y_{2 i}\left(\theta_{2}, \xi_{0}\right)
\end{array}\right)+o_{p}(1) \\
& =O_{p}(1) .
\end{aligned}
$$

It follows that $\sup R_{1 n}=O_{p}(1)$. Let $\hat{\lambda}$ be the maximizer of $R_{1 n}\left(\lambda, \theta_{1}, \theta_{2}, \xi\right)$, it follows that $\log (\hat{\lambda})=O_{p}(1)$. Thus, for any given small positive number $\epsilon>0$, we can find some $\delta>0$ such that $P(\hat{\lambda}>\delta)>1-\epsilon$. For asymptotic considerations, this result allows us to discuss the problem further under the constraint $\lambda>\delta$ for some $\delta>0$. With this restriction, the parameter space for G is compact, and the penalty term $\log (\lambda)$ has negligible influence in the modified likelihood. The consistency of \hat{G} for G is the consequence of the classical result of Wald (1949). With $\hat{\lambda}>\delta>0$ in probability, we must have $\hat{\theta}_{j} \rightarrow \theta_{0}$ for $j=1,2$. This completes the proof.

References

Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20, 595-601.

Wolfowitz, J. (1949). On Wald's proof of the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20, 601-602.

