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Abstract: In this paper optimal experimental designs for inverse quadratic regres-

sion models are determined. We consider two different parameterizations of the

model and investigate local optimal designs with respect to the c-, D- and E-

criteria, which reflect various aspects of the precision of the maximum likelihood

estimator for the parameters in inverse quadratic regression models. In particular

it is demonstrated that, for a sufficiently large design space, geometric allocation

rules are optimal with respect to many optimality criteria. Moreover, in numerous

cases the designs with respect to the different criteria are supported at the same

points. Finally, the efficiencies of different optimal designs with respect to various

optimality criteria are studied, and the efficiency of some commonly used designs

are investigated.
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1. Introduction

Inverse polynomials define a flexible family of nonlinear regression models
which are used to describe the relationship between a response, say Y , and a
univariate predictor, say u (see e.g., Nelder (1966)). The model is defined by the
expected response

E (Y |u) =
u

Pn(u, θ)
, u ≥ 0, (1.1)

where Pn(u, θ) is a polynomial of degree n with coefficients θ0, . . . , θn defining the
shape of the curve. Nelder (1966) compared the properties of inverse and ordi-
nary polynomial models for analyzing data. In contrast to ordinary polynomials,
inverse polynomial regression models are bounded and can be used to describe
a saturation effect, in which case the response does not exceed a finite amount.
Similarly, a toxic effect can be produced, in which case the response eventually
falls to zero.

An important class of inverse polynomial models are defined by inverse
quadratic regression models, which correspond to the case n = 2 in (1.1). These
models have numerous applications, in particular in chemistry and agriculture
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(see Ratkowsky (1990), Sparrow (1979a,b), Nelder (1966), Serchand, McNew,
Kellogg and Johnson (1995), and Landete-Castillejos and Gallego (2000), among
others). For example, Sparrow (1979a,b) analyzed data from several series of
experiments designed to study the relationship between crop yield and fertilizer
input. He concluded that among several competing models the inverse quadratic
model produced the best fit to data obtained from yields of barley and grass
crops. Similarly, Serchand et al. (1995) argued that inverse polynomials can pro-
duce a dramatically steep rise and might realistically describe lactation curves.

While much attention has been paid to the construction of various optimal
designs for the inverse linear or Michaelis-Menten model (see Song and Wong
(1998), Lopez-Fidalgo and Wong (2002), Dette, Melas and Pepelyshev (2003),
Dette and Biedermann (2003) among many others), optimal designs for the in-
verse quadratic regression model have not been studied in so much detail. Cobby,
Chapman and Pike (1986) determined local D-optimal designs numerically, and
Haines (1992) provided some analytical results for D-optimal designs in the in-
verse quadratic regression model. In particular, in these references it is demon-
strated that geometric allocation rules are D-optimal. The present paper is
devoted to a more systematic study of local optimal designs for inverse quadratic
models. We consider the c-, D-, D1- and E-optimality criteria and determine
local optimal designs for two different parameterizations of the inverse quadratic
regression model. In Section 2 we introduce two parameterizations of the in-
verse quadratic regression model and describe some basic facts of approximate
design theory. In Section 3 we discuss several c-optimal designs. In particular
D1-optimal designs are determined, which are of particular importance if dis-
crimination between an inverse linear and inverse quadratic model is one of the
interests of the experiment. As a further special case of the c-optimality crite-
rion, we determine optimal extrapolation designs. Section 4 deals with the local
D-optimality and E-optimality criteria. It is shown that for all criteria under
consideration, geometric designs are local optimal whenever the design space is
sufficiently large. We also determine the structure of the local optimal designs in
the case of a bounded design space. These findings extend the observations made
by Cobby, Chapman and Pike (1986) and Haines (1992) for the D-optimality cri-
terion to other optimality criteria, different design spaces, and a slightly different
inverse quadratic regression model.

2. Preliminaries

We consider two parameterizations of the inverse quadratic regression model

E (Y |u) = η(u, θ), (2.1)
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where θ = (θ0, θ1, θ2)T denotes the vector of unknown parameters and the ex-
pected response is given by one of

η1(u, θ) = u
θ0+θ1u+θ2u2 , (2.2a)

η2(u, θ) = θ0u
θ1+u+θ2u2 . (2.2b)

The explanatory variable varies in the interval U = [s, t], where s ≥ 0 and
0 < s < t < ∞, or in the unbounded set U = [s,∞) with s ≥ 0. The assumptions
regarding the parameters vary with the different parameterizations and should
assure that the numerator in (2.2a) and (2.2b) is positive on U . Under such
assumptions the regression functions have no points of discontinuity. Moreover,
both functions are strictly increasing to a maximum of size (θ1 + 2

√
θ0θ2)−1 at

the point umax1 =
√

θ0/θ2 for parameterization (2.2a), and to a maximum of
size θ0(1 +

√
θ1θ2)−1 at the point umax2 =

√
θ1/θ2 for parameterization (2.2b),

after which the functions are strictly decreasing to a zero asymptote. A sufficient
condition for the positivity of the numerator is θ0, θ2 > 0, |θ1| ≤ 2

√
θ0θ2 for

model (2.2a), and θ0, θ1, θ2 > 0, 2
√

θ1θ2 > 1 for model (2.2b), respectively. We
assume that at each u ∈ U a normally distributed observation is available with
mean η(u, θ) and variance σ2 > 0, where the function η is either η1 or η2, and
different observations are assumed to be independent. An experimental design
ξ is a probability measure with finite support defined on the set U (see Kiefer
(1974)). The information matrix of an experimental design ξ is

M(ξ, θ) =
∫
U

f(u, θ)fT (u, θ)dξ(u), (2.3)

where
f(u, θ) =

∂

∂θ
η(u, θ) (2.4)

denotes the gradient of the expected response with respect to the parameter θ.
For the parameterizations (2.2a) and (2.2b) the vectors of the partial derivatives
are given by

f1(u, θ) =
−u

(θ0 + θ1u + θ2u2)2
(1, u, u2)T , (2.5)

f2(u, θ) =
u

θ1 + u + θ2u2

(
1,− θ0

θ1 + u + θ2u2
,− θ0u

2

θ1 + u + θ2u2

)T

, (2.6)

respectively.
If N observations can be made and the design ξ concentrates mass wi at the
points ui, i = 1, . . . , r, the quantities wiN are rounded to integers such that∑r

j=1 ni = N (see Pukelsheim and Rieder (1992)), and the experimenter takes
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ni observations at each point ui, i = 1, . . . , r. If the sample size N converges to
infinity, then (under appropriate assumptions of regularity) the covariance ma-
trix of the maximum likelihood estimator for the parameter θ is approximately
proportional to the matrix (σ2/N)M−1(ξ, θ), provided that the inverse of the
information matrix exists (see Jennrich (1969)). An optimal experimental design
maximizes or minimizes an appropriate functional of the information matrix or
its inverse, and there are numerous optimality criteria which can be used to dis-
criminate between competing designs (see Silvey (1980) or Pukelsheim (1993)).
In this paper we investigate the D-optimality criterion that maximizes the de-
terminant of the inverse of the information matrix with respect to the design
ξ, the c-optimality criterion that minimizes the variance of the maximum like-
lihood estimate for the linear combination cT θ, and the E-optimality criterion
that maximizes the minimum eigenvalue of the information matrix M(ξ, θ).

3. Local c-optimal Designs

Recall that, for a given vector c ∈ Rn+1, a design ξc is called c-optimal if
the linear combination cT θ is estimable by the design ξc, that is Range(c) ⊂
Range(M(ξc, θ)), and the design ξc minimizes

cT M−(ξ, θ)c (3.1)

among all designs for which cT θ is estimable, where M−(ξ, θ) denotes a gener-
alized inverse of the matrix M(ξ, θ). It is shown in Pukelsheim (1993) that the
expression (3.1) does not depend on the specific choice of the generalized inverse.
Moreover, a design ξc is c-optimal if and only if there exists a generalized inverse
G of M(ξc, θ) such that the inequality

(f ′(u, θ)Gc)2 ≤ c′M−(ξc, θ)c (3.2)

holds for all u ∈ U (see Pukelsheim (1993)). A further important tool to de-
termine c-optimal designs is the theory of Chebyshev systems, which is briefly
described here for the sake of completeness.

Following Karlin and Studden (1966), a set of functions {g0, . . . , gn} defined
on the set U is called Chebychev-system, if every linear combination

∑n
i=0 aigi(x)

with
∑n

i=0 a2
i > 0 has at most n distinct roots on U . This property is equivalent

to the fact that
det(g(u0), . . . , g(un)) 6= 0 (3.3)

holds for all u0, . . . , un ∈ U with ui 6= uj (i 6= j), where g(u) = (g0(u), . . . , gn(u))T

denotes the vector of all functions (see Karlin and Studden (1966)). If the func-
tions g0, . . . , gn constitute a Chebyshev-system on the set U , then there exists a
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unique “polynomial”

φ(u) :=
n∑

i=0

α∗
i gi(u) (α∗

0, . . . , α
∗
n ∈ R) (3.4)

with the properties

(i) |φ(u)| ≤ 1 ∀u ∈ U ,

(ii) There exist n + 1 points s0 < · · · < sn such that φ(si) = (−1)n−i for i =
0, . . . , n.

The function φ(u) is called the Chebychev-polynomial, and the points s0, . . . , sn

are called Chebychev-points, these are not necessarily unique. Kiefer and Wol-
fowitz (1965) defined the set A∗ ⊂ Rn+1 as the set of all vectors c ∈ Rn+1

satisfying ∣∣∣∣∣∣∣∣∣
g0(x1) · · · g0(xn) c0

g1(x1) · · · g1(xn) c1
...

. . .
...

...
gn(x1) · · · gn(xn) cn

∣∣∣∣∣∣∣∣∣ 6= 0, (3.5)

whenever the points x1, . . . , xn ∈ U are distinct. They showed that for each
c ∈ A∗, the c-optimal design that minimizes

cT

(∫
U

g(u)gT (u)dξ(u)
)−1

c

among all designs on U , is supported by the entire set of the Chebychev-points
s0, . . . , sn. The corresponding optimal weights w∗

0, . . . , w
∗
n can then easily be

found using Lagrange multipliers, and are given by

w∗
i =

|vi|∑n
j=0 |vj |

i = 0, . . . , n, (3.6)

where the vector v is v = (XXT )−1Xc, and the (n + 1) × (n + 1)-matrix X is
given by X = (gj(si))n

i,j=0 (see also Pukelsheim and Torsney (1991)).
In the following discussion we use these results to determine local optimal

design for two specific goals in the data analysis with inverse quadratic regres-
sion models: discrimination between inverse linear and quadratic models, and
extrapolation or prediction at a specific point xe. We begin with the discrimina-
tion problem that has been extensively studied for ordinary polynomial regression
models (see Stigler (1971), Studden (1982) or Dette (1995), among many others).
To our knowledge the problem of constructing designs for the discrimination be-
tween inverse rational models has not been studied in the literature. We consider
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the inverse quadratic regression model (2.2a) and are interested in determining
a design, which can be used to discriminate between this and the inverse linear
regression model η(u, θ) = u/(θ0 + θ1u).

The decision on which model should be used could be based on the likelihood
ratio test for the hypothesis H0 : θ2 = 0 in the model (2.2a), and a standard
calculation shows that the (asymptotic) power of this test is a decreasing function
of the quantity (3.1), where the vector c is given by c = (0, 0, 1)T . Thus a design
maximizing the power of the likelihood ratio test for discriminating between the
inverse linear and quadratic model is a local c-optimal design for the vector
c = (0, 0, 1)T . Following Stigler (1971), we call this design local D1-optimal. Our
first results determine the local D1-optimal design for the two parameterizations
of the inverse quadratic regression model explicitly.

Theorem 3.1. The local D1-optimal design ξ∗D1
for the inverse quadratic regres-

sion model (2.2a) on the design space U = [0,∞) is given by

ξ∗D1
=

(
1
ρ

√
θ0
θ2

√
θ0
θ2

ρ
√

θ0
θ2

w0 w1 1 − w0 − w1

)
, (3.7)

with weights w0 = (
√

θ2θ0 + θ1

√
θ0ρ +

√
θ2θ0ρ

2)2/[(1 + ρ)λ], w1 = (2
√

θ2θ0 +
θ1

√
θ0)2ρ2/λ, and λ = θ0(θ0θ2(1 + 6ρ2 + ρ4) + 2θ1ρ(θ1ρ +

√
θ0θ2(1 + ρ)2)). Here

the geometric scaling factor ρ is

ρ = ρ(γ) = 1 +
2 + γ√

2
+

√
2(1 +

√
2) + (2 +

√
2)γ +

γ2

2
(3.8)

with γ = θ1/
√

θ0θ2. This design is also local D1-optimal on the design space
U = [s, t] (0 < s < t) if the inequalities 0 ≤ s ≤ ρ−1

√
θ0/θ2 and t ≥ ρ

√
θ0/θ2

are satisfied.
The local D1-optimal design on the design space U = [s, t] for model (2.2a) is of
the form

ξ∗D1
=

(
s u′

1 u′
2

w′
0 w′

1 1 − w′
0 − w′

1

)
(3.9)

if the inequalities s ≥ ρ−1
√

θ0/θ2 and t > ρ
√

θ0/θ2 hold, is of the form

ξ∗D1
=

(
u′′

0 u′′
1 t

w′′
0 w′′

1 1 − w′′
0 − w′′

1

)
(3.10)

if the inequalities s < ρ−1
√

θ0/θ2 and t ≤ ρ
√

θ0/θ2 are satisfied, and is of the
form

ξ∗D1
=

(
s u′′′

1 t

w′′′
0 w′′′

1 1 − w′′′
0 − w′′′

1

)
(3.11)
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if the inequalities s ≥ ρ−1
√

θ0/θ2 and t ≤ ρ
√

θ0/θ2 hold.

Proof. The proof is in three steps:

(A) identify a candidate for the local D1-optimal design on the interval [0,∞)
using the theory of Chebyshev polynomials;

(B) use the properties of the Chebyshev polynomial (3.4) to prove the local
D1-optimality of this candidate;

(C) consider the case of a bounded design space and determine how the con-
straints interfere with the support points of the local optimal design on the
unbounded design space.

(A): Let f(u, θ) be the vector of the partial derivatives in parameterization (2.2a)
defined in (2.5). It is easy to see that the components of the vector f1(u, θ), say
{ f10(u, θ), f11(u, θ), f12(u, θ) }, constitute a Chebyshev-system on any bounded
interval [s, t] ⊂ (0,∞). Furthermore, for y0, y1 > 0 with y0 6= y1, we get∣∣∣∣∣∣

f10(y0, θ) f10(y1, θ) 0
f11(y0, θ) f11(y1, θ) 0
f12(y0, θ) f12(y1, θ) 1

∣∣∣∣∣∣ 6= 0,

and it follows that the vector (0, 0, 1)T is an element of the set A∗ defined in (3.5).
Therefore we obtain from the results of Kiefer and Wolfowitz (1965) that the local
D1-optimal design is supported on the entire set of Chebyshev-points {u∗

0, u
∗
1, u

∗
2}

of the Chebyshev-system {f10(u, θ), f11(u, θ), f12(u, θ)}. If the support points are
given, say u0, u1, u2, the corresponding weights can be determined by (3.6) such
that the function defined in (3.1) is maximal.

Now the D1-optimality criterion can be expressed as a function of the points
u0, u1, u2 and optimized analytically. For this purpose we obtain, by a tedious
computation,

T (ũ, θ) :=
|M(ξ, θ)|
|M̃(ξ, θ)|

=
u2

0(u0 − u1)2u2
1(u1 − u2)2u2

2

N
, (3.12)

where M̃(ξ, θ) denotes the matrix obtained from M(ξ, θ) by deleting the last row
and column, ũ = (u0, u1, u2), θ = (θ0, θ1, θ2), and

N = (4θ0u0u1(θ1 + θ2u1)u2 + θ2
0(u1(u2 − u1) + u0(u1 + u2))

+u0u1u2(2θ2
1u1 + 2θ1θ2(u0(u1 − u2) + u1(u1 + u2))

+θ2
2(u

2
0(u1 − u2) + u0(u1 − u2)u2 + u1(u2

1 + u2
2))))

2.
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We maximize T (ũ, θ) with respect to u0, u1, u2. The necessary conditions for a
maximum yield the system of nonlinear equations

∂T

∂u0
(ũ, θ) = 4θ0u

2
0u1(θ1 + θ2u1)u2 + θ2

0(−2u0u1(u1 − u2)

+u2
1(u1 − u2) + u2

0(u1 + u2)) + u2
0u1u2(2θ2

1u1 + 4θ1θ2u
2
1

+θ2
2(2u0u1(u1 − u2) + u2

0(u2 − u1) + u2
1(u1 + u2))) · R1 = 0, (3.13)

∂T

∂u1
(ũ, θ) = 4θ0u0u

2
1u2(−(θ2u

2
1) + θ2u0u2 + θ1(u0 − 2u1 + u2))

+θ2
0(u

2
1(u1 − u2)2 − 2u0u1(u2

1 + u1u2 − u2
2) + u2

0(u
2
1 + 2u1u2 − u2

2))

−u0u
2
1u2(2θ2

1(u
2
1 − u0u2) + 4θ1θ2u1(u0(u1 − 2u2) + u1u2)

+θ2
2(u

2
0(u1 − u2)2 + 2u0u1(u2

1 − u1u2 − u2
2)

+u2
1(−u2

1 + 2u1u2 + u2
2))) · R2 = 0, (3.14)

∂T

∂u2
(ũ, θ) = 4θ0u0u1(θ1 + θ2u1)u2

2 + θ2
0(u1(u1 − u2)2 + u0(−u2

1 + 2u1u2 + u2
2))

+u0u1u
2
2(2θ2

1u1 + 4θ1θ2u
2
1 + θ2

2(u0(u1 − u2)2

+u1(u2
1 + 2u1u2 − u2

2))) · R3 = 0, (3.15)

where R1, R2 and R3 are rational functions that do not vanish for all u0, u1, u2

with 0 < u0 < u1 < u2. In order to solve this system of equations, we assume
that

u0 =
u1

r
, u2 = r · u1 (3.16)

holds for some factor r > 1, to be specified later. Inserting this in (3.14) gives,
as the only positive solution, u∗

1 =
√

θ0/θ2. Substituting this term into (3.13) or
(3.15) yields the following equation for the factor r:

2θ1(θ1 + 4
√

θ0θ2)r2 − θ0θ2(1 − 4r − 2r2 − 4r3 + r4) = 0,

with four roots given by

r1/2 = 1 ± (2 + γ)√
2

±
√

2(1 +
√

2) + (2 +
√

2)γ +
γ2

2
, (3.17)

r3/4 = 1 ± (2 + γ)√
2

∓
√

2(1 +
√

2) + (2 +
√

2)γ +
γ2

2
,

where γ =
√

θ1θ2
−1. The factor r has to be strict greater 1 according to our

assumption on the relation between u0, u1 and u2. This provides only the first
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solution in (3.17), and the geometric scaling factor is given by (3.8). Therefore
it remains to justify assumption (3.16), which is done in the second part of the
proof.

(B): Because the calculation of the support points ρ−1
√

θ0/θ2,
√

θ0/θ2, and
ρ
√

θ0/θ2 in step (A) is based on assumption (3.16), we still have to prove that
these points are the support points of the local D1-optimal design. For this
purpose we show that the unique oscillating polynomial defined by (3.4) attends
minima and maxima exactly in these support points. Recall that the vector of
the partial derivatives of the regression function f1(u, θ) = (f10(u, θ), f11(u, θ),
f12(u, θ)) is given by (2.5). We now set

t(u) = f10(u, θ) + α1f11(u, θ) + α2f12(u, θ) (3.18)

and determine the factors α1 and α2 such that it is equioscillating, i.e.,

t′(u∗
i ) = 0 i = 0, 1, 2, (3.19a)

t(u∗
i ) = c(−1)i−1 i = 0, 1, 2, (3.19b)

for some constant c ∈ R. By this choice, the polynomial t must be proportional
to the polynomial φ defined in (3.4). For the determination of the coefficients
calculate that

t′(u) =
−(θ0(1 + 2uα1 + 3u2α2)) + u(θ1(1 − u2α2) + θ2u(3 + 2uα1 + u2α2))

(θ0 + u(θ1 + θ2u))3
.

(3.20)
Substituting the support points u∗

1 =
√

θ0/θ2 and u∗
2 = ρ

√
θ0/θ2 in (3.20), we

obtain from (3.19a) the equations

0 =
√

θ0(θ1 + 2
√

θ0θ2)(θ2 − θ0α2)√
θ2θ2

,

0 =
√

θ0θ2(θ1ρ +
√

θ0θ2(3ρ2 − 1) + 2θ0ρ(ρ2 − 1)α1)√
θ2θ2

+
√

θ0θ0ρ
2(−(θ1ρ) +

√
θ0θ2(ρ2 − 3))α2√

θ2θ2
.

The solution with respect to α1 and α2 is

α1 = −
√

θ0θ2 − θ1ρ +
√

θ0θ2ρ
2

2θ0ρ
, α2 =

θ2

θ0
,

which yields

t(u) =
u(−2θ0ρ +

√
θ0θ2(1 + ρ2)u − ρu(θ1 + 2θ2u))

2θ0ρ(θ0 + u(θ1 + θ2u))2
,

t′(u) = −(
√

θ0 −
√

θ2u)(
√

θ0ρ −
√

θ2u)(
√

θ0 +
√

θ2u)(
√

θ0 −
√

θ2ρu)
θ0ρ(θ0 + u(θ1 + θ2u))3

, (3.21)
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respectively. A straightforward calculation shows that the third support point
u∗

0 = ρ−1
√

θ0/θ2 satisfies t′(u∗
0) = 0, and that the three equations in (3.19b) are

satisfied. Therefore it only remains to prove that the inequality |t(u)| ≤ c holds
on the interval [0,∞). In this case the polynomial t must be proportional to
the equioscillating polynomial φ, and the design with support points ρ−1

√
θ0/θ2,√

θ0/θ2 and ρ
√

θ0/θ2 and optimal weights is local D1-optimal.
Observing the representation (3.21) shows that the equation t′(u) = 0 is equiva-
lent to

(
√

θ0 −
√

θ2u)(
√

θ0ρ −
√

θ2u)(
√

θ0 +
√

θ2u)(
√

θ0 −
√

θ2ρu) = 0, (3.22)

with roots

n0 = −
√

θ0

θ2
, n1 =

1
ρ

√
θ0

θ2
, n2 =

√
θ0

θ2
and n3 = ρ

√
θ0

θ2
.

Therefore t has exactly three extrema on R+. Furthermore if u → ∞, we have
t(u) → 0 and it follows that |t(u)| ≤ c holds for all u ≥ 0. Consequently, the
functions t and φ are proportional and the points u∗

0 = ρ−1
√

θ0/θ2, u∗
1 =

√
θ0/θ2,

u∗
2 = ρ

√
θ0/θ2 are the support points of the local D1-optimal design. The explicit

construction of the weights w0 and w1 is obtained by substituting the support
points u∗

0, u∗
1 and u∗

2 into (3.6).

(C) Finally consider the cases (3.9), (3.10) and (3.11) in the second part of The-
orem 3.1 that correspond to a bounded design space. For the sake of brevity
we restrict ourselves to the case (3.9), all other cases are treated similarly.
Obviously the assertion follows from the existence of a point u∗

0 > 0, such
that T (u0, u

∗
1, u

∗
2, θ) is increasing in u0 on the interval (0, u∗

0) and decreasing
on (u∗

0, u
∗
1).

For a proof of this property we fix u1, u2, and note that T̄ (u0) := T (u0, u1, u2, θ)
has minima in u0 = 0 and u0 = u1, since the inequality T̄ (u0) ≥ 0 holds for all
u0 ∈ [0, u1] and T̄ (0) = T̄ (u1) = 0. Because T̄ (u0) is not constant, there is at
least one maximum in the interval (0, u1). In order to prove that there is exactly
one maximum, we calculate

T̄ ′(u0) =
∂T

∂u0
(u0, u1, u2, θ) = 2u0(u0 − u1)u2

1(u1 − u2)2u2
2

P4(u0)
P9(u0)

, (3.23)

where P9 is a polynomial of degree 9 (which is in the following discussion without
interest) and the polynomial P4 in the numerator is given by

P4(u0) = 4θ0u
2
0u1(θ1 + θ2u1)u2 + θ2

0(−2u0u1(u1 − u2) + u2
1(u1 − u2)

+u2
0(u1 + u2)) + u2

0u1u2(2θ2
1u1 + 4θ1θ2u

2
1 + θ2

2(2u0u1(u1 − u2)

+u2
0(u2 − u1) + u2

1(u1 + u2))).
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The roots of the function T̄ ′ are given by the roots of the polynomial P4. Differ-
entiating this polynomial yields

∂P4

∂u0
(u0) = 8θ0u0u1(θ1 + θ2u1)u2 + 2θ2

0(u1(u2 − u1) + u0(u1 + u2))

+2u0u1u2(2θ2
1u1 + 4θ1θ2u

2
1 + θ2

2(−2u2
0(u1 − u2)

+3u0u1(u1 − u2) + u2
1(u1 + u2))),

which has only one real root. Consequently P4(u0) has just one extremum and
therefore at most two roots. The case of no roots has been excluded above. If
P4(u0) would have two roots, then the function T̄ (u0) has at most two extrema
in the interval (0, u1). However, T̄ (u0) is zero in the two points 0 and u1, and
in the interval (0, u1) is strictly positive. Therefore the number of its extrema
has to be odd and T̄ (u0) has exactly one maximum on (0, u1), attained for given
(u1, u2) = (u∗

1, u
∗
2) at a point u∗

0 ∈ (0, u∗
1).

Assume that the design space is of the form U = [s, t]. If the inequality s < u∗
0

holds, (3.7) remains the local D1-optimal design. However if the inequality s > u∗
0

holds, the function T̄ (u0) is maximal in s, and it follows that (3.9) is the local
D1-optimal design.

Remark 3.1. Note that part (A) of the proof essentially follows the arguments
presented in Haines (1992) for D-optimality criterion, under the model

η(u, α, β0, β1, β2) =
u + α

β0 + β1(u + α) + β2(u + α)2
.

However, the proof presented by Haines (1992) is not complete. Here we present
a tool for correcting this gap, as demonstrated in part (B) of the preceding proof.
It is also worthwhile to mention that an analogue of Theorem 3.1 does not hold in
the four-parameter model discussed in Haines (1992). For example if β0 = β2 = 1,
β1 = −1.8, and α = 0.1, we obtain by numerical computation that the local D1-
optimal design is supported at the Chebyshev-points { 0, 0.6272, 0.9861, 1.8714 };
there does not exist a similar geometric spacing behaviour as in the models
considered in this paper.

The following theorem states the corresponding results for the inverse
quadratic regression model with parameterization (2.2b). The proof is similar to
the proof of the previous theorem and therefore omitted.

Theorem 3.2. The local D1-optimal design ξ∗D1
for the inverse quadratic regres-

sion model (2.2b) on the design space U = [0,∞) is given by

ξ∗D1
=

(
1
ρ

√
θ1
θ2

√
θ1
θ2

ρ
√

θ1
θ2

w0 w1 1 − w0 − w1

)
(3.24)
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with

w0 =
(
√

θ2θ1 +
√

θ1ρ +
√

θ2θ1ρ
2)2(1 +

√
θ1θ2(1 + ρ))

[(1 + ρ)λ]

w1 =
(2θ1 +

√
θ1θ2)2ρ(ρ +

√
θ1θ2(1 + ρ2))

λ
,

λ = θ1(ρ(2ρ + 3
√

θ1θ2(1 + ρ)2) + θ1θ2(1 + 2
√

θ1θ2(1 + ρ)2(1 + ρ2)

+ρ(8 + ρ(6 + ρ(8 + ρ))))).

The geometric scaling factor ρ is given by (3.8) with γ = (
√

θ1θ2)−1. This de-
sign is also local D1-optimal on the design space U = [s, t] (0 < s < t) if the
inequalities 0 ≤ s ≤ ρ−1

√
θ1/θ2 and t ≥ ρ

√
θ1/θ2 are satisfied.

The local D1-optimal design on the design space U = [s, t] for the inverse
quadratic regression model (2.2b) is of the form (3.9) if the inequalities s ≥
ρ−1

√
θ1/θ2 and t > ρ

√
θ1/θ2 hold, of the form (3.10) if the inequalities s <

ρ−1
√

θ1/θ2 and t ≤ ρ
√

θ1/θ2 are satisfied, and is of the form (3.11) if the in-
equalities s ≥ ρ−1

√
θ1/θ2 and t ≤ ρ

√
θ1/θ2 hold.

In the following discussion we concentrate on the problem of extrapolation
in the inverse quadratic regression model. An optimal design for this purpose
minimizes the variance of the estimate of the expected response at a point xe and
is therefore c-optimal for the vector ce = f1(xe, θ) in the case of parameterization
(2.2a), and for the vector ce = f2(xe, θ) in the case of parameterization (2.2b),
respectively. If xe is an element of the design space U , it is obviously optimal to
take all observations at the point xe, and therefore we assume for the remaining
part of this section that U = [s, t], where 0 ≤ s < t and 0 < xe < s or xe > t.
The following result specifies local optimal extrapolation designs for the inverse
quadratic regression model that are called local ce-designs in the following dis-
cussion. The proofs are similar to the proofs for D1-optimality and are therefore
omitted.

Theorem 3.3. Assume that U = [s, t], where 0 ≤ s < t and 0 < xe < s

or xe > t, and let ρ denote the geometric scaling factor defined in (3.8) with
γ = θ1(

√
θ0θ2)−1. If 0 ≤ s ≤ ρ−1

√
θ0/θ2 and t ≥ ρ

√
θ0/θ2, then the local ce-

optimal design ξ∗ce
for the inverse quadratic regression model (2.2a) is given by

ξ∗ce
=

(
1
ρ

√
θ0
θ2

√
θ0
θ2

ρ
√

θ0
θ2

w0 w1 1 − w0 − w1

)
(3.25)
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where

w0 =
(√

θ0 − xe

√
θ2

)(
− xe

√
θ2 +

√
θ0ρ

)(
θ0

√
θ2 + θ1

√
θ0ρ + θ0

√
θ2ρ

2
)2

×((1 + ρ)λ)−1

w1 =
(2θ0

√
θ2 + θ1

√
θ0)2ρ(−xe

√
θ2 +

√
θ0ρ)(

√
θ0 − xe

√
θ2ρ)

λ
,

λ = θ0

(
θ2
0θ2(1 + 6ρ2 + ρ4) + θ0(2θ2

1ρ
2 + 2θ1ρ(

√
θ0θ2(1 + ρ)2 − 4xeθ2(1 + ρ2))

+θ2xe(−2
√

θ0θ2(1 + ρ)2(1 + ρ2) + xeθ2(1 + 6ρ2 + ρ4)))

+θ1xeρ(2
√

θ0θ2θ2xe(1 + ρ
)2 − θ1(

√
θ0θ2 + ρ(−2xeθ2 +

√
θ0θ2(2 + ρ))))

)
.

The local ce-optimal design for the inverse quadratic model (2.2a) is of the form
(3.9) if the inequalities s ≥ ρ−1

√
θ0/θ2 and t > ρ

√
θ0/θ2 hold, is of the form

(3.10) if the inequalities s < ρ−1
√

θ0/θ2 and t ≤ ρ
√

θ0/θ2 are satisfied, and is of
the form (3.11) if the inequalities s ≥ ρ−1

√
θ0/θ2 and t ≤ ρ

√
θ0/θ2 hold.

Theorem 3.4. Assume that U = [s, t], where 0 ≤ s < t and 0 < xe < s or
xe > t, and let ρ denote the geometric scaling factor ρ defined in (3.8) with
γ = (

√
θ1θ2)−1. If 0 ≤ s ≤ ρ−1

√
θ1/θ2 and t ≥ ρ

√
θ1/θ2, then the local ce-

optimal design ξ∗ce
for the inverse quadratic regression model (2.2b) on the design

space U = [0,∞) is given by

ξ∗ce
=

(
1
ρ

√
θ1
θ2

√
θ1
θ2

ρ
√

θ1
θ2

w0 w1 1 − w0 − w1

)
(3.26)

with

w0 =
(√

θ1 − xe

√
θ2

)(
− xe

√
θ2 +

√
θ1ρ

)(
θ1

√
θ2 +

√
θ1ρ + θ1

√
θ2ρ

2
)2

×((1 + ρ)λ)−1

w1 =
(2θ1

√
θ2 +

√
θ1)2ρ(−xe

√
θ2 +

√
θ1ρ)(

√
θ1 − xe

√
θ2ρ)

λ
,

λ = θ1

(
θ2
1θ2(1 + 6ρ2 + ρ4) + xeρ(−

√
θ1θ2 + 2

√
θ1θ2θ2xe(1 + ρ)2

−ρ(−2xe

√
θ2 +

√
θ1θ2(2 + ρ))) + θ1(2ρ2 + 2ρ(

√
θ1θ2(1 + ρ)2

−4xe

√
θ2(1 + ρ2)) + xe(−2

√
θ1θ2θ2(1 + ρ)2(1 + ρ2)

+xeθ
2
2(1 + 6ρ2 + ρ4)))

)
.

If the design space is given by a finite interval [s, t], 0 < s < t, then the lo-
cal ce-optimal design for model (2.2a) is of the form (3.9) if the inequalities
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s ≥ ρ−1
√

θ1/θ2 and t > ρ
√

θ1/θ2 hold, is of the form (3.10) if the inequali-
ties s < ρ−1

√
θ1θ2 and t ≤ ρ

√
θ1/θ2 are satisfied, and is of the form (3.11) if the

inequalities s ≥ ρ−1
√

θ1/θ2 and t ≤ ρ
√

θ1/θ2 hold.

Note that for a sufficiently large design interval all designs presented in this
section are supported at the same points, the Chebyshev points corresponding
to the Chebyshev system of the components of the gradient of the regression
function. In the next section we demonstrate that these points are also the
support points of the local E-optimal design for the inverse quadratic regression
model.

4. Local D- and E-optimal Designs

We begin by stating the corresponding result for the D-optimality criterion.
The proof is omitted because it requires arguments that are similar to those
presented in Haines (1992) and in the proof of Theorem 3.1.

Theorem 4.1. The local D-optimal design ξ∗D for the inverse quadratic regres-
sion model (2.2a) on the design space U = [0,∞) is given by

ξ∗D =

(
1
ρ

√
θ0
θ2

√
θ0
θ2

ρ
√

θ0
θ2

1
3

1
3

1
3

)
(4.1)

with the geometric scaling factor

ρ =
δ +

√
δ2 − 4
2

, (4.2)

where the constants δ and γ are defined by δ = (1/2)(γ + 1 +
√

γ2 + 6γ + 33)
and γ = θ1(

√
θ0θ2)−1, respectively. This design is also local D-optimal on the

design space U = [s, t] (0 < s < t) if the inequalities 0 ≤ s ≤ ρ−1
√

θ0/θ2 and
t ≥ ρ

√
θ0/θ2 are satisfied.

The local D-optimal design on the design space U = [s, t] for the inverse quadratic
regression model (2.2b) is of the form (3.9) if the inequalities s ≥ ρ−1

√
θ1/θ2 and

t > ρ
√

θ1/θ2 hold, is of the form (3.10) if the inequalities s < ρ−1
√

θ1/θ2 and t ≤
ρ
√

θ1/θ2 are satisfied, and is of the form (3.11) if the inequalities s ≥ ρ−1
√

θ1/θ2

and t ≤ ρ
√

θ1/θ2 hold.

Theorem 4.2. The local D-optimal design ξ∗D for the inverse quadratic regres-
sion model (2.2b) on the design space U = [0,∞) is given by

ξ∗D =

(
1
ρ

√
θ1
θ2

√
θ1
θ2

ρ
√

θ1
θ2

1
3

1
3

1
3

)
(4.3)
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with the geometric scaling factor ρ given by (4.2) with γ = (
√

θ1θ2)−1. This design
is also D-optimal on the design space U = [s, t] (0 < s < t) if the inequalities
0 ≤ s ≤ ρ−1

√
θ1/θ2 and t ≥ ρ

√
θ1/θ2 are satisfied.

The local D-optimal design on the design space U = [s, t] for the inverse quadratic
regression model (2.2b) is of the form (3.9) if the inequalities s ≥ ρ−1

√
θ1/θ2 and

t > ρ
√

θ1/θ2 hold, is of the form (3.10) if the inequalities s < ρ−1
√

θ1/θ2 and t ≤
ρ
√

θ1/θ2 are satisfied, and is of the form (3.11) if the inequalities s ≥ ρ−1
√

θ1/θ2

and t ≤ ρ
√

θ1/θ2 hold.

We conclude this section with the discussion of the E-optimality criterion.
For this purpose recall that a design ξE is local E-optimal if and only if there
exists a matrix E ∈ conv(S) such that the inequality

f ′(u, θ)Ef(u, θ) ≤ λmin (4.4)

holds for all u ∈ U , where λmin denotes the minimum eigenvalue of the matrix
M(ξE , θ) and

S =
{

zz′ | ‖z‖2 = 1, z is an eigenvector of M(ξE , θ) corresponding to λmin

}
.

(4.5)
The following two results specify the local E-optimal designs for the inverse
quadratic regression models with parameterization (2.2a) and (2.2b). Because
both statements are proved similarly, we restrict ourselves to a proof of the first
theorem.

Theorem 4.3. The local E-optimal design ξ∗E for the inverse quadratic regression
model (2.2a) on the design space U = [0,∞) is given by

ξ∗E =

(
1
ρ

√
θ0
θ2

√
θ0
θ2

ρ
√

θ0
θ2

w0 w1 1 − w0 − w1

)
, (4.6)

where the weights w0, w1 are given by (3.6) and c is the vector with components
given by the coefficients of the Chebyshev polynomial, that is

c =
(
−

√
θ0(2θ2

1ρ
2 + 2

√
θ0θ1

√
θ2ρ(1 + ρ)2 + θ0θ2(1 + 6ρ2 + ρ4))√
θ2(−1 + ρ)2ρ

,

θ2
1ρ(1 + ρ)2 + 8

√
θ0θ1

√
θ2ρ(1 + ρ2) + 2θ0θ2(1 + ρ)2(1 + ρ2)
(−1 + ρ)2ρ

,

−
√

θ2(2θ2
1ρ

2 + 2
√

θ0θ1

√
θ2ρ(1 + ρ)2 + θ0θ2(1 + 6ρ2 + ρ4))√
θ0(−1 + ρ)2ρ

)T

.

The geometric scaling factor is given by (3.8) with γ = θ1(
√

θ0θ2)−1. This design
is also local E-optimal on the design space U = [s, t] (0 < s < t) if the inequalities
0 ≤ s ≤ ρ−1

√
θ0/θ2 and t ≥ ρ

√
θ0/θ2 are satisfied.
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The local E-optimal design on the design space U = [s, t] for model (2.2a) is of
the form (3.9) if the inequalities s ≥ ρ−1

√
θ0/θ2 and t > ρ

√
θ0/θ2 hold, is of the

form (3.10) if the inequalities s < ρ−1
√

θ0/θ2 and t ≤ ρ
√

θ0/θ2 are satisfied, and
is of the form (3.11) if the inequalities s ≥ ρ−1

√
θ0/θ2 and t ≤ ρ

√
θ0/θ2 hold.

Proof. It is straightforward to show that for every subset of {f10(u, θ), f11(u, θ),
f12(u, θ)}, the components of the vector f1(u, θ) that consists of 2 elements is a
(weak) Chebychev-system. Therefore it follows from Theorem 2.1 in Imhof and
Studden (2001) that the local E-optimal is supported at the Chebyshev points.
The assertion regarding the weights finally follows from (3.6) by observing that
the results of Imhof and Studden (2001) imply that the local E-optimal design is
also c-optimal for the vector c with components given by the coefficients of the
Chebyshev polynomial.

Theorem 4.4. The local E-optimal design ξ∗E for the inverse quadratic regression
model (2.2b) on the design space U = [0,∞) is given by

ξ∗E =

(
1
ρ

√
θ1
θ2

√
θ1
θ2

ρ
√

θ1
θ2

w0 w1 1 − w0 − w1

)
, (4.7)

where the weights w0, w1 are given by (3.6) and c is the vector with components
given by the coefficients of the Chebyshev polynomial, that is

c =
(
− 1 − 2

√
θ1θ2 −

2(2ρ +
√

θ1θ2(1 + ρ)2)(ρ +
√

θ1θ2(1 + ρ2))
(−1 + ρ)2ρ

,

−
√

θ1(1 + 2
√

θ1θ2)(2ρ +
√

θ1θ2(1 + ρ)2)(ρ +
√

θ1θ2(1 + ρ2))
θ0

√
θ2(−1 + ρ)2ρ

,

−
√

θ2(1 + 2
√

θ1θ2)(2ρ +
√

θ1θ2(1 + ρ)2)(ρ +
√

θ1θ2(1 + ρ2))
θ0

√
θ1(−1 + ρ)2ρ

)T

.

The geometric scaling factor is given by (3.8) with γ = (
√

θ1θ2)−1. This design is
also local E-optimal on the design space U = [s, t] (0 < s < t) if the inequalities)
0 ≤ s ≤ ρ−1

√
θ1/θ2 and t ≥ ρ

√
θ1/θ2 are satisfied.

The local E-optimal design on the design space U = [s, t] for model (2.2a) is of
the form (3.9) if the inequalities s ≥ ρ−1

√
θ1/θ2 and t > ρ

√
θ1/θ2 hold, is of the

form (3.10) if the inequalities s < ρ−1
√

θ1/θ2 and t ≤ ρ
√

θ1/θ2 are satisfied, and
is of the form (3.11) if the inequalities s ≥ ρ−1

√
θ1/θ2 and t ≤ ρ

√
θ1/θ2 hold.

5. Further Discussion

In this Section we discuss some practical aspects of the local optimal designs
derived in the previous sections. In particular, we calculate the efficiency of a
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Table 5.1. D-, E-, D1- and ce-optimal designs for parametrization (2.2a).

Criterion Optimal design
points : 1 3.4089 14

D
weights : 1/3 1/3 1/3
points : 1 3.3561 14

E
weights : 0.3972 0.3914 0.2114
points : 1 3.3561 14

D1 weights : 0.1239 0.2884 0.5877
points : 1 3.3561 14

ce weights : 0.0582 0.1535 0.7883

design that has recently been used in practice, and investigate the efficiency of
local optimal designs with respect to other optimality criteria. Throughout, the
efficiency of a design ξ is defined by effΦ(ξ) = Φ(ξ)/ supη Φ(η), where Φ denotes
the particular optimality criterion under consideration and the optimal design
maximizes Φ.

Landete-Castillejos and Gallego (2000) used the inverse quadratic regression
model to analyze data that were obtained from lactating red deer hinds (Cervus
elaphus). They concluded that inverse quadratic polynomials with parameteri-
zation (2.2a) can adequately describe the common lactation curves. The design
space was given by the interval U = [1, 14], and the design used by these authors
was a uniform design with support points (1, 2, 3, 4, 5, 6, 10, 14), denoted by ξu

throughout this section. The estimates for the parameters of model (2.2a) are
given by θ̂0 = 0.0002865, θ̂1 = 0.0002117, and θ̂2 = 0.0000301. Table 5.1 shows
the local optimal designs for the different optimality criteria considered in Sec-
tion 3 and 4, where we used the point xe = 21 for the calculation of the optimal
extrapolation design.

The efficiencies of the different designs are shown in Table 5.2. We observe
that the design of Landete-Castillejos and Gallego (2000) yields rather low effi-
ciencies with respect to all optimality criteria, and the efficiency of the statistical
analysis could have been improved by allocating observations according to local
optimal design (see the first row in Table 5.2). For example, a confidence in-
terval based on the local D1-optimal design would yield 66% shorter confidence
intervals for the parameter c than the design actually used by Landete-Castillejos
and Gallego (2000). The advantages of the local optimal designs are also clearly
visible for the other criteria.

Note that the data are usually used for several purposes, for example for
discrimination between a linear and a quadratic inverse polynomial, and for ex-
trapolation using the identified model. Therefore it is important that an optimal
design for a specific optimality criterion also yields reasonable efficiencies with
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Table 5.2. Efficiencies of local optimal designs and the uniform design ξu

for the inverse quadratic model (parameterization (2.2a)) with respect to
various alternative criteria (in percent). The design space is the interval
U = [1, 14], and the estimates of the parameters are given by θ̂0 = 0.0002865,
θ̂1 = 0.0002117, and θ̂2 = 0.0000301. The local extrapolation optimal design
is calculated for the point xe = 21.

D E D1 ce

ξu 69.92 50.33 45.85 33.82
ξ∗D 100 94.18 75.28 43.60
ξ∗E 93.96 100 51.89 25.71
ξ∗D1

74.63 53.05 100 80.40
ξ∗ce

51.23 33.24 85.73 100

respect to alternative criteria that reflect other aspects of the statistical analy-
sis. In Table 5.2 we compare the efficiency of a given local optimal design with
respect to the other optimality criteria. For example, the local D-optimal design
has efficiencies 94.18%, 75.28%, and 43.60% with respect to the E-, D1-, and ce-
optimality criterion, respectively. Thus this design is rather efficient for the D1-
and E-optimality criterion, but less efficient for extrapolation. The situation for
the D1-optimal design is similar, where the role of the ce- and E-criterion have
to be interchanged. On the other hand, the performance of the local E- and
ce-optimal design depends strongly on the underlying optimality criterion. The
local E-optimal design yields only a satisfactory D-efficiency, but is less efficient
with respect to the ce- and D1-optimality criterion, while the local ce-optimal
design yields only a satisfactory D1-efficiency.
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