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Abstract: In this note we give a probabilistic explanation of a phenomenon that is

frequently observed but whose reason is not well understood. That is, in a regres-

sion setting, the response (Y ) is often highly correlated with the leading principal

components of the predictor (X) even though there seems no logical reason for this

connection. This phenomenon has long been noticed and discussed in the literature,

and has received renewed interest recently because of the need for regressing Y on

X of very high dimension, often with comparatively few sampling units, in which

case it seems natural to regress on the first few principal components of X . This

work stems from a discussion of a recent paper by Cook (2007) which, along with

other developments, described a historical debate surrounding, and current interest

in, this phenomenon.
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1. Introduction

Cook (2007) described an intriguing historical debate surrounding the rela-

tion between the regression of a scalar response Y on a random vector X and

the principal components of X. The debate arose from the practice of regressing

Y on the first few principal components of X , as suggested and advocated in

Kendall (1957, p.75), Hocking (1976), Mosteller and Tukey (1977, p.307), Scott

(1992). Some authors, however, question the logic behind this practice, on the

basis that in the computation of principal components of X , the response Y is

never used in any direct or indirect way. For example, Cox (1968, p.272) writes:

A difficulty seems to be that there is no logical reason why the depen-

dent variable should not be closely tied to the least important principal

component.

This view is shared by authors such as Hotelling (1957) and Hawkins and Fatti

(1984). See Cook (2007) for a more detailed description.
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This question has received renewed interest recently due to the need

for handling regression problems with very high-dimensional predictors but

relatively few observation units, as one encounters when analyzing microar-

ray data, so that the sample covariance matrix of X is singular and the

usual regression techniques cannot be directly applied. Under these circum-

stances, regressing Y on the first few principal components is a practical solu-

tion and often gives reasonable results. See Alter, Brown and Botstein (2000),

Chiaromonte and Martinelli (2002), Bura and Pfeiffer (2003), and Li and Li

(2004). See also Cook, Li and Chiaromonte (2007) for a different approach to

this problem.

In his comments on Cook (2007), Li (2007) made a conjecture in an attempt

to explain probabilistically why the response should be related to the leading

principal components of the predictors, which was stated roughly as follows:

If nature arbitrarily selects a covariance matrix Σ for X and coeffi-

cients β for the regression of Y on X, then the principal components

of X of higher ranks tend to have stronger correlations with Y than

do those of lower ranks.

Li (2007) argued intuitively that if X is concentrated on a single direction, then

the only way for Y to be correlated with X at all is to be correlated with its

first principal component. Likewise if X has an elongated distribution the X

components in the longer axes should on average bear stronger correlations with

Y . Now if Σ is selected arbitrarily then X would have a large probability of hav-

ing an elongated distribution, and would therefore effect the similar probabilistic

ordering of correlations, even if the relation between Y and X is independent of

the shape of the distribution of X. He supported this conjecture with several

simulation studies, that affirmed it.

In this paper we give a precise formulation and a rigorous proof of the con-

jecture. This provides at least a partial justification for regressing Y on the

principal components of X, and gives fresh insights into a debate of historical

interest and of importance in contemporary data analysis.

In Section 2, we will demonstrate that the conjectured ordering of correla-

tions does occur naturally in practice by analyzing 33 data sets chosen arbitrarily

from a database. The conjecture is then formulated and proved in Section 3.

2. The Phenomenon as Seen Through 33 Data Sets

In this section we analyze a collection of data sets in Arc software database,

which can be found at http://www.stat.umn.edu/arc/software.html. From

this collection we select 33 suitable data sets. The excluded data sets either have

http://www.stat.umn.edu/arc/software.html
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Figure 1. Boxplots of the squared correlations between Y and the first prin-

cipal component of X (left) and those between Y and the second principal

component of X (right) for 33 data sets.

only one predictor, or have categorical predictors or responses, or are artificially

constructed.

The selected data sets contain from 2 to 12 predictors. For each of them we

calculated all principal components of the predictor and their squared correlation

with the response. Among these 33, in 24 cases the first principal components

have the highest correlation with the responses, in 6 cases the second principal

components have the highest squared correlation, in 2 cases the third principal

components have the highest squared correlation, and in 1 case the fifth principal

component has the highest square correlation. In Figure 1 we present the box-

plots of the squared correlation coefficients between the responses and the first

principal components of the predictors (left) and between the responses and the

second principal components of the predictors (right) for the 33 data sets. This

does indicate the tendency for the response to have higher squared correlation

with the first principal component of the predictor.

3. Formulation and Proof of the Conjecture

Recall that p random elements, say W1, . . . ,Wp, are exchangeable if, for any

permutation (i1, . . . , ip) of (1, . . . , p), we have (Wi1 , . . . ,Wip)
D
= (W1, . . . ,Wp)

where
D
= indicates two random elements having the same distribution. To give

the conjecture a rigorous formulation we need a precise definition of a random
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covariance matrix that has equal probability of any orientation.

Definition 3.1. We say that a p× p positive semidefinite random matrix Σ has

an orientationally uniform distribution if Σ = σ2
1v1v

T
1 + · · ·+σ2

pvpv
T
p , where each

(σ2
i ,vi) is a pair of random elements in which σ2

i is a positive random variable

and vi is a p-dimensional random vector, such that (σ2
1 , . . . , σ

2
p) are exchangeable

with distribution dominated by Lebesgue measure, (v1, . . . ,vp) are exchangeable

and orthonormal, (σ2
1 , . . . , σ

2
p) and (v1, . . . ,vp) are independent.

Thus if Σ is orientationally uniform, the random ellipsoid {x : xTΣx ≤ c}
has equal probability to have any orientation. Or, from a different perspective,

suppose that X is a p-dimensional random vector satisfying E(X |Σ) = 0 and

Var (X |Σ) = Σ, then any random variable among vT
1 X, . . . ,vT

p X is equally

likely to be the 1st, 2nd, . . ., or pth principal component of X.

In the following, the symbol ⊥⊥ indicates independence between random

elements. We adopt the convention that if U is a random variable, then any

constant α that satisfies P (U < α) ≤ 1/2 ≤ P (U ≤ α) is a median of U .

Lemma 3.1. Suppose β and v1, v2 are p-dimensional random vectors such that

1. β ⊥⊥ (v1,v2); 2. P (β ∈ G) > 0 for any nonempty open set G; 3. v1 and v2

are linearly independent and exchangeable. Then (βT v2)
2/(βT v1)

2 has a unique

median of 1.

Proof. First, we show that 1 is a median of (βT v2)
2/(βT v1)

2; that is,

P

(

(βT v2)
2

(βT v1)2
< 1

)

≤ 1

2
≤ P

(

(βT v2)
2

(βT v1)2
≤ 1

)

. (3.1)

Because (v1,v2) are exchangeable and β ⊥⊥ (v1,v2), the random variables

(βT v1)
2 and (βT v2)

2 are exchangeable. Hence P ((βT v2)
2/(βT v1)

2 ≤ 1) =

P ((βT v1)
2/ (βT v2)

2 ≤ 1) = 1 − P ((βT v2)
2/(βT v1)

2 < 1). It follows that

P ((βT v2)
2/(βT v1)

2 < 1) ≤ 1 − P ((βT v2)
2/(βT v1)

2 < 1) and P ((βT v2)
2/

(βT v1)
2 ≤ 1) ≥ 1 − P ((βT v2)

2/(βT v1)
2 ≤ 1), which implies (3.1).

Now we show that 1 is the only number that satisfies (3.1). In other

words, for any 0 < c1 < 1 and c2 > 1 we have P ((βT v2)
2/(βT v1)

2 ≤ c1) <

1/2 and P ((βT v2)
2/(βT v1)

2 < c2) > 1/2. We only show the first inequal-

ity; the second can be shown similarly. Since P ((βT v2)
2/(βT v1)

2 ≤ c1) =

E[P ((βT v2)
2/(βT v1)

2 ≤ c1|v1,v2)], it suffices to show that for any nonrandom,

linearly independent a, b ∈ R
p, we have P ((βT v2)

2/(βT v1)
2 ≤ c1|(v1,v2) =

(a, b)) < 1/2. However, because (v1,v2) ⊥⊥ β, the above inequality is equivalent

to

P

(

(βT b)2

(βT a)2
≤ c1

)

<
1

2
. (3.2)
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Let c3 ∈ (c1, 1). Since (a, b) has full column rank, the system of equations
{

βT b =
√

c3

βT a = 1

has a solution, say β0. Note that (βT
0 b)2/(βT

0 a)2 = c3 ∈ (c1, 1). Because β 7→
(βT b)2/(βT a)2 is continuous there is a neighborhood of β0, say G, such that

β ∈ G ⇒ (βT b)2/(βT a)2 ∈ (c1, 1). By assumption, P (β ∈ G) > 0. Therefore

P ((βT b)2/(βT a)2 ∈ (c1, 1)) > 0 which, combined with (3.1), implies (3.2).

We are now ready to establish the main result of the paper.

Theorem 3.1. Suppose

1. Σ is a p × p orientationally uniform random matrix,

2. X is a p-dimensional random vector with E(X |Σ) = 0 and Var (X|Σ) = Σ,

3. Y = βT X + δ, where β is a p-dimensional random vector and δ is a random

variable such that β ⊥⊥ (X,Σ), δ ⊥⊥ (X ,β,Σ), E(δ) = 0 and Var (δ) < ∞.

4. P (β ∈ G) > 0 for any nonempty open set G ∈ R
p.

Let w1, . . . , wp be the 1st, . . . , pth principal components of X, and let ρi =

ρi(β,Σ) = Corr2(Y,wi|β,Σ). Then, whenever i < j, P (ρi ≥ ρj) > 1/2.

Proof. Let τ2 denote Var (δ). Let (σ2
(1),v(1)), . . . , (σ

2
(p),v(p)) be the reordered

(σ2
1 ,v1), . . . , (σ

2
p ,vp) such that σ2

(1) ≥ · · · ≥ σ2
(p). We derive an explicit expression

for ρi. Note that

Cov (Y,vT
(i)X|β,Σ) = Cov (βT X + δ,vT

(i)X |β,Σ)

= βTΣv(i) + Cov (δ,vT
(i)X|β,Σ). (3.3)

Because δ ⊥⊥ (Σ,X,β), we have δ ⊥⊥ (vT
(i)X,β,Σ). This implies δ ⊥⊥ vT

(i)X|(β,

Σ), and hence that the second term in (3.3) is zero. Because (σ2
(i),v(i)) is an

eigen pair of Σ, we have Σv(i) = σ2
(i)v(i). Hence

Cov 2(Y,vT
(i)X |β,Σ) = σ4

(i)(β
T v(i))

2. (3.4)

In the meantime, Var(Y |β,Σ)= Var(βT X|β,Σ)+2Cov(βT X, δ|β,Σ)+Var(δ|β,

Σ). Because δ ⊥⊥ (β,Σ), the last term on the right is simply τ2. Because

δ ⊥⊥ (β,Σ, X), we have δ ⊥⊥ βT X|(β,Σ). So the second term on the right is 0.

Hence

Var (Y |β,Σ) = βTΣβ + τ2. (3.5)

Moreover,

Var (vT
(i)X|β,Σ) = vT

(i)Σv(i) = σ2
(i). (3.6)
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Now combine (3.4), (3.5), and (3.6) to obtain

ρi =
2

Corr(Y,vT
(i)X) =

σ2
(i)(β

T v(i))
2

βT Σβ + τ2
. (3.7)

Cook (2007), in his rejoinder to Li (2007), gave a special case of (3.7).

Let i < j. Then, using (3.7), we deduce

P (ρi ≥ ρj) = P

(σ2
(i)(β

T v(i))
2

βTΣβ + τ2
≥

σ2
(j)(β

T v(j))
2

βTΣβ + τ2

)

= P

(

(βT v(i))
2

(βT v(j))2
≥

σ2
(j)

σ2
(i)

)

.

The right hand side can be written as

∑

k 6=l

P

(

(βT v(i))
2

(βT v(j))2
≥

σ2
(j)

σ2
(i)

∣

∣

∣

∣

σ2
(i) = σ2

k, σ
2
(j) = σ2

ℓ

)

P
(

σ2
(i) = σ2

k, σ
2
(j) = σ2

ℓ

)

.

Because σ2
1 , . . . , σ

2
p are exchangeable, (σ2

(i), σ2
(j)) has equal probability to be

(σ2
k, σ

2
ℓ ) for any k 6= ℓ, and that probability is

(

p
2

)−1
. Hence the above reduces to

(

p

2

)−1
∑

k 6=l

P

(

(βT v(i))
2

(βT v(j))2
≥

σ2
(j)

σ2
(i)

∣

∣

∣

∣

σ2
(i) = σ2

k, σ
2
(j) = σ2

ℓ

)

=

(

p

2

)−1
∑

k 6=l

P

(

(βT vk)
2

(βT vℓ)2
≥ σ2

ℓ

σ2
k

∣

∣

∣

∣

σ2
(i) = σ2

k, σ
2
(j) = σ2

ℓ

)

, (3.8)

where the equality follows from the fact that, conditioning on the event (σ2
(i), σ

2
(j))

= (σ2
k, σ

2
ℓ ), one has (v2

(i),v
2
(j)) = (v2

k,v
2
ℓ ).

Reexpress each term in the summation in (3.8) as

E

[

P

(

(βT vk)
2

(βT vℓ)2
≥ σ2

ℓ

σ2
k

∣

∣

∣

∣

σ2
(i) = σ2

k, σ
2
(j) = σ2

ℓ , σ
2
k, σ

2
ℓ

)
∣

∣

∣

∣

σ2
(i) = σ2

k, σ
2
(j) = σ2

ℓ

]

. (3.9)

From Definition 3.1 we have

(vk,vℓ) ⊥⊥ (σ2
1 , . . . , σ

2
p) ⇒ (vk,vℓ) ⊥⊥ (σ2

1 , . . . , σ
2
p;σ

2
(1), . . . , σ

2
(p))

⇒ (vk,vℓ) ⊥⊥ (σ2
k, σ

2
ℓ , σ

2
(i), σ

2
(j))

⇒ (vk,vℓ) ⊥⊥ (σ2
(i), σ

2
(j))|(σ2

k, σ2
ℓ ).

Thus the event {σ2
k = σ2

(i), σ
2
ℓ = σ2

(j)} can be removed from the conditional

probability inside the conditional expectation (3.9), which then reduces to

E

[

P

(

(βT vk)
2

(βT vℓ)2
≥ σ2

ℓ

σ2
k

∣

∣

∣

∣

σ2
k, σ

2
ℓ

)∣

∣

∣

∣

σ2
(i) = σ2

k, σ
2
(j) = σ2

ℓ

]

. (3.10)
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Because (β,vk,vℓ) ⊥⊥ (σ2
k, σ

2
ℓ ), for each fixed 0 < s < t,

P

(

(βT vk)
2

(βT vℓ)2
≥ s

t

∣

∣

∣

∣

σ2
k = t, σ2

ℓ = s

)

= P

(

(βT vk)
2

(βT vℓ)2
≥ s

t

)

>
1

2
,

where the inequality follows from Lemma 3.1. By Definition 3.1, the event {σ2
k =

σ2
ℓ} has probability 0. It follows that

P

(

(βT vk)
2

(βT vℓ)2
≥ σ2

ℓ

σ2
k

∣

∣

∣

∣

σ2
k, σ

2
ℓ

)

>
1

2

almost surely on the event {σ2
(i) = σ2

k, σ
2
(j) = σ2

ℓ}. Therefore (3.10), and hence

(3.8), are strictly greater than 1/2.

The inequality P (ρi ≥ ρj) > 1/2 in Theorem 3.1 is equivalent to

P (ρi ≥ ρj) > P (ρi < ρj). (3.11)

In other words ρi has a larger probability to be larger than ρj than to be smaller

than ρj. We recall the definition of stochastic ordering.

Definition 3.2. Let U1 and U2 be two random variables whose distributions

are dominated by a common measure µ. We say that U1 is stochastically no

greater than U2 if, for each c ∈ R, P (U1 ≤ c) ≥ P (U2 ≤ c). In this case we write

U1

D
≤ U2. If in addition, µ({c : P (U1 ≤ c) > P (U2 ≤ c)}) > 0 then we say that

U1 stochastically (strictly) less than U2, and write U1
D
< U2.

This version of the definition of stochastic ordering is used, for example, in

Li, Zha and Chiaromonte (2005). In general, inequality (3.11) is neither stronger

nor weaker than stochastic ordering. However, in a special case it is weaker than

stochastic ordering, as we show below.

For i = 1, 2, let Fi be the distribution of Ui and fi be the density of Ui with

respect to µ. We say that U1 and U2 have a common support if {f1 > 0} = {f2 >

0}. It is easy to see that if U1
D
< U2 and U1 and U2 have a common support, then

F1({c : F1(c) > F2(c)}) > 0, F2({c : F1(c) > F2(c)}) > 0. (3.12)

The following proposition gives a sufficient condition for U1
D
< U2 to imply

P (U1 ≤ U2) > 1/2.

Proposition 3.1. Suppose U1 and U2 are random variables whose distributions

are dominated by a common measure µ; U1
D
< U2; U1 ⊥⊥ U2; and U1 and U2 have

a common support. Then P (U1 ≤ U2) > 1/2.
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Proof. By independence of U1 and U2 and by Fubini’s Theorem,

P (U1 ≤ U2) =

∫

R

[
∫

u1≤u2

f1(u1)µ(du1)

]

f2(u2)µ(du2)

=

∫

R

F1(u2)f2(u2)µ(du2) =

∫

R

F1(u2)dF2(u2).

By the second inequality in (3.12) the right hand side above is (strictly) greater

than
∫

R

F2(u2)dF2(u2) =

[

F 2
2 (u2)

2

]∞

−∞

=
1

2
,

which completes the proof.

We must point out that the natural tendency described in this paper is

neither definite nor particularly strong, and there is much room for improvement

by sufficient dimension reduction, which reduces the dimension of X in reference

to Y . See Cook (2007).
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