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Abstract: We consider the problem of estimating the Hurst parameter for long-

range dependent processes using wavelets. Wavelet techniques have been shown to

effectively exploit the asymptotic linear relationship that forms the basis of con-

structing an estimator. However, it has been noticed that the commonly adopted

standard wavelet estimator is vulnerable to various non-stationary phenomena that

increasingly occur in practice, and thus leads to unreliable results. In this paper, we

propose a new wavelet method for estimating the Hurst parameter that is robust to

such non-stationarities as peaks, valleys, and trends. We point out that the new es-

timator arises as a simple alternative to the standard estimator and does not require

an additional correction term that is subject to distributional assumptions. Addi-

tionally, we address the issue of selecting scales for the wavelet estimator, which

is critical to properly exploiting the asymptotic relationship. We propose a new

method based on standard regression diagnostic tools, which is easy to implement,

and useful for providing informative goodness-of-fit measures. Several simulated

examples are used for illustration and comparison. The proposed method is also

applied to the estimation of the Hurst parameter of Internet traffic packet counts

data.
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1. Introduction

The Internet has brought major changes to the work place, and even the
lifestyle, of many people. It also provides a rich source for research problems at
several levels of interest to engineers, computer scientists, statisticians, and prob-
abilists. The Internet is often compared to the telephone network since there are
interesting parallels between the two: both are gigantic networks transporting
large amounts of information between very diverse locations; both are a con-
catenation of many pieces of equipment. There are some important differences,
however, that seriously affects traffic modeling.

An important statistical difference between the telephone network and the
Internet comes in the distribution of the length of connections. While the ex-
ponential distribution has provided a useful model for the telephone network, it
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has been shown in a number of places, see e.g., Paxon and Floyd (1995), Crov-
ella and Bestavros (1996), and Hernández-Campos, Marron, Samorodnitsky and
Smith (2004), that it is not appropriate for durations of Internet connections
that can be very short (in milliseconds) and very long (in hours). Models for ag-
gregated traffic are quite different from those of standard queueing theory when
the distribution of lengths is heavy tailed. Appropriate levels of heavy tails can
induce long-range dependence, as shown by the above authors.

As the referee pointed out, quite a few papers have shown that the long-range
dependence effect is due to the presence of non-stationarity in the data (Bhat-
tacharya, Gupta and Waymire (1983), Mikosch and Starica (2004), Gong, Liu,
Misra and Towsley (2005), and Fryzlewicz, Sapatinas and Subba Rao (2008)).
However, when trying to understand extremely complicated phenomena such
as Internet traffic, it makes sense to consider a wide variety of viewpoints and
models. Also, for the past decade, it has been thought that self-similarity and
scaling phenomena are the important properties of Internet traffic data. Thus,
we believe that long-range dependence models do provide useful insights, and
hence are worth of study. Needless to say, it is important to keep monitoring
and revaluating network models since traffic properties may well change as the
technologies related to the Internet do.

Because of the widely accepted long-range dependent self-similar properties
of network traffic, Hurst parameter estimation provides a natural approach to
studying such models. Many approaches for estimating the Hurst parameter
have been proposed, including the aggregated variance (Beran (1994)), the local
Whittle (Robinson (1995)), and the wavelet (Abry and Veitch (1998)) methods.
Among various approaches, the wavelet method has attracted interest owing to its
robustness to non-stationarity and the decorrelation property. Park, Hernández
Campos, Le, Marron, Park, Pipiras, Smith, Smith, Trovero and Zhu (2007b)
compared the three Hurst parameter estimators by using simulated, synthetic,
and Internet traffic data sets. This revealed a number of important challenges
that one faces when estimating the long-range dependence parameter in Internet
data traffic traces. Stoev, Taqqu, Park and Marron (2005) explored some of
these challenges in more detail by using the wavelet spectrum method. While the
wavelet method is reliable in practice, and quite robust with respect to smooth
polynomial trends in the data, it can mislead the practitioner. For example, a
traffic trace with a number of deterministic shifts in the mean rate results in a
steep wavelet spectrum that leads to overestimating the Hurst parameter. We
come back to this issue in Section 4.

As an illustration we introduce a time series of packet counts (the numbers of
packets arriving in consecutive 1 millisecond intervals) coming into the University
of North Carolina, Chapel Hill (UNC) from outside. Figure 1 displays a packet
count time series measured at the main internet link of UNC on April 13,
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Figure 1. Sat1300: packet count time series of aggregated traffic at 1 second.

(a) Abry and Veitch method (b) Proposed method

Figure 2. Wavelet spectra and the Hurst parameter estimates by (a) Abry
and Veitch and (b) the proposed methods.

Saturday, from 1 p.m. to 3 p.m., 2002 (Sat1300). They were originally measured
every 1 millisecond (7.2 million data points) but aggregated by a factor of 1,000
(that is at 1 second) for a better display of trends. The time series plot shows a
huge spike for about 6 minutes in the middle of the period.

Figure 2(a) shows the wavelet spectrum and the estimated Hurst parameter
of the Sat1300 time series using Abry and Veitch’s wavelet method. The details
of the method are given in Section 2.2.1. Briefly, the bottom panel plots the
log2 of the (estimated) variance of the wavelet coefficients at a scale (or octave)
value against j = log2(scale) (blue solid line). For processes that are long-
range dependent, the wavelet spectrum will exhibit a region in which there is
an approximately linear relationship with positive slope at the right (coarser
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scale) side. One can estimate the Hurst parameter, H, along with confidence
intervals on the estimate by applying a weighted least squares (H=(slope+1)/2)
to a particular range of scales chosen from the top panel. In this case, the chosen
range is 16 ≤ j ≤ 20 . The spectrum roughly forms a line, which exhibits long-
range dependence. However, Ĥ = 1.48 (the estimated slope is overlaid), which
cannot happen in theory for a stationary process and suggests that the time series
contains a non-stationary segment(s). Note that there is a bump at j = 11. Park,
Marron and Rondonotti (2004) verified that the high-frequency behavior inside
the big spike shown in Figure 1 causes this bump, which is a reflection of scaling
behavior. We revisit this issue in Section 4.

As Stoev et al. (2005) pointed out, the wavelet spectrum can serve as a diag-
nostic tool in this case since the unusual shape of the spectrum reveals the local
non-stationary behavior in the original time series. If the segment of the time
series where the spike occurs is taken out and the remaining parts concatenated,
then Ĥ is around 0.84, which is consistent with the Hurst parameter estimates
obtained from other UNC data sets. This implies that the time series can be
decomposed into a stationary long-range dependent process with H = 0.84 plus
a local non-stationary behavior. The Hurst exponent of interest in this case is
H = 0.84, but the 6-minute long spike dramatically changes the global Hurst
parameter. While the bump is an indication of a non-stationary behavior, it
affects the method to select the range of the scale j differently, which makes the
estimation of H unreliable. In other words, the selected range of the scale is nar-
row (16 ≤ j ≤ 20) due to the bump, which makes Ĥ higher, and its confidence
interval wider.

This motivates us to develop a robust Hurst parameter estimation method
that resists the effect of non-stationary behavior such as peaks, valleys, and
trends. Figure 2(b) shows the proposed wavelet spectrum and the estimate of H

of the Sat1300 times series. The spectrum shows no bump and Ĥ = 0.84, which
is consistent with the estimate when we exclude the non-stationary segment from
the time series. In addition, the range of the scale chosen from the top panel
is from j = 8 to 20, which makes the confidence interval narrower. Thus, the
proposed method is robust to the spike in the middle and produces a stable
estimate of H.

We utilize a robust estimation for the finite variance case. We provide a brief
justification similar to Veitch and Abry (1999), showing that the robust regression
model arises as a natural alternative to the standard regression model. The same
regression model has been studied independently for the infinite variance case,
see Stoev, Pipiras and Taqqu (2002), Stoev and Taqqu (2003), and Stoev and
Taqqu (2005). Therefore, it can be argued that the idea developed under the
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finite variance assumption extends to the infinite variance case, and that the
method is not limited by the finite assumption.

We also extend the estimation idea to the problem of selecting an onset scal-
ing by formulating it as a model selection problem. Since the linear relationship
in a wavelet spectrum is asymptotic in nature, the restriction of scales to proper
subsets would result in a better estimate. The practical implication is that one
needs to detect a scaling phenomenon for given data. This involves the selec-
tion of the range, based on observation, where the asymptotic property can be
reasonably assumed to be true. Veitch, Abry and Taqqu (2003) addressed the
issue by proposing a model selection based on a series of test statistics. With
the aid of visualization of a goodness-of-fit measure, the onset scale can be se-
lected automatically or interactively. However, for examples with non-standard
processes such as the Sat1300 time series, this goodness-of-fit measure tends to
show instability. Moreover, the measure is meaningful only for selection purposes
and the number itself is not interpretable (for example, refer to the Q statistic
(0.07) in Figure 2(a)).

We reformulate the problem in a hypothesis testing framework and propose
an improved goodness-of-fit measure using p-values, that are easy to understand,
and which reflect the underlying behavior.

The remainder of the paper is structured as follows. In Section 2, we define
our robust wavelet estimator and make a comparison to the standard wavelet
estimator. The issue of selection of scales is discussed in Section 3. Some sim-
ulations studies are given in Section 4, followed by data examples in Section 5.
We conclude in Section 6.

2. Hurst Parameter Estimation

2.1. Robust wavelet estimation

We consider an estimator constructed through the discrete wavelet trans-
form. Let ψ(t) be a square integrable function with M ∈ Z zero moments,
M ≥ 1, so that ∫

R
tmψ(t) dt = 0 , for all m = 0, . . . ,M − 1 . (2.1)

Consider a family of functions {ψj,k = 2−j/2ψ(2−jt − k), j, k ∈ Z} obtained by
dyadic dilations and translations of ψ, which forms a basis of multiresolution
analysis. For a second order stationary stochastic process X = {X(t)}, the
discrete wavelet transform is

D(j, k) =
∫
R

X(t)ψj,k(t) dt , j, k ∈ Z .



1536 JUHYUN PARK AND CHEOLWOO PARK

Suppose that {X(t), t ∈ R} is a self-similar process, with self-similarity pa-
rameter H. Then for fixed j ∈ Z, D(j, k) d= 2j(H+1/2)D(0, k) as a process in
k ∈ Z (Abry, Flandrin, Taqqu and Veitch (2003)). Thus, we have

E[log2 D(j, k)2] = E[log2(2
j(H+1/2)D(0, k))2]

= j(2H + 1) + E[log2 D(0, k)2] .

This suggests that the Hurst parameter H can be estimated by a linear regression
model using a sample mean estimator for the left hand side against the scale
parameter j.

Suppose that {D(j, k) : k = 1, . . . , nj}, j = 1, . . . , J , are wavelet coefficients
from the process with a length of 2J . Here nj is the number of wavelet coefficients
at scale j. Let

Yj =
1
nj

nj∑
k=1

log2 D(j, k)2.

Because nj varies with j, it is natural to use a weighted least squares approach
with weights proportional to nj . An estimator of H can be constructed using a
weighted linear regression as

Ĥ =
1
2

∑
j

wjYj −
1
2

,

where
∑

j wj = 0 and
∑

j jwj = 1. Note that, although the estimator is written
in terms of second order statistic of D(j, k) because of the logarithm, it only
requires the existence of E[log2 |D(j, k)|].

To understand the behavior of the estimator, we need more assumptions
about the sequence {Yj : j ∈ Z}. For example, if the sequence {D(j, k) : k ∈ Z}
is stationary we would have Yj

a.s.→ (2H +1)j +E[log2 D(0, k)2], as j → ∞. Then,
the estimator is consistent. A weaker assumption that brings consistency is that
{log2 D(j, k)2 : k ∈ Z} is stationary, and this is where robustness stems from.
See also Stoev, Pipiras and Taqqu (2002).

Because of similarity in the behavior of wavelet coefficients to long-range de-
pendent processes, the same idea applies to long-range dependent processes such
as Fractional Gaussian Noise (FGN) or Fractional Auto-Regressive Integrated
Moving Average (FARIMA). For example, the cumulative sum processes of FGN
recovers a Fractional Brownian Motion (FBM) that satisfies the self-similar prop-
erty. We formulate the problem for self-similar processes because the argument is
more transparent in several aspects. When the process has an infinite variance,
the same idea of self-similarity can be easily extended, as in Stoev, Pipiras and
Taqqu (2002), Stoev and Taqqu (2003), and Stoev and Taqqu (2005).
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2.2. Comparison under long-range dependent processes

2.2.1. Standard regression model

We briefly review the standard wavelet estimator of Abry and Veitch (1998)
and Veitch and Abry (1999) for second order stationary long-range dependent
processes. We are mainly interested in the relationship between the robust esti-
mator and the standard estimator arising from linear regression models.

For a long-range dependent process X(t), it has been shown that, as j → ∞,

E[D2(j, ·)] ∼ 2jγC , 0 < γ < 1 ,

where C is the constant defined in Veitch and Abry (1999). The last relationship
suggests that the long-range dependent parameter γ (or H = (γ + 1)/2) can be
estimated from

log2

(
E[D2(j, ·)]

)
= jγ + constant , as j → ∞.

This linear relationship popularizes wavelet-based techniques for estimating γ (or
H). The idea is to replace the expected value E[D2(j, ·)] by the corresponding
sample quantity calculated at each scale j,

µj =
1
nj

nj∑
k=1

D(j, k)2,

where nj is the number of wavelet coefficients at scale j.
Veitch and Abry (1999) provided distributional justification for a linear re-

gression approach under an ideal situation, by noting that under the above setting
the D(j, k) are zero mean random variables that are quasi-decorrelated. Hence,
if we assume the D(j, k)s are independent and identically distributed Gaussian
variables and that D(j, ·) and D(j′, ·) are independent when j 6= j′, then

µj
d∼

σ2
j

nj
χ2(nj),

where σ2
j = 2jγC and χ2(ν) is a chi-square random variable with ν degrees of

freedom. It follows that

log2(µj)
d∼ log2 σ2

j − log2(nj) + log2 χ2(nj) (2.2)

d∼ jγ + log2(C) − log2(nj) +
lnχ2(nj)

ln 2
.

From
E[lnχ2(ν)] = ψ(

ν

2
) + ln 2 , Var[lnχ2(ν)] = ζ(2,

ν

2
) , (2.3)
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where ψ(z) = Γ′(z)/Γ(z) is the Psi function and ζ(z, ν) is a generalized Riemann
Zeta function (Gradshteyn and Ryzhik (2000)), it follows that E[log2(µj)] =
jγ + log2(C) + gj and Var[log2(µj)] = ζ(2, nj/2)/(ln 2)2, where

gj =
ψ(nj/2)

ln 2
− log2(

nj

2
) . (2.4)

Let Ỹj ≡ log2(µj)−gj . Here gj is a bias correction factor that compensates for the
difference between E[log2(µj)] and log2(E[d2(j, ·)]) to make Ỹj an asymptotically
unbiased estimator of log2(E[d2(j, ·)]). The parameter is then estimated by apply-
ing a weighted least squares method based on the model Ỹj = jγ +constant+ ε̃j ,
where ε̃j has mean 0 and variance ζ(2, nj/2)/(ln 2)2. Then, the Hurst parameter
H can be obtained from the relationship γ = 2H − 1.

2.2.2. Robust regression model

As a motivation for the robust estimation, we begin with the same assump-
tions as above. Instead of directly focusing on the estimator µj , we may treat
each individual coefficient D(j, k) equally as a possible response. Then, from (2.2)
with nj = 1, we have

log2 D(j, k)2 d∼ log2 σ2
j + log2 χ2(1) (2.5)

d∼ jγ + log2(C) +
lnχ2(1)

ln 2
.

Let Yj,k = log2 D(j, k)2. Then it can be shown from (2.3) that E[Yj,k] =
jγ + γ0,and V ar[Yj,k] = σ2, where γ0 = log2 C + ψ(1/2)/ ln 2 + 1 and σ2 =
ζ(2, 1/2)/(ln 2)2. This leads to a simple linear regression model with constant
variance σ2. The least squares estimates are

argmin
γ,γ0

J∑
j=1

nj∑
k=1

(Yj,k − jγ − γ0)2 .

It is easy to check that this approach is equivalent to the weighted least squares
criterion

argmin
γ,γ0

J∑
j=1

nj(Ȳj· − jγ − γ0)2 ,

where Ȳj· = (1/nj)
∑nj

k=1 Yj,k. We replace Ȳj· with Yj from now on, so Yj =
(1/nj)

∑nj

k=1 log2

(
D(j, k)2

)
. Therefore, an equivalent formulation can be made as

Yj = jγ+γ0+εj , where εj has mean 0 and variance σ2/nj , for which the weighted
least squares method is used. Soltani, Simard and Boichu (2004) proposed Y ∗

j =
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(Yj+Ynj/2)/2, which is shown to follow a Gumbel distribution for FBM processes,
but still suggested use of the least squares approach for practical considerations.

While the Gaussian assumption of D(j, k) does not guarantee a Gaussian
distribution for the error term, the least squares approach in general is not sen-
sitive to distributional assumptions and the standard estimator is shown to be
asymptotically unbiased and efficient. For more detailed analysis with correlated
errors in the standard wavelet estimator, see Bardet, Lang, Moulines and Soulier
(2000). Some discussion of the comparison of these two regression models is
given in Section 3.5.1. Both estimators fall in a general class of linear estimators
in linear regression models and thus statistical properties are similar. Below we
summarize a well-known property of least squares estimators as a reference.

Proposition 1.(Ferguson (1996, Example 1, p.27)) Suppose that Yj = α+βzj +
εj, j = 1, . . . , where zj’s are known numbers that are not all equal, and the εj’s
are i.i.d. random variables all with mean zero and share a common variance σ2.
Then the least squares estimate, β̂n is consistent provided that, as n → ∞,

(a)
∑n

j=1(zj − z̄n)2 → ∞

(b) maxj≤n(zj − z̄n)2/
∑n

j=1(zj − z̄n)2 → 0 .

Moreover,
√

nsn(β̂n − β) d→ N(0, σ2), where s2
n =

∑n
j=1(zj − z̄n)2/n.

3. Model Selection

When these estimators are computed with a finite number of observations
N , there is a more delicate issue than justification of distributional assumptions.
Because of its asymptotic approximation nature, performance of the estimator
is heavily dependent on the choice of regime where the relationship is reason-
ably justified. In theory, Bardet et al. (2000) showed that the standard wavelet
estimator Ĥ[j1,j2] is consistent as j1 and N/2j2 → ∞, where Ĥ[j1,j2] means the es-
timator is constructed based on the selected scales j1, . . . , j2. In practice, it has
been observed that the choice of the onset parameter has a stronger influence
on the estimation than on the distributional assumption (Abry et al. (2003)).
Although this issue has been rightly acknowledged, there are few discussions in
current practice beyond heuristically trimming scales at both ends. One excep-
tion is the work of Veitch et al. (2003), where an automatic procedure based
on sequential testing was proposed, assuming second order long-range dependent
processes. This was motivated by the fact that the exact value of log2 E[D(j, ·)]
can be computed or well approximated by a sample statistic, closely related to
the fact that the standard wavelet estimator is constructed based on the same
quantity. However, when the robust estimator is used, it is not clear whether the
same argument would apply, or is necessary.
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We develop a general approach borrowed from ideas of regression diagnostics.
A usual aim of regression diagnostics is to examine deviations from assumed linear
models through outliers and influential points. Improvements in estimation are
made when those points are removed or downweighted. A similar story can be
told with wavelet estimators. We want to exclude scales that pull estimators away
from linearity and the magnitude of scale influences can be measured by various
diagnostic measures. Alternatively, we are expecting linearity to start to appear
at a certain scale, which means there is a change point. Again the phenomena
will be reflected in the estimation, and some type of diagnostic measures will pick
them up. There is huge literature on such topics and our aim is to draw attention
to the relevance of them, and to provide some simple yet useful strategies that
can be easily adapted to the selection of onset scaling. For further references,
a summary of regression diagnostics can be found in Belsley, Kuh and Welsch
(1980) more development on change point analysis is given in Csörgő and Horváth
(1997), Chen and Gupta (2000), and Wu (2005).

In view of the asymptotics, we fix j2 = J , say, the largest possible value,
and focus on the selection of j1. This is not a serious restriction as the proposed
method below can easily be extended to search both ends.

Consider a regression model Ỹj = β0 + β1x̃j + ε̃j , j = 1, · · · , J, where
Var(ε̃j) = σ2/nj . This can be written as

ỹ = X̃β + ε̃ , (3.1)

where X̃ is an J × p matrix. Let W = diag{w1, · · · , wJ}, where wj = nj and set
y = W 1/2ỹ , X = W 1/2X̃ , ε = W 1/2ε̃. Then

y = Xβ + ε (3.2)

where ε ∼ (0, σ2I). Hence, the weighted least squares estimates from (3.1) is
equivalent to the ordinary least squares estimates from (3.2). From now on, our
formulation will be given based on (3.2).

Write xj to be the jth row vector of X. Let b be the estimate of β from
the full model (3.2) and b(j) be the estimate from a reduced model with the jth
row removed. Then b = (XT X)−1XTy ≡ Hy, where H is the hat matrix with
hij being the (i, j)th element of H. Denote the jth residual by ej , which is given
by ej = Yj − Ŷj = Yj − xT

j b. The relationship between estimates b and b(j) is
summarized in Lemma 1.

Lemma 1. b − b(j) = (XT X)−1xjej/(1 − hjj)

This quantity, along with many others, is used as a regression diagnostic tool
to check whether the jth observation is influential in the estimation. A similar
idea can be applied to the selection of onset scaling. When the selection region
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is controlled by j1, we are looking for a stable region where the estimates do not
vary much. When j1 moves one step ahead, the estimates on which the decision
is based changes from b to b(1), as scales are fixed and ordered. If the difference
is dramatic, we move forward. Lemma 1 shows how those sequential estimates
are related, and suggests an alternative goodness-of-fit measure.

A usual strategy in testing nested models is to compare relative improvement
in the fit. For linear models, this is often measured by the sum of squared
residuals SSR =

∑
i(Yi − Ŷi)2. Let

s2 =
SSR

n − p
=

1
n − p

J∑
i=1

(Yi − xT
i b)2 ,

s2(j) =
1

n − p − 1

∑
i6=j

{Yi − xT
i b(j)}2 .

Lemma 2. (n − p − 1)s2(j) = (n − p)s2 − e2
j/(1 − hjj)

Combined with Lemma 1, one can construct the test statistic in Section 3.3.
For derivation and proofs we refer to Belsley et al. (1980).

3.1. Alternative formulation of the problem

The procedure can be viewed as a sequential hypotheses testing problem.
Suppose that

Yj =

{
f(xj) + εj , j < j∗1

xT
j β0 + εj , j ≥ j∗1

, (3.3)

where f(xj) 6= xT
j β0 is unspecified, and take

H0 : j∗1 = 1, H1(j) : j∗1 = j, j ≥ 2 . (3.4)

Because of generality of the framework in (3.3), it is possible to come up with
many test statistics that could be considered appropriate. Given competing test
statistics, it is of interest to compare powers. Though related, our main interest
is not so much that of constructing a best test statistic that tells us that there
occurs a change, as estimating the change point directly through behavior of test
statistics.

3.2. Selection of onset scaling by Veitch et al. (2003)

We review the main features of the approach presented in Veitch et al. (2003).
For each j, fit the regression model with {(i, Yi) : i = j, . . . , J} only. Define

T0(j) =

∑J
i=j(Yi − Ŷi)2

σ2
.
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Here Ŷi = Ŷi(j), are estimates under the restricted model. Under the assumption
that Yj ’s are Gaussian, the test statistic follows a chi-square distribution with
degrees of freedom N(j)−2, where N(j) = J−j+1 is the number of observations
included.

Veitch et al. (2003) proposed to search among candidate models by compar-
ing the test statistics T0(j), j = 1, . . . , J − 2. Let p0(j) be the p-value calculated
at the observed value at T0(j). As an indication of change, a best model can be
defined as one that has the largest change in p-value:

ĵ∗0 = argmax
j≥2

p0(j)
p0(j − 1)

.

The chi-square statistic was aimed at utilizing estimation of log2(E[D(j, k)]),
which is possible to obtain for some well-known processes, such as the FARIMA
and FGN processes. To extend the idea to unknown processes, we propose a
general strategy of model selection using linear models.

3.3. F statistic for linearity

Disadvantage of using the chi-square statistic in the sequential linear model
is that it does not directly account for linearity in the comparison. We are mainly
interested in the linear model with a significant slope. Therefore, for the selection
of an onset scale, we can view this problem as selection of a submodel that shows
the strongest linearity. For each submodel indexed by j, we compare

H0(j) : EY = constant , H1(j) : EY = linear . (3.5)

By including all linear models in the alternative, we do not presume that there is
any linearity in the model. If any, it is more likely that the null hypothesis will be
rejected, which would result in a smaller p-value. Contrary to the previous case,
the decision of rejecting the null hypothesis as strongly as possible is desirable.
Denote the sum of squared residuals under the null model at step j by SSRj(old),
and under the alternative model by SSRj(new). To test the significance of the
nested models, we adopt a commonly used F test statistic,

T1(j) =
(SSRj(old) − SSRj(new))/1

SSRj(new)/(N(j) − 2)
=

∑J
i=j(Ȳ − Ŷi)2∑J

i=j(Yi − Ŷi)2/(N(j) − 2)
,

which follows a F distribution with degrees of freedom (1, N(j) − 2). Let p1(j)
be the p-value evaluated at the observed T1(j), and take ĵ∗1 = argminj≥1{p1(j)}.

Now p-values can be interpreted as a measure of how strong the linearity is.
This utilization of p-values, which conforms to common sense, also allows a direct
search method for a maximum. In addition, the magnitude of a p-value is closely
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related to goodness-of-fit, and thus can be used as an indication of violation of
linearity assumption. When all the p-values are relatively large, we suspect that
there is no significant linear relationship. This is a notable feature because the
presence of linearity itself may be in doubt.

Where the estimates are stabilized, p-values tend to be close to zero and the
minimum is not more meaningful than the second minimum. Thus, the proposed
principle can be relaxed to allow small fluctuation within the range by setting,
for fixed α > 0, ĵ∗∗1 = min{j ≥ 1 : p1(j) < α}.

3.4. F statistic for linearity
We may view the selection of scales as regression diagnostics, where detecting

outliers and influential points are interest. If j1 has to move up one by one,
that means the first observation may be considered as an outlier in the original
regression and thus has to be removed. For submodels indexed by j, consider

H0(j) : j∗1 = j H1(j) : j∗1 = j + 1 .

When this test is applied sequentially, we may expect that improvements made
by deleting one row will be most dramatic when j crosses the true change point
from j∗1−1 to j∗1 . Indeed, we show that a F test statistic can be constructed based
on this idea and p-values can be used to detect the change point. With slightly
different motivation, the statistic appears as part of the regression diagnostic
methods developed in Belsley et al. (1980). We borrow their arguments to present
here Lemma; for derivation and proofs we refer to Belsley et al. (1980).

Lemma 3. T =
[SSR(old) − SSR(new)]/1

SSR(new)/(n − p − 1)

=
(n − p)s2 − (n − p − 1)s2(j)

s2(j)
=

e2
j

s2(j)(1 − hjj)
,

where new model is one without the jth row. If y is Gaussian distribution,
T ∼ F (1, n − p − 1).

Let SSR(j) = SSRj(new), the sum of squared residuals calculated with
(1, . . . , j) rows removed. Write

T2(j) =
SSR(j − 1) − SSR(j)
SSR(j)/(N(j + 1) − 2)

j = 1, . . . , J − 2

and let p2(j) be the p-value evaluated at the observed value of T2(j). Define

ĵ∗2 = argmax
j≥1

{
p2(j − 1)

p2(j)

}
.
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One can also choose the scaling set based on this criterion, but we do not imple-
ment this approach in our data analyses in Sections 4 and 5.

3.5. Comparison of regression models and selection criteria

We observe, within our limited experiences as shown in Sections 4 and 5,
dramatic improvements in performance of estimators with the new regression
model, and wonder where the robustness really comes from. However, when
evaluating estimators, it is not easy to single out the source between regression
models and model selection criteria. Here we separate the issues as an attempt
to make some comparisons to existing methods.

3.5.1. Comparison of regression models

For regression models, one way of measuring robustness would be to consider
the influence function of the estimator to measure how sensitive the regression
coefficients are to outliers (Belsley et al. (1980) or McKean (2004)). For the
standard regression model with Var (εi) = σ2, replacing Var (εi) = σ2/wi for the
specific ith observation only and differentiating with respect to wi evaluated at
wi = 1 gives

∂b(wi)
∂wi

∣∣∣∣
wi=1

= (XT X)−1xT
i ei .

Since the design matrices for both regression models are identical, one might
suspect that the effect of outliers should be similar unless the variances of ei or
εi are dramatically different.

Consider the Gaussian assumptions discussed in Section 2. Let Uk, k =
1, . . . , nj be i.i.d. χ2 random variables with 1 degree of freedom. From (2.2) and
(2.5) we may write

ε̃j
d= log2

(
1
nj

nj∑
k=1

Uk

)
and εj

d=
1
nj

nj∑
k=1

log2 Uk .

At first glance, taking the logarithm first seems to greatly reduce variability.
This would be the case if variables take values mostly greater than 1, but for
the χ2 random variables Uk, with mean 1 and variance 2, the log-transformation
can amplify variability for values between 0 and 1. Also, observe that ε̃j

d=
log2 (Γ(nj/2, nj/2)), with E[Γ(nj/2, nj/2)] = 1 and V ar[Γ(nj/2, nj/2)] = 2/nj .
Here Γ(r, a) represents a Gamma random variable with a density fr,a(x) =
(ar/Γ(r))xr−1e−ax. This is also reflected in the variance. Recall that

V ar[ε̃j ] =
ζ(2, nj/2)

(ln 2)2
, and V ar[εj ] =

ζ(2, 1/2)
nj(ln 2)2

.
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Veitch and Abry (1999) derived an asymptotic form as ζ(2, nj/2) ∼ 2/nj for
large nj , which shows asymptotic equivalence in order of magnitude. Moreover,
assuming nj = 2k, k ≥ 1, it can be shown that

ζ

(
2,

2k

2

)
= ζ(2) −

{
1
12

+ . . . +
1

(k − 1)2

}
=

π2

6
−

{
1
12

+ . . . +
1

(k − 1)2

}
,

ζ(2, 1/2)
nj

=
3ζ(2)
nj

=
π2

4k
.

Thus, both variances converge to zero as nj grows, with no strict inequality in
either direction, and thus the impact of taking logarithm first is not as dramatic
as it might appear.

What makes the new model more appealing is that by taking the logarithm
first one removes the need for correcting bias by subtracting gj in (2.4). There-
fore, for processes close to Gaussian, performance of both estimators should be
similar, while the standard estimator is more sensitive to the distributional as-
sumptions. Moreover, when the processes have an additive noise structure, an
abnormality appears through a localized scale behavior in the regression function
that makes the standard estimator unstable, as was demonstrated in Stoev et
al. (2005) The new estimator seems much more resilient to the abnormality, see
Figure 2 for example.

To see why, fix the scale j and denote the square of wavelet coefficients by
xk, 1 ≤ k ≤ n = nj . Now consider a simple case where noisy wavelet coefficients
are generated as x∗

1 = x1 + a, x∗
k = xk, 2 ≤ k ≤ n. Then

log x̄∗ = log x̄ + log
(
1 +

a

nx̄

)
,

1
n

n∑
k=1

log x∗
k =

1
n

n∑
k=1

log xk +
1
n

log
(
1 +

a

x1

)
.

If
∑n

k=1 xk/σ2 ∼ χ2(n), then

log x̄∗ = log x̄ + log
(
1 +

a/σ2

χ2(n)

)
,

1
n

n∑
k=1

log x∗
k =

1
n

n∑
k=1

log xk +
1
n

log
(
1 +

a/σ2

χ2(1)

)
.

The second terms contribute to additional bias at scale j. Noting that E[χ2(n)] =
nE[χ2(1)], we may write

log
(
1 +

a/σ2

χ2(n)

)
≈ log

(
1 +

a/σ2

nχ2(1)

)
.
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Writing u = a/(σ2χ2(1)), it can be shown that for fixed n, log(1 + u/n) ≥
(1/n) log(1 + u) for all u ≥ 0, with equality for u = 0. This shows that bias
due to additional noise is always smaller for the new estimator, which supports
robustness of the new estimator.

3.5.2. Comparison of model selection criteria

In general when the model selection criteria is concerned, the chi-square
statistic appears as an estimate of the error variance, often written as σ̂2. Al-
though it is a best unbiased estimate of σ2 for linear models, the statistic may
not be adequate to detect a true model when the numbers of parameters or ob-
servations vary. Here we have a fixed number of parameters with varying sample
size. Most model selection criteria such as AIC or BIC were introduced to take
into account the varying size by an adding additional penalty term, controlling
the number of parameters estimated against the number of observations used. In
a slightly different context, BIC was used to select a best model in Shen, Zhu and
Lee (2007). Although it would be possible to consider AIC or BIC-type model
selection criteria for our situation, we turn to the F type statistic because it
arises as a natural choice for linear models.

It is worth mentioning the difference in the formulation of hypotheses testing.
When these test statistics are computed sequentially, in the first case with (3.4),
emphasis lies in how consistent the estimate of the slope would be when reducing
the region of interest. In contrast, the second formulation in (3.5) allows the
possibility of having no clear linear relationship, and thus the bias and variance
trade-off comes into play only after linearity becomes effective.

4. Simulation Study

In this section, we test the robustness of the proposed wavelet spectrum by
using four simulated examples analyzed in Stoev et al. (2005). The examples are
displayed in Figure 3. Each example has 100 realizations of N = 30, 000 time
series points. Using the examples we compare Abry and Veitch’s method (AV)
and the proposed method (New). As explained Section 3, there are two impor-
tant differences between the existing and the proposed methods. The proposed
method takes the logarithm of wavelet coefficients first and averages them later,
then uses the F statistic instead of χ2, for model selection. It would be interest-
ing to see the effect of each difference. Thus, we add another version of wavelet
estimator (Ad-hoc) to the comparison; it takes the logarithm first but utilizes
the χ2 test statistic for model selection. We use the Daubechies wavelet with
M = 3 for constructing wavelet spectra as Veitch and Abry (1999) suggested.



ROBUST HURST PARAMETER ESTIMATION 1547

Figure 3. Simulated examples. True signals are overlaid onto FGN.

Example 1.(Fractional Gaussian Noise (FGN))
Consider first that the data are a sample of FGN with H = 0.9. Figure 4

compares the three wavelet estimators. The top panels show 100 H estimates by
each method (solid lines), along with pointwise 95% confidence intervals (dotted
lines). While all the three methods contained the true H = 0.9 in most of their
confidence intervals, the AV tended to underestimate the true value compared
to the other two. The Ad-hoc estimation had the highest variation in that its
confidence intervals are the widest.

The middle panels show the selected j1 for each method. The proposed
method chose j1 = 1 for every repetition; this can be regarded as the true value
since long-range dependence should appear at all scales for a FGN process. The
AV had a small variation between j1 = 1 and 2, and the Ad-hoc had the highest
variation. The bottom panels show the goodness-of-fit measure for each method.
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Figure 4. FGN (H = 0.9).

For the New and Ad-hoc estimators, it is easier to understand what values mean
(p-values are close to 0), but it is not meaningful to interpret the goodness-
of-fit measure value itself for the AV, and it varied much from one simulation
to another. The overall performance of the proposed method was satisfactory
compared with the other two in this simulation.

Example 2.(FGN plus a smooth trend)
One major advantage of wavelet methods for estimating the Hurst parameter

is that they can ignore smooth polynomial trends in the data owing to the van-
ishing moments in (2.1). This example has Ỹ2(ti) = Y (ti) + Pl(ti), i = 1, . . . , N,

where Y (t) is a FGN with H = 0.9, and Pl(t) = a0t
l + · · ·+al−1t+al, t ∈ R, is a

polynomial of degree l. Theoretically, the estimators of H, based on the wavelet
coefficients of the perturbed process Ỹ , would be identical to those based on the
process Y as long as the vanishing moment M is sufficiently large. This is true
in the sense that Figure 5 is not much different from Figure 4. Therefore, the
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lessons learned from Example 1 remain the same.

Figure 5. FGN (H = 0.9) plus a smooth trend.

Example 3.(FGN plus a high-frequency oscillating trend)
Even though wavelet estimators are robust to a large class of smooth low-

frequency trends, they can be quite sensitive to high-frequency deterministic
oscillations. This example has Ỹ3(ti) = Y (ti) + hν(ti), i = 1, . . . , N, where
hν(t) = sin(2πνt/N), ν > 0. Here ν corresponds to the number of oscillations of
hν in the interval [0, N ]. If ν << M , where M is the number of zero moments
of ψ, then the function hν(t) can be essentially interpolated by a polynomial of
degree l < M , and hence the wavelet estimator of H remains unaffected, as seen
in Example 2. However, a large M is not recommended (we use M = 3 in our
analysis), and the high-frequency behavior then has a big impact on estimation.

The top panels of Figure 6 show that the New and Ad-hoc overestimated
the true H. Although they produced biased results, the estimates were stable
through the repetitions. However, the H estimates by the AV showed large
variations. This happened because the selected j1 in the AV was always 10
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Figure 6. FGN (H = 0.9) plus a high-frequency oscillating trend.

(middle panel), which resulted in only a couple of points for estimating H in a
regression setting. On the other hand, the New and Ad-hoc always chose j1 = 1
despite the appearance of high-frequency oscillation trends. This suggests that
the robustness of the proposed method mainly comes from taking the logarithm
first.

Park, Marron and Rondonotti (2004) shows that the Sat1300 time series
shown in Figure 1 has a high-frequency behavior inside the big spike in the
middle. This simulated example clearly shows why the AV method does not
work properly, as shown in Figure 2.

Example 4.(FGN plus breaks)
The wavelet spectrum of a time series can be influenced by breaks or shifts

in the mean. The last example has the form Ỹ4(ti) = Y (ti) + h(ti), i = 1, . . . , N ,
where the function h(t) is a linear combination of indicator functions. Since
the perturbation has a low degree of polynomial variation, all three methods
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Figure 7. FGN (H = 0.9) plus breaks.

performed well in this case. Again in Figure 7 the AV tended to underestimate
the true value and the Ad-hoc had the highest variations. The proposed method
had the least bias and variation in the estimation and also produced the consistent
j1 = 1.

From the four simulations we can see that robustness is achieved by taking
the logarithm of wavelet coefficients first; the F statistic provides more stable
estimation than the χ2 statistic.

5. Data Example

In this section, we analyze two Internet traffic packet counts data sets col-
lected from the UNC link in 2002.

Figure 8(a) displays a time series measured at the link of UNC on April 13,
a Saturday, from 7:30 p.m. to 9:30 p.m., 2002 (Sat1930). Figure 8(b) displays a
time series measured at the link of UNC on April 11, a Thursday, from 1 p.m.
to 3 p.m., 2002 (Thu1300). These were originally measured every 1 millisecond
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(a) Sat1930 (b) Thu1300

Figure 8. Packet count time series of aggregated traffic at 1 second: (a)
Sat1930 and (b) Thu1300.

but aggregated by a factor of 1,000 (at 1 second) for better displays of trends.
The Sat1930 time series shows one peak in the middle but the time series looks
stationary in general. The Thu1300 time series shows a few spikes shooting up
and down. Especially, the first downward spike hits zero, which means no signal.
This dropout lasted 8 seconds, as shown in Park, Godtliebsen, Taqqu, Stoev and
Marron (2007a).

Figures 9(a) and (b) compare Abry and Veitch’s and the proposed methods
using the Sat1930 time series. They produced similar estimates, Ĥ = 0.89 (with
95% confidence interval [0.86, 0.92]) and Ĥ = 0.88 (with 95% confidence interval
[0.86, 0.90]), respectively. Also, they chose similar ranges of the scale, j1 = 12
and j1 = 10, respectively. We can see that the two methods produced similar
estimates in the case of a stationary process, as seen in Example 1 of Section 4.

Figures 9(c) and (d) compare Abry and Veitch’s and the proposed methods
using the Thu1300 time series. They produced very different estimates, Ĥ = 0.79
(with 95% confidence interval [0.50, 1.09]) and Ĥ = 0.88 (with 95% confidence
interval [0.86, 0.89]), respectively. The wide confidence interval of the Abry and
Veitch method was caused by the selection of the scale range, j1 = 17. Note
that the proposed method had j1 = 9 and thus a narrower confidence band. The
wavelet spectrum in Figure 9 (c) shows two bumps that forced the method to
choose the large j1. Park et al. (2007a) showed that these bumps were created
by the dropout. If this 8-second segment of the time series, where the dropout
occurs, is excluded and the remaining parts are concatenated, then Ĥ is around
0.9, which is close to our estimate. This example clearly shows the robustness of
the proposed method.
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(a) Sat1930: Abry and Veitch (b) Sat1930: Proposed method

(c) Thu1300: Abry and Veitch (d) Thu1300: Proposed method

Figure 9. Wavelet spectra and the Hurst parameter estimates.

6. Concluding Remarks

We have shown that some issues with wavelet estimation of the Hurst param-
eter for long range dependent processes can be resolved by taking an alternative
regression model, on which the estimator is based. The proposed wavelet esti-
mator shows significant improvements in performance in various non-standard
scenarios that standard estimators fail to reconcile. In addition, we have pro-
posed a new method of selecting an onset scaling, by making the link to the idea
of regression diagnostics for linear models. These techniques are easy to imple-
ment and provide informative goodness of fit measures. There is accumulating
evidence that the traffic exhibits much more versatile and dynamic behavior than
that can be described by a single parameter model. Thus, it is likely that there
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arises a situation where additional non-stationary phenomena need to be taken
into account before the robust estimator or any other estimator can be employed.
In the current framework, different levels of preprocessing step may be needed
to justify the use of the Hurst parameter. Alternatively, one may adopt a view
of modelling non-stationarity or local stationairy. It would be useful to develop
a general framework where various non-stationary features can be incorporated
so that the Hurst parameter itself can be a function of covariates such as time or
other factors. We leave this consideration as future work.
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