
Statistica Sinica 19 (2009), 1371-1387

SMOOTHING NON-EQUISPACED HEAVY NOISY DATA

WITH WAVELETS

Anestis Antoniadis, Irène Gijbels and Jean-Michel Poggi
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Abstract: We consider a nonparametric noisy data model Yk = f(xk) + εk, k =

1, . . . , n, where the unknown signal f : [0, 1] → R is assumed to belong to a wide

range of function classes, including discontinuous functions, and the ε′ks are inde-

pendent identically distributed noises with zero median. The distribution of the

noise is assumed to be unknown and to satisfy some weak conditions. Possible noise

distributions may have heavy tails, so that, for example, no moments of the noise

exist. The design points are assumed to be deterministic points, not necessarily

equispaced within the interval [0, 1]. Since the functions can be nonsmooth and

the noise may have heavy tails, traditional estimation methods (for example, ker-

nel methods) cannot be applied directly in this situation. As in Brown, Cai, and

Zhou (2008), our approach first uses local medians to construct certain variables

Zk structured as a Gaussian nonparametric regression but, unlike in this paper,

the resulting data being not equispaced, we apply a wavelet block penalizing proce-

dure adapted to non-equidistant designs to construct an estimator of the regression

function. Under mild assumptions on the design it is shown that our estimator

simultaneously attains the optimal rate of convergence over a wide range of Besov

classes, without prior knowledge of the smoothness of the underlying functions or

prior knowledge of the error distribution. The performance of our procedures is

evaluated on simulated data sets covering a broad variety of settings and on some

data examples, and are compared with other proposals made in the literature for

treating similar problems.

Key words and phrases: Median, non equispaced design, penalization, robust re-

gression, wavelets.

1. Introduction and Set-up

Suppose we want to recover a signal f(·) on the basis of independent obser-
vations

Yk = f(xk) + εk, k = 1, . . . , n, (1.1)

where {xk}k=1,...,n = {xk,n}k=1,...,n ⊂ [0, 1] = I is a design to be specified later,
f belongs to a broad nonparametric class of functions, a Besov ball Bα

p,q([0, 1])
(for a definition see for example Amato, Antoniadis, and Pensky (2006)), and
where the εk’s are assumed to be i.i.d., each εk having a distribution that is
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absolutely continuous with respect to the Lebesgue measure with density, say,
h. We will assume in particular that each εk has a zero median. Note that the
noise distribution with density h may have heavy tails (e.g., Cauchy or Laplace)
so that, for instance, the expectation of noise does not exist. Therefore, in this
paper, the function f in (1.1) has a meaning of conditional median and the model
will be called nonparametric median regression hereafter.

Inspired by the work of Brown, Cai, and Zhou (2008), our method may be
summarized as a blockwise penalized wavelet kernel estimation on a signal built
from the medians of suitably binned data. However, we focus here on non-equally
spaced design, while in the paper just cited the authors have focused their work on
equally spaced design using standard blockwise wavelet thresholding techniques
for denoising. For a non-equally spaced design, we bin the sample so that each
bin contains the same number of observations, and then take the median of
each bin. The method therefore produces unequally spaced medians that are
homoscedastic since the number of observations in the bins are the same. A
wavelet kernel procedure for unequally spaced observations with homoscedastic
noise, developed by Amato, Antoniadis, and Pensky (2006), applied to the local
medians, together with a bias correction, leads to the desired estimator of f . In
particular, we show that the optimality results obtained by Brown, Cai, and Zhou
(2008) for the equidistant design model can be carried over to the non-equispaced
design case.

Another way to handle the non-equidistant design case would be to bin
the data into equal length bins, but this time the resulting medians would be
approximated by Gaussian data that are heteroscedastic. Moreover the variance
of each of the medians depends on how the xi values are distributed within the
bin, and the quality of the Gaussian approximation therefore depends on the
“density” of the design points that usually is unknown. Even if this could be
estimated, it is not at all clear that the results could be extended to that context.

In Section 2 we introduce the proposed method. Theoretical foundations
and properties of the resulting estimator are established in Section 3. The finite-
sample performance of the estimation procedure is investigated via a simulation
study in Section 4, including also comparisons with other available methods. The
method is also applied to two data examples.

2. The Proposed Procedure

We now give a detailed description of our procedure for robust estimation.
Let 0 < m < n be an integer (its choice is discussed later) and partition the data
into bins so that each bin contains the same number of observations m (i.e., each
bin, say Ij is given by Ij = [x(j−1)m+1, xjm] with j = 1, . . ., T = bn/mc). Denote
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by Xj the median of the observations Yk within bin Ij , j = 1, . . . , T , and let

bm = E[median{ε1, . . . , εm}]. (2.1)

Treating the Xj as data from a common Gaussian error regression model with
mean f(xjm) + bm (see Proposition 3.1 in the next section), we apply on the
resulting non-equidistant data the wavelet kernel penalized estimation procedure
of Amato, Antoniadis, and Pensky (2006) to obtain an estimate for f(xjm)+ bm.
An estimator of f at the points {xjm}j=1,...,T is obtained by subtracting an
appropriate estimator of bm as in Brown, Cai, and Zhou (2008). More precisely,
divide again each bin Ij into two sub-bins with the first bin of the size bm/2c
and denote by X∗

j the median of the observations in the first sub-bin. Then

b̂m =
1
T

T∑
j=1

(X∗
j − Xj). (2.2)

To apply the above procedure in practice one needs to choose the number of
observations per bin, m, and the smoothing parameter, λ, in the wavelet kernel
penalized procedure. The latter parameter is chosen by K-fold generalized cross-
validation, while for choosing the number of observations per bin we have adopted
the median cross-validation criterion proposed by Zheng and Yang (1998). Note
that by using the wavelet denoising procedure of Amato, Antoniadis, and Pensky
(2006) we do not need to estimate h2(0), as is necessary in the regular design
case when using Cai’s method (see Cai and Brown (1998)).

Remark 2.1. In the above procedure f is evaluated, for simplicity (to avoid
notational complication), at the extremal points xjm of the interval Ij . Instead,
any point in the bin Ij could be chosen, such as for example the point at which
the median of the Y observations (in the bin) is attained.

3. Theoretical Properties

Before stating the theoretical properties of our estimator, we introduce some
notations and assumptions.

Assumptions on the noise distribution

As in Brown, Cai, and Zhou (2008) set

Hc1,c2 =
{

h density :
∫ 0

−∞
h(x)dx = 0.5, c1 ≤ h(0) ≤ 1

c1
,

and |h(x) − h(0)| ≤ |x|
c1

for all |x| < c2

}
.
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(A1) The εk’s are i.i.d., each εk having a distribution that is absolutely contin-
uous with respect to the Lebesgue measure with density h. There exists
0 < c1 < 1, c2 > 0, such that h ∈ Hc1,c2 .

(A2)
∫
|x|γh(x)dx < ∞ for some γ > 0.

(A3) There exists 0 < c1 < 1, c2, c3, c4 > 0 such that h ∈ Hc1,c2,c3,c4 , where

Hc1,c2,c3,c4 =
{

h : h ∈ Hc1,c2 , |h(3)(x)| ≤ c4 for |x| ≤ c3

and
∫

|x|c3h(x)dx < c4

}
.

Assumption on the design

We assume that the design points are already ordered and that no ties occur.
The theoretical results are established under the follow assumption on the design.

(B) There exists a sequence of integers m = mn with 0 < mn < n such that, if
the design points are binned into bins so that each bin contains the same
number of observations mn, and a δ ≥ 3/4, such that

ρn = max
1≤j≤T

max
(j−1)mn+1≤i≤jmn

|xjmn,n − xi,n| = O(n−δ).

Remark 3.1. It is worth noting that the condition

(B’) There exists a Lipschitz function κ(·) such that

max
1≤j≤T

∣∣∣∣xjmn,n − x(j−1)mn+1,n − κ(xjmn,n)
n

∣∣∣∣ = o(n−1).

is a sufficient condition for Condition (B) above. Indeed, with κ(·) = 1, (B’)
implies (B) with δ > 1, as discussed in Antoniadis, Grégoire, and McKeague
(1994). Condition (B’) is a standard assumption for the fixed design model, and
is somewhat weaker than the “asymptotic equidistance” assumption of Gasser
and Müller (1979) in which κ(t) = 1. Furthermore (B’) implies the following
standard condition of fixed design

(B”) The design is such that maxi |xi,n − xi+1,n| = O(n−1),

which is also sufficient for Condition (B).
In case of random design, Condition (B) is satisfied in case the design density

is continuous and strictly positive on ]0, 1[ (and hence bounded below and above
on each closed subset of ]0, 1[).

Denote by Xj the median of the observations Yk within bin Ij , j = 1, . . . , T ,
and let bm = E[median{ε1, . . . , εmn}]. Assume that f in model (1.1) belongs to
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the Besov ball Bα
p,q with α > 1/p + 1/2 which, in particular, implies that f is

Hölder with smoothness index d = min(α− 1/p, 1) > 0 and constant Cf > 0 (see
Meyer (1992)). Then, similarly to Brown, Cai, and Zhou (2008) we can prove
the following proposition.

Proposition 3.1. Assume that the design satisfies (B) and that the noise dis-
tribution satisfies (A1) and (A2). The random variables Xj can be written as

√
mnXj =

√
mn{f(xjmn,n) + bm} + ej + Zj + ξj , j = 1, . . . , T, (3.1)

where

(i) Zj
i.i.d.∼ N(0, [1/(4h2(0))]).

(ii) ej are deterministic constants with |ej | ≤ Cf
√

mρd
n.

(iii) there exists a constant C > 0 such that the random variables ξj are mean-zero
independent variables with, for any ` > 0,

E|ξj |` ≤ C`m−`/2 + C`m`/2(max{ρd
n, |bm|})`,

and for any a > 0,

P{|ξj | > a} ≤ C`(a2m)−`/2 + C`

(
a2(max{ρd

n, |bm|})−2

m

)−`/2

.

A proof is given in the Appendix.

So far the approach outlined above, and the results concerning the median
observations, is along the lines of Brown, Cai, and Zhou (2008) with minor com-
plications due to the non-equispaced design, and with a more careful handling
of the constants involved in the upper bounds. The main challenge remains the
estimation of the signal by wavelet denoising since here, by the adopted binning
approach, the binned data to be denoised are homoscedastic with Gaussian er-
rors but with a non-equispaced design. One therefore needs to apply a wavelet
denoising procedure that leads to estimates with the same optimal rates as in the
equidistant design, this is a difficult task. Indeed, several wavelet denoising proce-
dures for unequally spaced observations with homoscedastic Gaussian noise exist
in the literature such as those developed by, for example, Antoniadis, Grégoire,
and Vial (1997), Cai and Brown (1998), Kovac and Silverman (2000), Antoniadis
and Fan (2001), and Kerkyacharian and Picard (2004), among others. However
none of these procedures have allowed derivation of optimal rates of convergence
for the estimators, similar to those for the equispaced setup. When applying the
wavelet kernel penalized procedure developed by Amato, Antoniadis, and Pensky
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(2006), we show below that the resulting estimators achieve the optimal rates of
convergence.

Note first that by (3.1) the binned data are written as
√

mXj =
√

mg(xjm) + ej︸ ︷︷ ︸
perturbated true signal

+ Zj + ξj ,︸ ︷︷ ︸
perturbated Gaussian error

(3.2)

where g(xjm) = f(xjm) + bm. Adopting the same notations as in Amato, Anto-
niadis, and Pensky (2006), the estimator of f at the points xjm is obtained by
minimizing

A(f) :=
1
T

T∑
i=1

{√
mXi −

√
mf(xim)

}2
+ λ2RJ(

√
mf), (3.3)

with RJ(f) =
∑J

j=0

∑
r ‖Pjrf‖HΓ,j,r

, T = 2J , and where the penalty term in (3.3)
is a sum of wavelet-based Reproducing Kernel Hilbert Space (RKHS) norms and
a pseudo-norm. The main issue is to show that the perturbations in (3.2) can
be controlled in such a way that they do not affect the final optimal rate of
convergence. This result is stated in the following theorem.

Theorem 3.1. Consider the nonparametric median regression model Yi =
f0(xi)+εi, i = 1, . . . , n where xi’s are given deterministic points in [0, 1) satisfying
(B), and the εi’s are independent identically distributed noise variables satisfying
(A3). Assume that α ≥ max(1/q−1/2, 1/p+1/2), p, q ≥ 1, and let J = δ(log2 n)
and s = 2/(2α + 1). Assume that δ in (B) satisfies max(3/4, 1/(2d + 1)) ≤ δ < 1
and also that f0 belongs to the unit ball of Bα

p,q([0, 1]). In the penalized kernel
wavelet procedure, assume equal block sizes of length Ljr ≈ (log T )1+ν with ν ≥ 0
and take Γjr = Γj = 2µj with 1 < µ < 2(α − 1/p). Consider the estimator f̂ of
the values of the unknown regression function at the points defined by the binning
process which is obtained by minimizing (3.3).

Then (i) if f0 is not a constant and λ = λn satisfies λ−1
n =OP (n(2−ρ)/4)

R
(1−s)/2
J (f0), we have (1/n)‖f̂ − f0‖n = OP (λn)R1/2

J (f0); (ii) if f0 is constant, we
have (1/n)‖f̂ − f0‖n = OP (max{(nλn)−2/3, n−1/2}).

An analog of Theorem 3.3 of Amato, Antoniadis, and Pensky (2006), establishing
integrated mean squared error consistency of the estimator, can also be stated
and proved in similar fashion.

In the above cited paper, in order to get the right optimal consistency rate,
the authors rely on Theorem 10.2 of van de Geer (2000) which involves conditions
on the entropy of Besov balls as well as a sub-gaussianity condition on the noise.
To prove Theorem 3.1 we show that the entropy bounds still hold despite the
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perturbation of the deterministic part in (3.2), and that the perturbated error
is indeed sub-gaussian (see Lemma 3.2). The perturbation in the deterministic
part can be handled via the result in Lemma 3.1.

Lemma 3.1. Let bm and b̂m be defined as in (2.1) and (2.2). Under (B) and (A3)
we have

sup
Hc1,c2,c3,c4

∣∣∣∣bm +
h′(0)

8h3(0)m

∣∣∣∣ = O(m−2)

and sup
Hc1,c2,c3,c4

sup
f∈unit ball of Bα

p,q([0,1])

E(b̂m − bm)2 = O(max(ρ2d
n ,m−4)).

For a proof of this lemma see Lemma 5 of Brown, Cai, and Zhou (2008).

Lemma 3.2. Let the assumptions of Proposition 3.1 hold with max(3/4, 1/(2d+
1)) ≤ δ ≤ 1. Then the perturbated error Uj = Zj + ξj, with Zj and ξj as in
Proposition 3.1, is subgaussian.

A proof of this lemma is given in the Appendix.

4. Experimental Results

This section reports results from a simulation study and some data examples
that were conducted to evaluate the practical performance of our median based
procedure for robust wavelet regression (RWR for short). All computations were
performed using either Matlab or R. The Matlab codes for implementation of
the procedure can be obtained from the authors upon request.

Our estimator is compared to competitors whose codes are available in the
literature. Comparisons are done for both, equispaced and non-equispaced de-
sign.

4.1. Description of the algorithms and parameters choices

Algorithms. The algorithm proceeds in two major steps. The first uses local
medians to construct new variables structured as a Gaussian nonparametric re-
gression with non-equispaced design. The second step applies a wavelet block
penalizing procedure adapted to non-equidistant designs to construct an estima-
tor of the regression function. The computational algorithm and implementations
issues are described in detail and discussed in Amato, Antoniadis, and Pensky
(2006). The performance of the penalized estimator depends on some parame-
ters, more precisely a regularization parameter, the chosen maximum resolution,
and a block size, when thresholding is performed by blocks. All the default val-
ues provided by the waveker MATLAB code (see Amato, Antoniadis, and Pensky
(2006)) are used here. In order to explore features of the data arising on different
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scales, scales from 1 to 6 are considered. The regularization parameter is chosen
by 4-fold generalized cross-validation. The default wavelet is the near symmetric
Symmlet 6 Daubechies wavelet (see Daubechies (1992)).

Selecting the number of data points in a bin. We propose to use the me-
dian cross-validation criterion of Zheng and Yang (1998) to select the number of
nearest neighbors for estimating the regression function by local sample medi-
ans. Their procedure naturally deals with outliers and this data-driven selection
method is used in the analysis of the data sets, even if the consistency results
are only available in the equally spaced fixed design points regression model. For
the simulated data we prefer to use mn = n1/4, in order to get a fixed number
of observations for a given n, remaining the same across the samples. Let us
mention that this strategy seems sometimes to select a slightly too small value
for m.

4.2. Simulation study

The experimental setup was essentially the same as in Sardy, Tseng and
Bruce (2001). Two test functions previously considered by Amato, Antoniadis,
and Pensky (2006) were used: Heavisine and Corner. Alltogether a sample size
n = 1, 024, with two different types of noise considered — a Gaussian noise with
a variance σ2, and a Cauchy noise with scale σ — and two signal-to-noise ratios
SNR= 3 and 7. The computation of the signal-to-noise ratio in the Cauchy noise
case is a little tricky. For equispaced data, using a number of observations within
each bin, say m (equal to n1/4 in the simulations), and using the asymptotic
results of our previous sections, the variance of the median (Gaussian) binned
data Xj is approximately (σ2π2)/(4m) for Cauchy noise with scale parameter σ.
Denoting by σ2(f) the “variance” of the signal, we chose the scale parameter σ

such that the ratio of the variance of the signal and the variance of the “noise”
leads to a given signal-to-noise ratio (SNR), i.e., SNR = (

√
4mσ(f))/(σπ) or,

equivalently, σ =
√

4mσ(f)/(SNR × π). We adopted the same signal-to-noise
ratio for the simulations involving a non-equispaced design. Figure 4.1 displays
each of the signals together with a simulated (equidistant) sample from Cauchy
data having a SNR= 7.

For each combination of test function and noise, 100 samples were generated.
For the random design case non-equispaced placement of the sample points was
done by distributing the points on the interval [0, 1] according to a Beta(1/2, 1/2)
random variable.

For equidistant design, our method (RWR) is compared to three others.
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Figure 4.1. Each of the signals used in the simulation study, together with a
typical simulated sample obtained by adding a Cauchy noise having a scale
such that the resulting SNR is 7.

RWS: the robust smoother-cleaner of Bruce and Gao (1994), with the de-
fault parameters and universal thresholding; software available using
S+Wavelets (similar to the one developed by Sardy, Tseng and Bruce
(2001) for robust wavelet denoising, or by Oh, Nychka, and Lee (2007)
for robust smoothing).

NPRQ: a local linear quantile regression estimator with a cross-validation band-
width, see Yu and Jones (1998); available in the R package quantreg
by Koenker (2007).

BCZ: the wavelet median smoother of Brown, Cai, and Zhou (2008), where an
estimate of the pseudo-data noise variance is obtained using a difference-
type estimator (as suggested by these authors).

For our RWR estimators, whenever an estimate of the pseudo-data noise variance
was needed, we used the estimate based on the median absolute deviation of finer
detail wavelet coefficients (see, e.g., Donoho and Johnstone (1994)).

For each simulation setup (regular or irregular design), the mean squared
error MSE = (1/n)

∑
(f̂(xi)−f(xi))2 was calculated for each regression estimate

f̂ evaluated on an equally spaced grid of x’s. This is important, especially in the
case of irregularly spaced design points, to fairly appreciate the effect of the
irregularity of the design on the estimation error. We also computed a standard
nonrobust wavelet smoother (WAV) obtained by wavelet universal thresholding
(see Donoho and Johnstone (1994)), but we do not show the results here since its
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Figure 4.2. Boxplots of the MSE values of the Heavisine and Corner curve
estimates from Cauchy noisy data for the four robust regression methods
(equispaced design) and for the low and high SNR’s in the simulation study.

MSE’s are far too large when compared with those obtained with the methods
mentioned above.

For each method, each function and each SNR, boxplots of these MSE’s are
displayed in Figure 4.2.

For non-equispaced design we compared our method with the NPQR method,
which is the only available algorithm for random design robust smoothing. For
the 100 simulations involving a non-equispaced placement of the sample points
according to a Beta(1/2, 1/2) random variable, some of the results are presented
in Figure 4.3, depicting boxplots of the mean square error of the RWR method
and NPQR.

For the two irregular functions that we used in our simulations, we also com-
pared our robust smoother with a standard wavelet smoother (universal thresh-
olding) on the Gaussian data sets in order to measure the loss in efficiency due to
the binning. The resulting boxplots for each function and each SNR are displayed
in Figure 4.4

The following major observations can be made. First, our proposed pro-
cedure RWR outperformed the others in most cases. Secondly, the standard
wavelet denoising procedure (WAV) was better than the robust method for sig-
nals contaminated by Gaussian noise, but the loss of efficiency was not very large.
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Figure 4.3. Boxplots of the MSE values of the Heavisine and Corner curve
estimates from non-equispaced Cauchy noisy data for our robust regression
method and Koenker’s local linear quantile regression smoother.

Figure 4.4. Boxplots of the MSE values of the Heavisine and Corner curve
estimates from equispaced Gaussian noisy data for our robust regression
method and a standard denoising wavelet based procedure.
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A likely explanation is the fact that these procedures do not really rely upon the
same number of points since RWR involves a preliminary binning. Lastly, the
good average performance of NPRQ on the Heavisine signal is due to the fact
that the tall small jump is hard to distinguish when the SNR is not large enough.
Note also a small loss in efficiency when using the difference-based variance es-
timator of Brown, Cai, and Zhou (2008) in the case of equispaced data. In the
non-equidistant case, see Figure 4.3, our RWR procedure performed better than
the NPQR estimator in most cases, but was more variable. We believe that this
is due to the way binning pre-processes the data.

4.3. Analysis of data

We apply our robust wavelet smoother to two data sets, the bone mineral
density dataset with data observed on a non-equispaced design, and the radar
glint noise data with equispaced design.

The glint data set. This data set is available in the module “Wavelets” of
Splus, and has been previously examined by Bruce and Gao (1994) and Sardy,
Tseng and Bruce (2001). The data are radar glint spikes observations from a
target captured at n = 512 angles. Figure 4.5 compares robust denoising using
our procedure with symmlets 6 and m, the number of data points in a bin,
chosen by the median cross-validation criterion of Zheng and Yang (1998), to
denoising with wavelet shrinkage combined with a clean and repeat procedure as
it is implemented in the robust wavelet smoother-cleaner of Splus.

It can be seen that RWR is resistant to the adverse effects of outliers, notably
at target angles near 5, 90, 140, 200, 320 (corresponding to abscissas near 0, 0.17,
0.27, 0.39, 0.62), and the range from 420 to 470 (resp. 0.82 to 0.92), while the
smoother-cleaner procedure (RWS) of Bruce and Gao (1994) is still somewhat
sensitive to the glint spikes.

Bone mineral density data. This example is based on measurements of bone
mineral density (BMD) on 261 adolescents. The data were originally reported
and analyzed by Bachrach, Hastie, Wang, Narasimhan, and Marcus (1999). The
response is the relative change in spinal BMD and the covariate is the age of the
adolescent. The data are also available in the R-package ElemStatlearn.

Figure 4.6 shows a robust regression analysis for the variable BMD condi-
tional on gender. The response in the vertical axis is relative change in spinal
BMD and the covariate on the horizontal axis is the age of the adolescent. The
top panel provides the robust smoothing of RWR and of NPQR on the male
subpopulation, while the bottom one is devoted to the female subpopulation.
Whatever estimation method is used one clearly identifies different patterns of
growth in the early ages, and especially the delay of roughly two years for males
with respect to females.
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Figure 4.5. Top: radar glint noise data in degrees; Bottom: denoising by
waveshrink combined with the robust clean and repeat wavelet procedure
RWS (dashed line) compared to our robust wavelet smoothing procedure
RWR (solid line).
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Figure 4.6. Relative change in Spinal BMD versus age. Data (’o’) and
corresponding RWR fit (solid curve) and NPQR fit (dashed curve) for the
male population (Top) and the female population (Bottom).
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Appendix

A.1. Proof of Proposition 3.1

Let ηj = median{ε(j−1)m+1, . . . , εjm}. We define Zj = 2Φ−1(G(ηj))/h(0),
where G is the cumulative distribution function of ηj and Φ is the cumulative
distribution function of a standard normal variable. It is obvious that the random
variables Xj , j = 1, . . . , T , can be written as (with mn denoted as m)

√
mXj =

√
m{f(xjm) + bm} + ej + Zj + ξj ,

where

ej =
√

mE{Xj − f(xjm) − ηj} and ξj =
√

m{Xj − f(xjm) − bm} − ej − Zj .

From Theorem 1 and Corollary 1 of Brown, Cai, and Zhou (2008), it follows that
there exists a zero-mean Gaussian variable Z with variance 1/(4h2(0)) such that
Zj and Z have the same distribution, and moreover there exists a constant D
such that

|
√

mηj − Zj | ≤ Dm−1/2
(
1 + 4Z2

j

)
(A.1)

when |Zj | ≤ ε
√

m, for some ε > 0.
Since Xj is the median of the observations in bin Ij , it is obvious that

min
(j−1)m+1≤i≤jm

{f(xi)} ≤ Xj − ηj ≤ max
(j−1)m+1≤i≤jm

{f(xi)}, (A.2)

and therefore

|ej |≤
√

mE{|Xj −f(xjm)−ηj |}≤
√

m max
(j−1)m+1≤i≤jm

|f(xi)−f(xjm)|≤Cf

√
mρd

n.

(A.3)
The random term ξj has a zero mean and we split it into two terms ξ

(1)
j and ξ

(2)
j ,

where

ξ
(1)
j =

√
m{Xj − f(xjm) − ηj} − ej −

√
mbm and ξ

(2)
j =

√
mηj − Zj .

From (A.2) and (A.3) we have |ξ(1)
j | ≤ max(2Cf , 1)

√
mmax{ρd

n, |bm|} and
therefore, for any ` > 0,

E|ξ(1)
j |` ≤ C`m`/2(max{ρd

n, |bm|})` (A.4)
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with C = max(2Cf , 1).
By (A.1) we also have

E|ξ(2)
j |` ≤ C`m−`/2 + (E|ξ(2)

j |2`)1/2P{|Zj | > ε
√

m},

where C is a generic constant proportional to D. Since Zj has a Gaussian distri-
bution, assertion (iii) follows along the same lines as in the proof of Proposition
1 of Brown, Cai, and Zhou (2008).

A.2. Proof of Theorem 3.1 and Proof of Lemma 3.2

Proof of Theorem 3.1.
As in the proof of Theorem 3.2 of Amato, Antoniadis, and Pensky (2006),

the conditions on the unknown regression function f0 in Theorem 3.1 are only
active for its wavelet coefficients and do not include the V0 scaling coefficient of
f0. However, one has to control also the difference between the discretized values
of f0(xjm) and g0(xjm) + ej/

√
m = f0(xjm) + bm + ej/

√
m. For any f ∈ HJ,Γ,

write f = a + f1 where a ∈ V0 and f1 ∈ VJ,Γ. The conditions of Theorem 3.1
are equivalent to the fact that the function f0 is such that f01 ∈ VJ,Γ. Now, by
Lemma 3.1, the constant bm is uniformly bounded by a term of order m−1 and by
Proposition 3.1 - (ii), |ej |/

√
m = O(n−δd). Hence, (g01 + e0j/

√
m) ∈ VJ,Γ, where

g01+e0j/
√

m is the corresponding projection of the perturbed deterministic signal
onto the detail space VJ,Γ. Moreover, the fact that bm is uniformly bounded by
a term of order m−1 leads to the same lower and upper bounds for the entropy
of unit Besov balls as at (30) of Amato, Antoniadis, and Pensky (2006). By
definition of the penalty RJ we have RJ(

√
mf) =

√
mRJ(f). Using the above

remark and the fact that the entropy condition in Theorem 10.2 of van de Geer
(2000) involves the normalized quantity (f − f0)/(RJ(f) + RJ(f0)), invariant
with respect to scalar multiplication of f and f0, one sees easily that the factor√

m does not affect the entropy conditions. With the sub-gaussianity of the
perturbated error term established in Lemma 3.2, the proof is complete.

Proof of Lemma 3.2.
Since both random variables Zj and ξj have zero mean, subgaussianity of Uj

is equivalent to the fact that there exists a K > 0 such that

E
(

exp
( U2

j

K2

))
< +∞. (A.5)

This assertion is true due to Theorem 2 of Pollard (2005). We have

E
(

exp
((Zj + ξj)2

K2

))
≤ E

(
exp

(2Z2
j

K2

))(
exp

(2ξ2
j

K2

))
.
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From the Cauchy-Schwarz inequality it now follows that

E
(

exp
((Zj + ξj)2

K2

))
≤ E1/2

(
exp

(4Z2
j

K2

))
E1/2

(
exp

(4ξ2
j

K2

))
.

Since Zj is zero-mean Gaussian with variance 1/(4h2(0)), the first factor on the
right side of the last expression is finite. For the second factor we use Proposition
3.1 to get

E
(

exp
4ξ2

j

K2

)
=

∞∑
`=0

1
`!

( 4
K2

)`
E(ξ2`

j )

≤
∞∑

`=0

1
`!

( 4
K2

)`{
C2`m` + C2`m`(max{ρd

n, |bm|})2`
}

= exp
(4C2m

K2

)
+ exp

(
4C2m(max{ρd

n, |bm|})2

K2

)
.

For K large enough and max(3/4, 1/(2d + 1)) ≤ δ ≤ 1, both terms are finite and
the result follows.
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