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S1. Convertible bond pricing

Convertible bond (CB) is a popular derivative security traded in the financial

market. Similar to the American option, valuation of the CB faces a free bound-

ary problem referred to the optimal early exercise strategy. In the literature,

finite difference method (Brennan and Schwartz, 1977), lattice method (Ho and

Pfeffer, 1996) and simulation method (Lvov, et al., 2004) have been proposed to

solve the problem. In the following, we account for the proposed method of CB

valuation. Consider a simple non-defaultable and callable CB, issued by com-

pany XYZ, paying no dividend, with face value F and maturing at time T . The

investor has the right to convert the bond into ζ, which is called the conversion

ratio, shares of XYZ stocks before maturity. The issuer may choose to call the

CB at the call price Kc at any time prior to T . Let CBi denote the time ti value

of the CB, then

CBT = max(ζST , F )

CBi = max
{

min
[
Ei(e−r∆CBi+1), Kc

]
, ζSi

}
, for i = 1, · · · , n.

(S1.1)

To adopt Algorithm 2.1, a multipiece quadratic regression function, Q(Si+1),

is used to approximate CBi+1 at time ti+1 for Si+1 ≤ A∗
i+1, where A∗

i+1 satisfies

A∗
i+1 ≤ Kc

ζ and Q(A∗
i+1) = Kc. Then define the regression CB value function by

ĈBi+1 = Q(Si+1)I{Si+1≤A∗i+1} + KcI{A∗i+1<Si+1≤Kc

ζ
} + ζSi+1I{Si+1> Kc

ζ
}.
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The approximate CB values at time ti are derived by the conditional expectation,

Ei(ĈBi+1), which can be evaluated by the results of Theorem 3.3 and Theorem

3.5.

S2. Proofs of Theorems

Proof of Proposition 3.1. First, we derive the the density function of lnSi =

x given lnSi−1 = y. The following is a solution to the stochastic differential

equation (2.2) at the time ti+1 given Si,

Si+1 = Si exp{µ∆ + σ(Wi+1 −Wi)}
Ni+1−Ni∏

j=1

Yj ,

where µ = r−δ−λφ− 1
2σ2. Since ln Y ′

j s are i.i.d. N(γ− 1
2ξ2, ξ2) random variables

and are independent of Wi+1 −Wi, the conditional distribution of lnSi+1 given

Ni+1−Ni = ν and lnSi = y is N(y+Rν,∆, ρ2
ν,∆), where Rν,∆ = µ∆+ν(γ + 1

2ξ2),

and ρ2
ν,∆ = σ2∆+νξ2. Therefore, the conditional density function of lnSi+1 = x

given lnSi = y is

f∆(x | y) =
∞∑

ν=0

e−λ∆(λ∆)ν

ν!
√

2πρ2
ν,∆

exp
{
− 1

2ρ2
ν,∆

(x− y −Rν,∆)2
}
.

By straightforward computation, we have

E(Sk
i I(Si<A(j)) | Si−1 = s) = E(ekxI(x<ln A(j)) | Si−1 = s)

= sk
∞∑

ν=0

(λ∆)νe−λ∆

ν!
exp

{
kRν,∆ +

1
2
k2ρ2

ν,∆

}
Φ

(
d

(j)
k

)
,

where d
(j)
k = ln A

(j)
i −ln s−Rν,∆

ρν,∆
− kρν,∆. By substituting the above results into

Algorithm 2.1 step-2, the Proposition follows.

Proof of Theorem 3.3. Before proving Theorem 3.3, we give the following

lemma.

Lemma S2.1. Let Vi denote the American put option value, Ṽi and V̂i be de-

fined as in Algorithm 2.1. Then, we have supSi
|Vi − Ṽi| ≤ supSi

∣∣∣Ei(Vi+1 −

V̂i+1)
∣∣∣, for i = 0, · · · , n− 1.
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Proof of Lemma S2.1. At time ti, we have Vi = (K − Si)I(Si<B∗
i ) + e−r∆Ei(Vi+1)I(Si≥B∗

i )

Ṽi = (K − Si)I(Si<A∗i ) + e−r∆Ei(V̂i+1)I(Si≥A∗i )

,

where B∗
i is the early exercise boundary at time ti, that is, the solution of Si to

(K − Si)+ = e−r∆Ei(Vi+1), and A∗
i is the approximate early exercise boundary

defined in Remark 2.1. If B∗
i ≤ A∗

i , then

|Vi − Ṽi| =


0, if Si ≤ B∗

i

e−r∆Ei(Vi+1)− (K − Si), if B∗
i < Si < A∗

i

e−r∆
∣∣∣Ei(Vi+1 − V̂i+1)

∣∣∣, if Si ≥ A∗
i

.

Since e−r∆Ei(V̂i+1) < K − Si < e−r∆Ei(Vi+1) for B∗
i < Si < A∗

i , thus

e−r∆Ei(Vi+1)− (K − Si) ≤ e−r∆ sup
Si

∣∣∣Ei(Vi+1 − V̂i+1)
∣∣∣.

Hence, we have supSi
|Vi − Ṽi| ≤ e−r∆ supSi

∣∣∣Ei(Vi+1 − V̂i+1)
∣∣∣. Similarly, we can

obtain the result for B∗
i > A∗

i .

Lemma S2.1 implies that the approximation errors of Ṽi at time ti are dom-

inated by the maximum discrepancy of the continuation values.

Proof of Theorem 3.3. We will derive the orders of supSi
|Vi − Ṽi| back-

wards for i = n − 1, n − 2, · · · , 0. At time tn−1, since Ṽn−1 = Vn−1, thus

supSn−1
|Vn−1 − Ṽn−1| = 0. Since the transition density f∆(lnSn| lnSn−1) is

continuous in Sn−1, thus Ṽn−1

(
= Vn−1 = max{(K − Sn−1)+, e−r∆

∫∞
−∞ Vn

f∆(lnSn| lnSn−1)d lnSn}
)

is also continuous in Sn−1 on [0, 2K]. By Weierstrass

Approximation Theorem (Khuri, 2003, p.403), for any ε > 0, there exists a poly-

nomial pn−1(Sn−1), abbreviated by pn−1, such that |Ṽn−1 − pn−1| < ε, for all

Sn−1 ∈ [0, 2K]. That is, Ṽn−1 can be approximated uniformly by a polynomial

pn−1. Define V Q
n−1 =

∑m
j=1 V

Qj

n−1 as follows: on each [A(j−1), A(j)), let V
Qj

n−1 be the

2nd order Taylor expansion of pn−1 at the midpoint x(j) = A(j−1)+A(j)

2 , that is,

V
Qj

n−1 =
[
pn−1(x(j)) + dpn−1

dSn−1
(x(j))(Sn−1 − x(j)) + 1

2
d2pn−1

dS2
n−1

(x(j))(Sn−1 − x(j))2
]
I(j),

where I(j) = I{Sn−1∈[A(j−1),A(j))}. Then we have supSn−1
|pn−1 − V Q

n−1| = O(∆3
A),

and hence

sup
Sn−1

|Ṽn−1 − V Q
n−1| ≤ sup

Sn−1

|Ṽn−1 − pn−1|+ sup
Sn−1

|pn−1 − V Q
n−1|

≤ ε + O(∆3
A) = O(∆3

A),
(S2.1)
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by choosing ε = o(∆3
A). At time tn−2, by Lemma S2.1, we have

sup
Sn−2

|Vn−2 − Ṽn−2| ≤ sup
Sn−2

∣∣∣En−2(Vn−1 − V̂n−1)
∣∣∣

= sup
Sn−2

∣∣∣En−2(Ṽn−1 − V̂n−1)
∣∣∣ ≤ sup

Sn−2

{
En−2

[
(Ṽn−1 − V̂n−1)2

]} 1
2

≤ sup
Sn−2

{
En−2

[
(Ṽn−1 − V Q

n−1)
2
]} 1

2 ≤ sup
Sn−1

|Ṽn−1 − V Q
n−1| ≤ O(∆3

A),

(S2.2)

where the last 3rd inequality is due to the fact that V̂n−1 is the minimum mean

squared quadratic regression approximation of Ṽn−1, and the last inequality is

by (S2.1). At time tn−3, by Lemma S2.1,

sup
Sn−3

|Vn−3 − Ṽn−3| ≤ sup
Sn−3

∣∣∣En−3(Vn−2 − V̂n−2)
∣∣∣

≤ sup
Sn−3

∣∣∣En−3(Vn−2 − Ṽn−2)
∣∣∣ + sup

Sn−3

∣∣∣En−3(Ṽn−2 − V̂n−2)
∣∣∣

≤ sup
Sn−2

|Vn−2 − Ṽn−2|+ sup
Sn−3

∣∣∣En−3(Ṽn−2 − V̂n−2)
∣∣∣.

In the last inequality, the order of the first term is O(∆3
A) by (S2.2), and the order

of the second term is also O(∆3
A), which can be obtained by similar argument

as at time tn−2. Hence, we have supSn−3
|Vn−3 − Ṽn−3| = 2O(∆3

A). Finally, by

backward induction, we have supS0
|V0 − Ṽ0| = T

∆O(∆3
A) = O

(
∆3

A
∆

)
.

Proof of Proposition 3.4. First note that ln Si | Fi−1 ∼ N
(

ln s + r∆ −
1
2(B(h))2, (B(h))2

)
by (2.9). Then by straightforward computation, we have

E
(
Sk

i I(Si≤A(j)) | Si−1 = s, σi = B(h)
)

= sk exp
{
kr∆+

1
2
(k2−k)(B(h))2

}
Φ

(
d

(j,h)
k

)
,

where d
(j,h)
k = ln A(j)−ln s−r∆+ 1

2
(B(h))2

B(h) − kB(h) for j = 0, · · · ,m, and k = 0, 1, 2.

Hence, the Proposition follows.

Proof of Theorem 3.5. In the following Lemma, we define {Bi}n−1
i=0 mentioned

in Section 3.2 and give the corresponding property.

Lemma S2.2. Assume σi’s follow the volatility equation of (2.9). Let B0 be a

given constant and define Bi recursively, i = 1, · · · , n−1, by Bi = {α0 +[α1(z c
2
−

θ − λ)2 + α2]B
2
i−1}

1
2 , where z c

2
is the c

2 -th percentile of N(0, 1). Then we have

P (σi+1 > Bi | σi ≤ Bi−1) ≤ c, for i = 1, · · · , n− 1.
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Proof of Lemma S2.2. By (2.9) and notice that θ ≥ 0, λ ≥ 0 and z c
2
≤ 0, we

have

P (σi+1 > Bi | σi ≤ Bi−1) = P
(
[α1(εi − θ − λ)2 + α2]

1
2 σi

> [α1(z c
2
− θ − λ)2 + α2]

1
2 Bi−1 | σi ≤ Bi−1

)
≤ P

(
(εi − θ − λ)2 > (z c

2
− θ − λ)2

)
≤ c,

where εi is a N(0, 1) random variable.

Remark S2.3. In practice, we choose B0 = 3σ
√

∆, where σ
√

∆ is the stationary

volatility under the dynamic measure, and select c small enough such that α1(z c
2
−

θ − λ)2 + α2 > 1, so that B0 ≤ B1 ≤ · · · ≤ Bn−1 is an increasing sequence. In

Algorithm 2.2, we set the largest volatility partition B(`) to be Bn−1.

Proof of Theorem 3.5. Denote

Θi =
{
(Si, σi+1) : Si ∈ [0, 2K] and σi+1 ∈

[√ α0

1− α2
, Bi

]}
ΘB

i =
{
(Si, σi+1) : Si ∈ [0, 2K] and σi+1 = B(h) for those B(h) ≤ Bi, h ≤ `

} ,

(S2.3)

where B(h)’s are the volatility partitions defined in Section 2.2 and Bi’s are given

in Lemma S2.2, i = 0, · · · , n−1. W.l.o.g., we assume V G
i (Si, σi+1) is an increasing

function of σi+1. We will derive backwards the orders of supΘi
|V G

i − Ṽ G
i | for

i = n− 1, n− 2, · · · , 0.

For σi+1 ∈ [B(h−1), B(h)], and since Ṽ G
i (Si, σi+1) is an interpolation of Ṽ G

i (Si,

B(h−1)) and Ṽ G
i (Si, B

(h)) (see Algorithm 2.2 step-2), thus

| V G
i (Si, σi+1)− Ṽ G

i (Si, σi+1) |

≤ max
{∣∣∣V G

i (Si, B
(h))−

(
Ṽ G

i (Si, B
(h−1)) ∧ Ṽ G

i (Si, B
(h))

)∣∣∣,∣∣∣V G
i (Si, B

(h−1))−
(
Ṽ G

i (Si, B
(h−1)) ∨ Ṽ G

i (Si, B
(h))

)∣∣∣}
≤ | V G

i (Si, B
(h))− V G

i (Si, B
(h−1)) |

+max
{∣∣∣V G

i (Si, B
(h−1))− Ṽ G

i (Si, B
(h−1))

∣∣∣, ∣∣∣V G
i (Si, B

(h))− Ṽ G
i (Si, B

(h))
∣∣∣},

where a ∧ b = min(a, b) and a ∨ b = max(a, b). Therefore,

sup
Θi

| V G
i − Ṽ G

i |≤ sup
ΘB

i

| V G
i (Si, B

(h))− V G
i (Si, B

(h−1)) | +sup
ΘB

i

| V G
i − Ṽ G

i | .

(S2.4)
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First, we show that V G
i (Si, σi+1) is uniformly continuous on Θi, for i = n −

1, · · · , 0. At time tn−1, since the one-step backward transition density fG(lnSn |
lnSn−1, σn) is continuous in Sn−1 and σn, thus V G

n−1(Sn−1, σn) = max
{
(K −

Sn−1)+, e−r∆
∫∞
−∞(K − Sn)+fG(lnSn | lnSn−1, σn)d lnSn

}
is uniformly continu-

ous on the compact set Θn−1. At time tn−2, we have

V G
n−2(Sn−2, σn−1) = max

{
(K − Sn−2)+,

e−r∆
∫∞
−∞ V G

n−1

(
Sn−1, σn(Sn−1|Sn−2, σn−1)

)
fG(lnSn−1| lnSn−2, σn−1)d lnSn−1

}
,

where V G
n−1

(
Sn−1, σn(Sn−1|Sn−2, σn−1)

)
is the corresponding curve of V G

n−1(Sn−1,

σn) given (Sn−2, σn−1) (see Section 2.2). Since V G
n−1(Sn−1, σn) is continuous on

Θn−1, and σn(Sn−1|Sn−2, σn−1) and fG(lnSn−1| lnSn−2, σn−1) are both con-

tinuous in Sn−2 and σn−1, thus V G
n−2(Sn−2, σn−1) is uniformly continuous on

Θn−2. By backward induction, V G
i (Si, σi+1) is uniformly continuous on Θi for

i = n− 1, · · · , 0. Hence, we have

sup
ΘB

i

| V G
i (Si, B

(h))− V G
i (Si, B

(h−1)) |= O(∆B), (S2.5)

for i = 0, · · · , n − 1. At time tn−1, since Ṽ G
n−1 = V G

n−1 on ΘB
n−1, thus by (S2.4)

and (S2.5), supΘn−1
| V G

n−1 − Ṽ G
n−1 |= O(∆B). At time tn−2, by Lemma S2.1, we

have

sup
ΘB

n−2

| V G
n−2 − Ṽ G

n−2 |≤ sup
ΘB

n−2

| En−2(V G
n−1 − V̂ G

n−1) |

≤ sup
ΘB

n−2

| En−2[(V G
n−1 − Ṽ G

n−1)I{σn(Sn−1|Sn−2,σn−1)≤Bn−1}] |

+ sup
ΘB

n−2

| En−2[(Ṽ G
n−1 − V̂ G

n−1)I{σn(Sn−1|Sn−2,σn−1)≤Bn−1}] |

+ sup
ΘB

n−2

En−2(| V G
n−1 − V̂ G

n−1 | I{σn(Sn−1|Sn−2,σn−1)>Bn−1}).

(S2.6)

In the last inequality, the first term is bounded by supΘn−1
|V G

n−1 − Ṽ G
n−1| =

O(∆B). The order of the second term is O(∆3
A), which can be obtained by

Lemma B.5. And the last term, En−2(| V G
n−1 − V̂ G

n−1 | I{σn>Bn−1}) < KP (σn >

Bn−1 | σn−1 ≤ Bn−2) ≤ Kc < ε
n−1 , where K is the strike price and the constant

c (see Lemma S2.2) is chosen to be smaller than ε
(n−1)K for given ε > 0. By

(S2.4) and (S2.6), we have supΘn−2
|V G

n−2 − Ṽ G
n−2| = 2O(∆B) + O(∆3

A) + ε
n−1 .
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At time tn−3, by similar argument, we have supΘn−3
|V G

n−3 − Ṽ G
n−3| = 3O(∆B) +

2O(∆3
A) + 2ε

n−1 . Finally, by backward induction we have supΘ0
|V G

0 − Ṽ G
0 | =

nO(∆B) + (n− 1)O(∆3
A) + ε.

Lemma S2.4. The approximate option value function Ṽ G
i (Si, σi+1) is continuous

on Θi, for i = 1, · · · , n− 1, where Θi is defined by (S2.3).

Proof of Lemma S2.4. By definition, Ṽ G
n−1 is continuous on Θn−1. De-

note Ṽ G
n−1(Sn−1|Sn−2, B

(h)) = Ṽ G
n−1(Sn−1, σn(Sn−1|Sn−2, B

(h))) to be the corre-

sponding curve on Ṽ G
n−1(Sn−1, σn) given (Sn−2, B(h)). Since σn(Sn−1|Sn−2, B

(h))

is continuous in Sn−2, Ṽ G
n−1(Sn−1|Sn−2, B

(h)) is also continuous in Sn−2. For

i = n − 2, to show the continuity of Ṽ G
n−2 on Θn−2, we only need to show

that Ṽ G
n−2(Sn−2, B

(h)) is continuous in Sn−2 ∈ [A(h)∗
n−2, 2K] (by the definition of

Ṽ G
n−2(Sn−2, σn−1), see Algorithm 2.2 step-2), for h = 1, · · · , `, where B(h)’s are the

volatility partitions and A
(h)∗
n−2 is the early exercise boundary on the volatility par-

tition curve σn−1 = B(h) at time tn−2 (see Remark 2.2). Let V̂ G
n−1(Sn−1|Sn−2 +

δ,B(h)) and V̂ G
n−1(Sn−1|Sn−2, B(h)) denote the corresponding quadratic regression

functions of Ṽ G
n−1(Sn−1|Sn−2 + δ,B(h)) and Ṽ G

n−1(Sn−1|Sn−2, B
(h)), respectively,

then we have

En−2

[(
Ṽ G

n−1(Sn−1|Sn−2, B
(h))− V̂ G

n−1(Sn−1|Sn−2, B
(h))

)2]
≤ En−2

[(
Ṽ G

n−1(Sn−1|Sn−2, B
(h))− lim

δ→0
V̂ G

n−1(Sn−1|Sn−2 + δ,B(h))
)2]

= lim
δ→0

En−2

[(
Ṽ G

n−1(Sn−1|Sn−2 + δ,B(h))− V̂ G
n−1(Sn−1|Sn−2 + δ,B(h))

)2]
≤ lim

δ→0
En−2

[(
Ṽ G

n−1(Sn−1|Sn−2 + δ,B(h))− V̂ G
n−1(Sn−1|Sn−2, B

(h))
)2]

= En−2

[(
Ṽ G

n−1(Sn−1|Sn−2, B
(h))− V̂ G

n−1(Sn−1|Sn−2, B
(h))

)2]
,

where the equalities are due to the continuity of Ṽ G
n−1(Sn−1|Sn−2, B

(h)) in Sn−2.

Hence,

En−2

[(
Ṽ G

n−1(Sn−1|Sn−2, B
(h))− V̂ G

n−1(Sn−1|Sn−2, B
(h))

)2]
= En−2

[(
Ṽ G

n−1(Sn−1|Sn−2, B
(h))− lim

δ→0
V̂ G

n−1(Sn−1|Sn−2 + δ,B(h))
)2]

.

Together with the fact that V̂ G
n−1(Sn−1|Sn−2, B

(h)) is the unique piecewise quadratic
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regression function of Ṽ G
n−1(Sn−1|Sn−2, B

(h)) for given partition, thus we have

lim
δ→0

V̂ G
n−1(Sn−1|Sn−2 + δ,B(h)) = V̂ G

n−1(Sn−1|Sn−2, B
(h)). (S2.7)

Therefore, for Sn−2 ≥ A
(h)∗
n−2,

lim
δ→0

Ṽ G
n−2(Sn−2 + δ,B(h))

= lim
δ→0

∫ ∞

−∞
V̂ G

n−1(Sn−1|Sn−2 + δ,B(h))fG(lnSn−1| ln(Sn−2 + δ), B(h))d lnSn−1

=
∫ ∞

−∞
V̂ G

n−1(Sn−1|Sn−2, B
(h))fG(lnSn−1| lnSn−2, B

(h))d lnSn−1

= Ṽ G
n−2(Sn−2, B

(h)),

where the last 2nd equality is by (S2.7) and the continuity of fG(lnSn−1| lnSn−2,

B(h)) in Sn−2. Hence, Ṽ G
n−2(Sn−1, B

(h)) is continuous in Sn−2, for h = 1, · · · , `,
consequently, Ṽ G

n−2 is continuous on Θn−2. By backward induction, we have the

desired result.

Lemma S2.5. Under the assumption of Theorem 3.5, we have

sup
ΘB

i−1

∣∣∣Ei−1

[(
Ṽ G

i (Si|Fi−1)− V̂ G
i (Si|Fi−1)

)
I{σi+1(Si|Si−1,σi)≤B̄i}

]∣∣∣ = O(∆3
A),

for i = 1, · · · , n− 1, where ΘB
i−1 is defined by (S2.3).

Proof of Lemma S2.5. Since Ṽ G
i is continuous in Si and σi+1 (by Lemma S2.4),

and σi+1(Si|Si−1, σi) is also continuous in Si (see (F.3)), thus given (Si−1, σi),

Ṽ G
i (Si|Fi−1) is a continuous function of Si on [0, 2K]. By Weierstrass Approxi-

mation Theorem (Khuri, 2003, p.403), for any ε > 0, there exists a polynomial

pi(Si), such that |Ṽ G
i (Si|Fi−1) − pi(Si)| < ε, for all Si ∈ [0, 2K]. Define V Q

i be

the piecewise 2nd order Taylor expansion of pi(Si) as in the proof of Theorem

3.3, then we have supSi
|pi(Si)−V Q

i (Si|Fi−1)| = O(∆3
A), and hence for any given

(Si−1, σi) ∈ ΘB
i−1,∣∣∣Ei−1

[(
Ṽ G

i (Si|Fi−1)− V̂ G
i (Si|Fi−1)

)
I{σi+1(Si|Si−1,σi)≤B̄i}

]∣∣∣
≤

{
Ei−1

[(
Ṽ G

i (Si|Fi−1)− V̂ Q
i (Si|Fi−1)

)2]} 1
2

≤ sup
Si

∣∣∣Ṽ G
i (Si|Fi−1)− pi(Si)

∣∣∣ + sup
Si

∣∣∣pi(Si)− V Q
i (Si|Fi−1)

∣∣∣
≤ ε + O(∆3

A) = O(∆3
A),
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by choosing ε = o(∆3
A).

Proof of Theorem 4.7. We will derive the orders of supXi
|Vi − Ṽi| back-

wards starting from i = n − 1. First, recall in Step 1 of Algorithm 4.1, the

continuation value, Ei−1(Ṽi) ≡ E(Ṽi | xi−1), at time ti−1 given Xi−1 = xi−1 is

approximated by using (4.2), Êi−1(Ṽi) ≡
∑N

j=1
Ṽi(x

(j)
i )f(x

(j)
i |xi−1)

gi(x
(j)
i )

Pgi(I
(j)
i ). Hence,

for given Xi−1 = xi−1 we have

|Ei−1(Ṽi)− Êi−1(Ṽi)| =
∣∣∣ ∫

[Fi(u|xi−1)− F̂i(u|xi−1)]gi(u)du
∣∣∣

≤ supu |Fi(u|xi−1)− F̂i(u|xi−1)|,

where Fi(u | xi−1) = Ṽi(u)f(u|xi−1)
gi(u) is a continuous function of u and F̂i(u |

xi−1) =
∑N

j=1 Fi(x
(j)
i |xi−1)I(u ∈ I

(j)
i ) is a step function approximating Fi(u|xi−1).

By Weierstrass Approximation Theorem, for any ε > 0, there exists a multidi-

mensional polynomial pi(u) such that supu |Fi(u|xi−1)− pi(u)| < ε. By Taylor’s

Theorem, for u ∈ I
(j)
i we have pi(u) = pi(x

(j)
i ) + O(‖ u − x(j)

i ‖), where ‖ · ‖
denotes the L2 norm of a vector and ‖ u − x(j)

i ‖≤‖ hi ‖= (
∑d

`=1 ∆2
x`,i

)1/2.

Therefore,

sup
u∈I

(j)
i

|Fi(u|xi−1)− F̂i(u|xi−1)|

≤ sup
u∈I

(j)
i

(
|Fi(u|xi−1)− pi(u)|+ |pi(u)− pi(x

(j)
i )|+ |pi(x

(j)
i )− F̂i(u|xi−1)|

)
≤ ε + O(‖ hi ‖) + |pi(x

(j)
i )− Fi(x

(j)
i |xi−1)| ≤ 2ε + O(‖ hi ‖).

By choosing ε = O(‖ hi ‖), we have

sup
Xi−1

|Ei−1(Ṽi)− Êi−1(Ṽi)| = O(‖ hi ‖). (S2.8)

Furthermore, using the fact that |max(a, b1)−max(a, b2)| ≤ |b1− b2| for any

real numbers a, b1, b2, and the definitions of Vi = max{G, e−r∆Ei(Vi+1)} and

Ṽi = max{G, e−r∆Êi−1(Ṽi)}, we have

sup
Xi

|Vi − Ṽi| ≤ sup
Xi

∣∣∣Ei(Vi+1)− Êi(Ṽi+1)
∣∣∣

≤ sup
Xi

∣∣∣Ei(Vi+1 − Ṽi+1)
∣∣∣ + sup

Xi

∣∣∣Ei(Ṽi+1)− Êi(Ṽi+1)
∣∣∣

≤ sup
Xi+1

|Vi+1 − Ṽi+1|+ O(‖ hi+1 ‖),



S10 Shih-Feng Huang and Meihui Guo

where the last inequality is due to supXi
|Ei(Vi+1−Ṽi+1)| ≤ supXi

Ei(supXi+1
|Vi+1−

Ṽi+1|) ≤ supXi+1
|Vi+1− Ṽi+1| and (S2.8). And hence by backward induction and

the fact that Vn = Ṽn, we have supX0
|V0 − Ṽ0| = T

∆O(‖ hn ‖) = O(‖hn‖
∆ ), since

the partition width ∆x`,i
increases with the time ti.

S3. An example of Theorem 3.3.

In this example, we illustrate the order of supS0
|C0 − C̃0| for the American

call option without dividends for Model (2.2) without jump, that is the Black-

Scholes model. The parameters are set to be r = 0.05, σ = 0.2, K = 100 and

T = 0.5. Fig. 2(a) is the plot of y = ∆ supS0
|C0 − C̃0| versus x = ∆−1 for fixed

∆A = 6, and Fig. 2(b) is the plot of y = ∆−3
A supS0

|C0− C̃0| versus x = ∆−1
A for

fixed ∆ = 1
12 . In both figures, the curves gradually level off as x → ∞ (that is

∆ → 0 or ∆A → 0), which are consistent with the result of Theorem 3.3.

S4. Simulation results

Table 1 presents the results for American put option values of the Black-

Scholes model (2.4) with r = 0.08, δ = 0, 0.04, 0.08, 0.12, σ = 0.2, K = 100, T =

3, ∆ = 1
100 , 1

52 and 1
12 , and ∆A = 2 and 6. In the table, we compare the proposed

approach with the methods proposed by Ju (1998) and Lai and AitSahalia (2001).

Ju (1998) uses a multipiece exponential function to approximate the early exercise

boundary, which is denoted by EXP3. Lai and AitSahalia (2001) adopt a linear

spline method, which is denoted by LSP4. The values based on 10,000 steps

of the binomial method are taken as the benchmark option prices. In Table 1,

first note that there is no significant difference between the mean relative errors

(MRE’s) of the proposed method with ∆A = 2 and 6 for fixed ∆. Secondly,

the MRE of the American put values of the proposed method decreases as ∆

decreases with a tradeoff of increase in the computation time. The small MRE’s

show that Algorithm 2.1 is competitive with the LSP4 and EXP3 methods when

∆ = 1
100 .

In Table 2, we present the results for the American call options of the jump-

diffusion model. The table contains two parts: the left-hand portion is for the

constant jump-diffusion model (2.3) and the right-hand portion is for the log-

normal jump-diffusion model (2.2). For the constant jump case, we compare

the proposed approach with the FDM (finite difference method) and the method
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proposed by Chesney and Jeanblanc (2004), denoted by CJ. The parameters

are set to be r = 0.08, δ = 0.12, σ = 0.2, K = 100, λ = 1, φ = 0.02, 0.1,

T = 0.25, T = 0.5, ∆ = 1
52 and ∆A = 6. The MRE’s are computed using FDM

as the benchmark option prices. The results show that the proposed approach is

competitive with the CJ method. For the log-normal jump case, we compare the

proposed approach with Kim (1990) and Chiarella and Ziogas (2005), using the

same parameter setting as in Chiarella and Ziogas. The results of Chiarella and

Ziogas (2005) are denoted by F-H in the table. Kim’s (1990) results are used as

the benchmark values, and the MRE’s of Algorithm 2.1 are smaller than those

of Chiarella and Ziogas (2005).

In Table 3, we consider several cases of European and American put options

for the NGARCH(1,1) model (2.9) with the same parameter setting as in Duan

and Simonato (2001), that is, S0 = 50, r = 0.05, σ = 0.2003, T = 30, 90, 270

days, K = 45, 50, 55, α0 = 10−5, α1 = 0.1, α2 = 0.8, λ = 0.2, θ = 0.3, ∆ = 1
365 ,

and the initial daily volatility σ1 = σ
√

∆ = 0.0105, which is the stationary

volatility under the dynamic measure. In Algorithm 2.2, we set ∆A = 1 and

(B(1), B(2), B(3)) = ((α0 + α2σ
2
1)

0.5, σ1, [α0 + α1σ
2
1(−2.7 − λ − θ)2 + α2σ

2
1]

0.5).

For the European options, the benchmarks are obtained by using 200,000 sample

path control-variate Monte Carlo simulation (Duan and Simonato, 2001). The

control variable is the Black-Scholes formula price using σ as the volatility. As

for the American options, we use the results of Duan and Simonato (2001) as

the benchmarks. The results show that Algorithm 2.2 is a promising scheme for

NGARCH option pricing.

In Table 4, we demonstrate the proposed scheme for CB pricing of the Black-

Scholes model (2.4) with r = 0, 0.05, σ = 0.2, 0.3, T = 0.5, 1, F = 100, ζ = 2

and Kc = 115. The values from the binomial method based on 3,000 steps are

used to develop the benchmarks here. Setting ∆ = 1
52 and ∆A = 6, the MRE’s

of the proposed approach are smaller than 3× 10−3.

Table 5 presents the simulation results for put option on a geometric average

for the model (4.1) with r = 0.05, σ1 = · · · = σd = 0.2, K = 100, T = 0.5, 1,

S0 = 100 and the joint distributions are modeled by the Gaussian, Clayton

and Gumbel copulas, respectively. For American put options, the time length

between adjacent exercise dates is set to be 3 months, that is, ∆ = 1/4. For the
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Gaussian copula, since the option can be reduced to a one-dimensional case, the

benchmarks are the true European option values derived from the Black-Scholes

formula and the American options by Algorithm 2.1. For Clayton and Gumbel

copulas, since no closed-form solutions exit, thus the European benchmarks are

obtained by Monte Carlo simulation. The estimated option values are close to

the benchmarks in the Gaussian cases and the option prices for Clayton and

Gumbel cases are higher than their Gaussian counterparts. The results show

Algorithm 4.1 provides a promising approach for multi-dimensional options on

a geometric average. In Table 6, we present the results of American max call

options on two and three underlying assets for Gaussian copula with ρ = 0, 0.3,

and Clayton copula with α = 5. The parameter setting is the same as in Table

5 except δ = 0.1 and ∆ = 1/3. All the American options are more valuable than

their European counterparts. In particular, for the bivariate Gaussian copula

with ρ = 0.3, the option price is 9.37, which is close to the results of Fu et al.

(2001), 9.39, and Broadie and Yamamoto (2003), 9.34.

S5. Tables and Figures

Table 1 American put values for the Black-Scholes models.
Parameters: r = 0.08, σ = 0.20, K = 100, T = 3

S0 Bin. LSP4 EXP3 Est.
∆ = 1/100 ∆ = 1/52 ∆ = 1/12

∆A = 6 ∆A = 6 ∆A = 2 ∆A = 6 ∆A = 2

80 (1) 25.66 25.66 25.66 25.66 25.65 25.65 25.65 25.65
90 δ = 0.12 20.08 20.08 20.08 20.08 20.08 20.08 20.08 20.08

100 15.50 15.51 15.50 15.50 15.50 15.50 15.49 15.49
110 11.80 11.81 11.80 11.80 11.80 11.80 11.80 11.80
120 8.89 8.89 8.89 8.89 8.89 8.89 8.88 8.88
80 (2) 22.21 22.19 22.20 22.20 22.20 22.20 22.17 22.17
90 δ = 0.08 16.21 16.20 16.20 16.20 16.20 16.20 16.18 16.18

100 11.70 11.70 11.70 11.70 11.70 11.70 11.68 11.68
110 8.37 8.37 8.36 8.37 8.36 8.36 8.35 8.35
120 5.93 5.93 5.92 5.93 5.93 5.93 5.92 5.92
80 (3) 20.35 20.35 20.35 20.34 20.33 20.33 20.25 20.25
90 δ = 0.04 13.50 13.49 13.49 13.49 13.48 13.48 13.43 13.43

100 8.94 8.94 8.93 8.94 8.93 8.93 8.90 8.90
110 5.91 5.91 5.90 5.91 5.90 5.90 5.88 5.88
120 3.90 3.90 3.89 3.89 3.89 3.89 3.87 3.87
80 (4) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00
90 δ = 0.00 11.70 11.70 11.69 11.68 11.67 11.67 11.59 11.59

100 6.93 6.93 6.92 6.92 6.91 6.92 6.86 6.86
110 4.16 4.15 4.15 4.15 4.14 4.14 4.11 4.11
120 2.51 2.51 2.50 2.50 2.50 2.50 2.48 2.48

MRE .0003 .0009 .0007 .0012 .0012 .0041 .0041

Computation time 640s 328s 961s 75s 213s



Financial Derivative Valuation - A Dynamic Semiparametric Approach S13

Table 2 American call values for the jump-diffusion models.
The constant jump-diffusion model (2.3) The log-normal jump-diffusion model (2.2)

Parameters: r = 0.08, δ = 0.12, Parameters: K = 100, T = 0.5, ∆ = 1/52
∆ = 1/52, σ = 0.20, K = 100,
λ = 1 r = 0.03, δ = 0.05 r = 0.05, δ = 0.03

S0 FDM CJ Est. Kim F-H Est. Kim F-H Est.
80 (1) 0.03 0.03 0.03 (1) 3.66 3.68 3.66 4.05 4.04 4.05
90 φ = 0.02 0.60 0.60 0.59 σ = 0.4 7.04 7.05 7.04 7.67 7.68 7.67

100 T = 0.25 3.55 3.54 3.54 γ = 0 11.80 11.81 11.80 12.68 12.69 12.68
110 10.37 10.33 10.34 ξ = 0.1980 17.84 17.86 17.83 18.94 18.95 18.94
120 20.00 20.00 20.00 λ = 1 24.96 24.99 24.95 26.22 26.23 26.22
80 (2) 0.23 0.23 0.22 (2) 3.74 3.75 3.73 4.12 4.13 4.12
90 φ = 0.02 1.39 1.41 1.37 σ = 0.4 7.10 7.11 7.10 7.71 7.72 7.71

100 T = 0.5 4.75 4.75 4.73 γ = 0.0488 11.82 11.83 11.81 12.68 12.69 12.68
110 11.02 10.98 11.00 ξ = 0.1888 17.82 17.84 17.81 18.89 18.90 18.89
120 20.00 20.00 20.00 λ = 1 24.91 24.93 24.90 26.14 26.15 26.14
80 (3) 0.10 0.10 0.10 (3) 3.67 3.67 3.67 4.07 4.05 4.07
90 φ = 0.1 0.88 0.88 0.88 σ = 0.4 7.11 7.11 7.10 7.76 7.77 7.76

100 T = 0.25 3.96 3.95 3.95 γ = −0.0513 11.92 11.95 11.92 12.83 12.88 12.83
110 10.57 10.57 10.55 ξ = 0.2082 18.00 18.06 18.00 19.14 19.18 19.14
120 20.00 20.00 20.00 λ = 1 25.15 25.19 25.14 26.46 26.47 26.46
80 (4) 0.40 0.42 0.41 (4) 1.10 1.09 1.09
90 φ = 0.1 1.80 1.85 1.84 σ = 0.2 3.03 3.03 3.02

100 T = 0.5 5.27 5.32 5.33 γ = 0 6.95 6.96 6.95
110 11.39 11.45 11.43 ξ = 0.1980 13.11 13.10 13.11
120 20.01 20.00 20.00 λ = 1 21.06 21.04 21.05
80 (5) 1.72 1.73 1.72
90 σ = 0.3 4.30 4.32 4.29

100 γ = 0 8.63 8.66 8.62
110 ξ = 0.1980 14.70 14.74 14.69
120 λ = 0.5 22.22 22.24 22.21

MRE .0006 .0005 .0022 .0010 .0016 .0000

Table 3 European and American put values for the NGARCH(1,1) model.
Parameters: r = 0.05, σ = 0.2003, ∆ = 1/365, S0 = 50,

α0 = 10−5, α1 = 0.1, α2 = 0.8, θ = 0.3, λ = 0.2, σ1 = σ
√

∆.

European American

T(days) M.C. Duan Est. Duan Est.

(1) 30 0.0778 0.0715 0.0782 0.0742 0.0784

K=45 90 0.4158 0.4036 0.4143 0.4132 0.4218

270 1.1945 1.1867 1.1813 1.2524 1.2486

(2) 30 1.0880 1.0884 1.0909 1.1026 1.1022

K=50 90 1.8197 1.8197 1.8238 1.8737 1.8745

270 2.8416 2.8471 2.8374 3.0463 3.0338

(3) 30 4.8388 4.8377 4.8384 5.0000 5.0000

K=55 90 4.9546 4.9550 4.9533 5.1861 5.1830

270 5.4773 5.4899 5.4736 5.9800 5.9599

MRE 0.0135 0.0027 0.0099
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Table 4 Convertible bond pricing.
Parameters: ζ = 2, F = 100, Kc = 115, ∆ = 1/52

r = 0.0 r = 0.05

S0 Bin. Est. Bin. Est.

(1) 45 101.74 101.72 99.74 99.83

σ = 0.2 50 105.49 105.40 104.17 104.17

T = 0.5 55 111.56 111.23 111.06 110.77

(2) 45 103.35 103.32 99.69 99.93

σ = 0.2 50 107.20 107.06 104.72 104.76

T = 1 55 112.26 111.95 111.32 111.07

(3) 45 103.65 103.53 101.78 101.76

σ = 0.3 50 107.50 107.12 106.19 105.87

T = 0.5 55 112.43 111.74 111.87 111.19

(4) 45 105.58 105.40 102.15 102.23

σ = 0.3 50 109.00 108.68 106.74 106.45

T = 1 55 112.88 112.40 112.13 111.44

MRE .0023 .0023

Table 5 Multi-dimensional put options on a geometric average.
Parameters: r = 0.05, σ = 0.2, S0=K=100, ∆ = 1/4 (year)

European American

Copula T Ben. (std.) Est. Ben. Est.

2-dim. Gaussian(0) 0.5 3.02 3.02 3.12 3.12

1 3.75 3.75 4.06 4.06

Gaussian(0.3) 0.5 3.50 3.50 3.60 3.60

1 4.38 4.38 4.71 4.71

Clayton(5) 0.5 4.33 (0.006) 4.33 4.46

1 5.46 (0.006) 5.46 5.84

Gumbel(5) 0.5 4.36 (0.005) 4.36 4.47

1 5.50 (0.008) 5.50 5.87

3-dim. Gaussian(0) 0.5 2.38 2.38 2.47 2.47

1 2.91 2.91 3.20 3.20

Clayton(5) 0.5 4.29 (0.004) 4.29 4.46

1 5.41 (0.093) 5.41 6.19

5-dim. Gaussian(0) 0.5 1.73 1.73 1.82 1.82

1 2.05 2.05 2.33 2.31

Gaussian(ρ): ρ denotes the equi-correlation among securities.

Clayton(α) and Gumbel(α): α is the parameter of Clayton and Gumbel copulae.

Table 6 Multi-dimensional max call options.
Parameters: r = 0.05, δ = 0.1, σ = 0.2, S0=K=100, T=1, ∆ = 1/3 (year)

European American

Copula Ben. (std.) Est. Est.

2-dim. Gaussian(0) 9.55 (0.009) 9.55 10.05

Gaussian(0.3) 8.93 (0.013) 8.93 9.37

Clayton(5) 7.66 (0.013) 7.66 8.00

3-dim. Gaussian(0) 13.03 (0.007) 13.03 13.50

Clayton(5) 9.29 (0.012) 9.29 9.57
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Figure 1: (a) σi+1(Si|Si−1, σi) v.s. Si. The solid line and dash line are based on
(Si−1, σi) = (49, 0.0105) and (50, 0.0105), respectively. (b) Ṽi(Si, σi+1(Si|Si−1, σi)) v.s.
Si. The symbol “∗” is used to denote (Si−1, σi) = (49, 0.0105) and the symbol “◦” is
used to denote (Si−1, σi) = (50, 0.0105).
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Figure 2: (a) y = ∆ supS0
|C0 − C̃0| v.s. x = ∆−1, for fixed ∆A = 6. (b)

y = ∆−3
A supS0

|C0 − C̃0| v.s. x = ∆−1
A , for fixed ∆ = 1

12 .
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