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Abstract: This paper discusses t-type regression estimators of parameters for lin-

ear errors-in-variables model, and the EM algorithm for t-type estimators in linear

errors-in-variables model is given. When the error variables for both the response

and the manifest variables have a joint distribution that is spherically symmetric,

but otherwise is unknown, the influence functions of the t-type regression estimates

based on orthogonal residuals are calculated and the proposed estimators are shown

to be consistent and asymptotically normal under some mild conditions. Simula-

tion studies are conducted to examine the small-sample properties of the proposed

estimates and a dataset is used to illustrate our approach.
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1. Introduction

The ordinary linear model Y = Xτβ0 + ε is one of the most mature and
widely applied ways to explain how a dependent variable Y relates to indepen-
dent variables X, where β0 ∈ Rp is a p-dimensional parameter, the errors ε are
assumed to be independent and identically distributed (i.i.d.) with Eε = 0. The
popular choice is least square estimators (LSE) which corresponds to the max-
imum likelihood estimator (MLE) when the error ε is N(0, σ2). On the other
hand, a robust estimator of β (for example, M-estimator) is more interesting in
applications. In many situations, however, there exist covariate measurement
errors. For example, it has been well documented that covariates such as blood
pressure, urinary sodium chloride level, and exposure to pollutants are subject to
measurement errors, and these cause difficulties in conducting a statistical anal-
ysis that involves them. A detailed study of linear models with measurement
errors is in Fuller (1987). Carroll, Ruppert and Stefanski (1995) summarized
much of the recent work for non-linear regression models with measurement er-
rors. In the present paper we consider t-type regression estimators(He, Simpson
and Wang (2000)) based on orthogonal residuals for the linear errors-in-variables
model under spherically symmetry.
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Consider the linear errors-in-variables (EV) model{
Y = xτβ0 + ε,

X = x + u,
(1.1)

where X and x are observable and unobservable random vectors on Rp, respec-
tively. In this paper, (ε, uτ )τ is assumed to be (p + 1)-dimensional spherically
symmetric (this means that (ε, uτ )τ d= RUp+1 where R is a nonnegative random
variable, Up+1 is a uniform random vector on Ωp = {a : a ∈ Rp+1, ‖a‖ = 1},
where R and Up+1 are independent), and we suppose that σ2 = ER2/(p+1) > 0

is unknown, and that (ε, uτ )τ and x are independent. Note that d= means equal
in distribution. For simplicity, we assume the intercept is zero. Spherical sym-
metry implies that ε and each component of u have the same distribution; this
ensures model identifiability. A special case of such EV models with Gaussian
errors and known variance ratio is frequently considered in the literature. Multi-
variate t-distributions are additional examples for this error structure (see, e.g.,
Cui (1997), and He and Liang (2000)).

We restrict ourselves to structural models in which x has independent and
identically distributed coordinates. If xi stems from non-stochastic designs, the
model is said to have a functional relationship; see Fuller (1987) for details.

It is well known that in the EV model, ordinary least-squares (OLS) estima-
tors are biased and inconsistent, and that orthogonal regression is better in that
case; see Fuller (1987). However, both methods are very sensitive to outliers in
the data and some robust alternatives have been proposed. Brown (1982) and
Ketellapper and Ronner (1984) applied robust ordinary regression techniques in
the EV model; Zamar (1989) proposed robust orthogonal regression M-estimators
and showed that it outperforms the robust ordinary regression; Cheng and Van
Ness (1992) generalize the proposal of Zamar by defining robust orthogonal Gen-
eralized M-estimators that have a bounded influence function in the simple case.
In a more general context, He and Liang (2000) proposed a regression quantile
approach in the EV model to allow for heavier-tailed errors distribution than
Gaussian. Fekria and Ruiz-Gazen (2004) considered a class of weighted orthogo-
nal regression estimators derived from robust estimators of multivariate location
and scatter in the structural errors-in-variables (EV) model.

More recently, He, Simpson and Wang (2000) and He, Cui and Simpson
(2004) proposed the weighted t-type regression estimator for linear model; that is,
they viewed the components of the error vector εi as independent and identically
distributed with a common t-distribution whose scale parameter and degrees of
freedom are σ and ν, respectively. Then the t-type regression estimator β̂ of
β0 is obtained by maximizing marginal likelihood of such a scaled t-type error
distribution.



t-TYPE ESTIMATORS FOR A CLASS OF LINEAR ERRORS-IN-VARIABLES MODELS 1015

For the specific model (1.1), we consider t-type regression estimation for the
linear EV model by applying the t-type likelihood to orthogonal residuals. In
this situation, the t-type estimator of (β0, σ0) is

(β̂, σ̂) = arg min
β∈Rp,σ>0

n∑
i=1

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]
, (1.2)

where ρ(·) could be ((ν + 1)/2) log(1 + x2/ν), for examples, or another function
that satisfies the conditions A1−A3 in Section 2.2. This weighted t-type estima-
tion method is based on orthogonal residuals rather than on vertical distances in
regression space. For the usefulness of orthogonal residual, see the examples and
discussion found in Cheng and Van Ness (1992), Cui (1997), and He and Liang
(2000), and the references therein.

If ψ(·) = ρ(1)(·) is the derivative of ρ and χ(·) = xψ(·) − 1, then
n∑

i=1

ψ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)(
Xi +

Yi − Xτ
i β

1 + ‖β‖2

)
= 0,

n∑
i=1

χ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
= 0.

(1.3)

If (εi, u
τ
i )

τ has t-distribution with degrees of freedom ν , the t-type regres-
sion estimator is just the maximum likelihood estimator (MLE) of β, σ. When
(εi, u

τ
i )

τ is not a t, the t-type regression estimator corresponds to ordinary least
square estimator. With a suitable ρ(·), the t-type regression estimator corre-
sponds to the ordinary M-estimator.

What are the advantages of the t-type regression estimator over the ordinary
M-estimator?
(i) Under the normal model, the t-type regression estimator is still quite efficient,
and is quite robust even if the errors are far from normal (note that the degrees
of freedom ν = 1 ∼ 5 may be used; see He, Simpson and Wang (2000), and He,
Cui and Simpson (2004)).
(ii) With M-estimation equations, one can usually overcome the computing com-
plexity of minimizing the objective function, but there may be misleading or
non-unique solutions. The t-type estimator, however, can be obtained rapidly
and stably by using EM algorithms directly to optimize the objective function.
Such a solution is even unique for (1.3) (see Dempster, Laird and Rubin (1977),
Little (1988), Lange, Little and Taylor (1989), Wu (1983), and He, Cui and
Simpson (2004)).

Among developments in t-type regression estimator theory, He, Simpson and
Wang (2000) proved that β̂ is asymptotically normal under the assumption that
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β̂ is consistent; He, Cui and Simpson (2004) used the t-type regression estimator
after de-correlating data in order to enhance the efficiency of the estimator, and
Cui (2004) showed that a t-type estimator is consistent, which implies its normal-
ity. In this paper, we consider a robust estimator (t-type regression estimator)
for linear errors-in-variables (EV) models. The influence functions of the pro-
posed estimators are calculated. We also establish their consistency and asymp-
totic normality by applying modern empirical process theory (van der Vaart and
Wellner (1996)).

The t-type regression estimation problem we consider differs from the robust
M-estimation literature in several ways. First, one of our objectives is to estimate
the regression parameters β and the scale parameter σ simultaneously in linear
errors-in-variables (EV) models in order to keep a balance between robustness
and efficiency. M-estimators with more general loss functions, such as those
considered in Cheng and Van Ness (1992) are not scale equivariant unless a
preliminary scale estimate is available. Second, Cheng and Van Ness (1992)
derived bounded influence robust estimates for parameters in the univariate,
Gaussian, structural EV model with the ratio of the error variances known. In
this paper, (ε, uτ )τ is assumed to be (p + 1)-dimensional spherically symmetric.
Simultaneous estimation of regression and scale with spherically symmetric errors
brings out some technical complications in proving asymptotic results. Finally,
the EM algorithm for t-type estimators in linear EV model is applied. Simulations
show that performance of the t-type estimators proposed by the EM algorithm
is quite good. Fekria and Ruiz-Gazen (2004) considered robust estimation in
the structural errors-in-variables (EV) model from another angle and derived
weighted orthogonal regression estimators from robust estimators of multivariate
location and scatter such as M-estimators, S estimators, and the MCD estimator
that may involve more complex computation than ours.

The rest of the paper is organized as follows. In Section 2 the influence
functions of the proposed estimators are calculated. We also give some conditions
under which the proposed method lead to strongly consistent estimators, and we
derive the asymptotic distribution of those estimators. In Section 3, we derive
the EM algorithm of the t-type estimator in a linear EV model. In Section
4, simulation studies and a data set are utilized to assess the robustness and
efficiency of the proposals. All the proofs are postponed to the Appendix.

2. Influence Function and Asymptotic Properties

2.1. Influence function

The influence function measures the sensitivity of the functional to small
amounts of contamination in the distribution. By definition, the influence func-
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tion of the functional version of an estimator T at F is

IF (x, y; T, F ) = lim
δ↓0

T ((1 − δ)F + δ∆(x,y)) − T (F )
δ

,

where ∆(x,y) is a Dirac measure putting all its mass on (x, y). In other words, the
influence function describes the effect of an infinitesimal contamination at the
point (x, y) on the estimator, standardized by the mass of the contamination.
If its influence function is bounded, the estimator is said to be robust. For
more details and interpretation of the influence function, see Hampel, Ronchetti,
Rousseeuw and Stahel (1986).

Suppose there are n independent and identically distributed observations
(X1, Y1), . . . , (Xn, Yn) from the model (1.1) with distribution F. It is convenient
to write the estimators β̂ σ̂ in functional form as β̂ = T (Fn) and σ̂ = S(Fn),
where Fn is the empirical distribution of (X1, Y1), . . . , (Xn, Yn) and T (F ), S(F )
achieve

min
S,T

∫ [
ρ
( y − xτT (F )

S(F )
√

1 + ‖T (F )‖2

)
+ log(S(F ))

]
dF (x, y), (2.1)

with F the joint distribution of (X,Y ). Hereafter T and S are shorthand for
T (F ) and S(F ). A defining relationship for β and σ can be obtained from (2.1)
by differentiation: 

∫
ψ

(v1(x, y, T )
S

)
v2(x, y, T )dF (x, y) = 0,∫

χ
(v1(x, y, T )

S

)
dF (x, y) = 0.

(2.2)

where

v1(x, y, T ) =
y − xτT√
1 + ‖T‖2

(2.3)

v2(x, y, T ) =
(

I − TT τ

1 + ‖T‖2

)
x +

T

1 + ‖T‖2
y. (2.4)

Since all the estimators discussed in this paper are Fisher consistent(see Lemma
5 in Appendix C.4), the notations T , S and β, σ will be used interchangeably as
is common practice in the literature. Let F(x,y),ε = (1−ε)F +ε∆(x,y), where ∆x,y

is a Dirac measure putting all its mass on (x, y). The influence functions can be
found straightforwardly by inserting F(x,y),ε for F in (2.2), and then taking the
derivative with respect to ε at ε = 0. We obtain that the two influence curves
IC(x, y; F, T ) and IC(x, y; F, S) satisfy the system of equations(

D11 D12

D21 D22

) (
IC(x, y; F, T )

IC(x, y; F, S)

)
= −

ψ
(v1(x, y, T )

S

)
v2(x, y, T )

χ
(v1(x, y, T )

S

)
S,
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where

D11 =
∫

ψ′
(v1(x, y, T )

S

)
v2(x, y, T )

∂v1(x, y, T )
∂T τ

dF

+S

∫
ψ

(v1(x, y, T )
S

)∂v2(x, y, T )
∂T τ

dF,

D12 = −
∫

ψ′
(v1(x, y, T )

S

)v1(x, y, T )
S

v2(x, y, T )τdF,

D21 =
∫

χ′
(v1(x, y, T )

S

)∂v1(x, y, T )
∂T

dF,

D22 = −
∫

χ′
(v1(x, y, T ))

S

)v1(x, y, T )
S

dF.

From (A.3.1) in the Appendix C.2, and Lemma 7 in the Appendix C.4, we
can establish that D11 = −E[ψ′(v1(x, y, T )/S)]Σx/

√
1 + ‖T‖2. The spherically

symmetric error distribution assumption implies D12 = 0 and D21 = 0 so some
integrals vanish for reasons of symmetry and there are considerable simplifica-
tions:

IC(x, y; F, T ) = −Sψ
(v1(x, y, T )

S

)
D−1

11 v2(x, y, T ),

IC(x, y; F, S) = − S

D22
χ
(v1(x, y, T )

S

)
.

Under regularity conditions described in Section 2.2 below, the estimators
T and S defined in (1.2) are strongly consistent and asymptotically normal with
asymptotic variance

∫
IC(x, y; F, T )2dF (x, y) and

∫
IC(x, y; F, S)2dF (x, y), re-

spectively. Note that the influence function for scale is bounded and the influence
function for regression is only bounded for the response variable. Therefore, we
could consider the generalized M-estimator for EV models that was studied by
Cheng and Van Ness (1992) in the univariate Gaussian structural EV model, but
leave this for further study.

2.2. Asymptotic properties

First, some conditions are listed.

A1. ρ(·) is symmetric about 0 and continuously increasing from 0 to infinity on
[0,∞).

A2. ψ has a bounded and continuous second-order derivative ψ(2), with supt∈R

(1 + |t|i)‖ψ(i−1)‖ < ∞ for i = 1, 2.

A3. χ(·) is an increasing function of | · | with −1 = χ(0) < lim|t|→∞ χ(t) = κ > 0,
and there exists a δ > 0 such that |χ′(y)| > 0 for all y ∈ (−δ, δ)\0.
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B1. x is non-degenerate, and Eρ[α(R + ‖x‖)] < +∞, ∀|α| > 1.

B2. P{R = 0} = 0, Σx = E(xxτ ) > 0 and E(‖x‖+R2)[1+sup|t|≤R+|x| ψ
2(ε/σ+

t)] < +∞.

C1. f0(·) is a non-increasing function, where f0(·) is the true probability density
function.

C2. The discontinuous points of ψ(·) are at most countable, Eψ(ε/σ) = 0, and
Eψ2(ε/σ) < ∞ for any σ > 0.

Conditions A1−A3 concern ρ, conditions B1−B2 concern x; and C1−C2
bring in the error distribution. It is easy to verify that ρ(x) = ((ν +1)/2) log(1+
x2/ν) satisfies A1−A3.

Theorem 1. Suppose A1−A3, B1, and C1−C2 are satisfied. Then β̂
a.s.−→ β0,

and σ̂
a.s.−→ σ0 as n → ∞, where σ0 satisfies E[χ(ε/σ0)] = 0.

Theorem 2. Suppose A1−A3, B2, and C1−C2 hold. Then, as n → ∞,

Eψ′(ε/σ0)
σ0

√
1 + ‖β0‖2

√
nΣ−1/2Σx(β̂ − β0)

d−→ N(0, Ip),

σ−2
0 A−1/2E(e(β0)χ′(e(β0)/σ0))n−1/2(σ̂ − σ0)

d−→ N(0, 1),

where d−→ denotes convergence in distribution, Σ=Eψ2(ε/σ0)Σx+E[ψ2(ε/σ0)u2
11]

(Ip − β0β
τ
0/1 + ‖β0‖2), ei(β0) = (εi − uτ

i β0)/
√

1 + ‖β0‖2, A = Eχ2(e(β0)/σ0),
u2

11 is the first component of u, and σ0 satisfies E[χ(ε/σ0)] = 0.

The proofs of Theorems 1 and 2 are given in the Appendix. One may prove
Theorem 2 based on the general result of He and Shao (1996); however, for the
specific ρ(x), one may use the direct proof as given in the Appendix.

3. EM Algorithm for t-type Estimators in the Linear EV Model

In this section, we use an EM algorithm to compute the t-type estimators in
the linear EV model defined at (1.2). Consider the linear EV model

Yi = xτ
i β + εi, Xi = xi + ui, (3.1)

where the (Xi, Yi), i = 1, . . . , n are observed. Assume

ei = (εi, u
τ
i )

τ = (Yi − xτ
i β, (Xi − xi)τ )τ i.i.d.∼ tp+1(0, σ2Ip+1, ν), i = 1, . . . , n,

with density denoted by
fp+1(y|0, σ2Ip+1, ν) = C(v)(σ2)−(p+1)/2(1 + ‖y‖2/(νσ2))−(ν+p+1)/2, and C(ν) =
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Γ((v + p + 1)/2)/[Γ(1/2)p+1Γ(ν/2)ν(p+1)/2]. Then

log(fp+1(y|0, σ2Ip+1, ν)) ∝ −(p + 1) log(σ) − ν + p + 1
2

log
(
1 +

‖y‖2

νσ2

)
= −(p + 1)

[
ρ(‖y‖/σ) + log(σ)

]
.

The MLE of β and the scale parameter σ is

(β̂, σ̂)MLE = arg max
β,xi∈Rp,σ>0

Πn
i=1fp+1(Yi − xτ

i β,Xi − xi|0, σ2, ν)

= arg max
β,xi∈Rp,σ>0

[ n∑
i=1

log fp+1(Yi − xτ
i β,Xi − xi|0, σ2, ν)

]
= arg min

β,xi∈Rp,σ>0

[
ρ

(√
(Yi − xτ

i β)2 + ‖Xi − xi‖2

σ

)
+ log(σ)

]
= arg min

β∈Rp,σ>0

n∑
i=1

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]
. (3.2)

Write ei
d= σzi

√
qi, where zi ∼ Np+1(0, Ip+1), qi ∼ χ2

ν/ν, zi, and the qi are
independent. Then

ei|qi ∼ Np+1

(
0,

σ2Ip+1

qi

)
∝

q
(p+1)/2
i

σp+1
exp

{
− qi[(Yi − xτ

i β)2 + ‖Xi − xi‖2]
2σ2

}
= Qi,

Li = log Qi =
p + 1

2
log(qi) −

p + 1
2

log(σ2) − qi[(Yi − xτ
i β)2 + ‖Xi − xi‖2]

2σ2
.

Because qi|ei ∼ χ2
ν+p+1/(ν + δ2

i ), where δ2
i = [(Yi − xτ

i β)2 + ‖Xi − xi‖2]/σ2, we
get

E(qi) =
ν + p + 1

ν + δ2
i

=
ν + p + 1

ν + [(Yi − xτ
i β)2 + ‖Xi − xi‖2]/σ2

.

We use an EM algorithm to get the MLE of (β, σ) in model (3.1). For the E-step,

F (β, σ2, x1, · · · , xn) =
n∑

i=1

E[Li|β(t), σ(t), x
(t)
i ]

=
n∑

i=1

{
p + 1

2
E[log(qi)|β(t), σ(t), x

(t)
i ]

−p + 1
2

E[log(σ2)|β(t), σ(t), x
(t)
i ]

−E
[qi[(Yi − xτ

i β)2 + ‖Xi − xi‖2]
2σ2

∣∣∣β(t), σ(t), x
(t)
i

]}
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=
n∑

i=1

{
p + 1

2
E

[
log(qi)|β(t), σ(t), x

(t)
i

]
−p + 1

2
log(σ2) −

ht+1
i [(Yi − xτ

i β)2 + ‖Xi − xi‖2]
2σ2

}
,

where

h
(t+1)
i = E[qi|β(t), σ(t), x

(t)
i ] =

ν + p + 1

ν + [(Yi − x
(t)τ
i β(t))2 + ‖Xi − x

(t)
i ‖2]/(σ2)(t)

.

The M-step, differentiating F (β, σ2, x1, . . . , xn) with respect to β, σ2, and xi,
respectively, and using the formulas ∂(AX)/∂X = Aτ and ∂(AτXA)/∂X =
(A + Aτ )X, we can derive the EM equations

β(t+1) =
[ n∑

i=1

h
(t+1)
i x

(t)
i x

(t)τ
i

]−1 n∑
i=1

h
(t+1)
i Yix

(t)
i ,

x
(t+1)
i =

(
Ip −

β(t+1)β(t+1)τ

1 + ‖β(t+1)‖2

)
[Yiβ

(t+1) + Xi],

(σ)(t+1) =
{ n∑

i=1

h
(t+1)
i [(Yi − x

(t+1)τ
i β(t+1))2 + ‖Xi − x

(t+1)
i ‖2]

(p + 1)n

}1/2

,

(3.3)

for i = 1, . . . , n, where the expression of x(t+1) is from ∂F/∂xi = h
(t+1)
i ∂[(Yi −

xτ
i β)2 + ‖Xi − xi‖2]∂xi = 0, i.e., (Yi − xτ

i β)β + (Xi − xi) = 0 and

x
(t+1)
i = [β(t+1)β(t+1)τ +Ip]−1(Yiβ

(t+1)+Xi) =
(
Ip−

β(t+1)β(t+1)τ

1+‖β(t+1)‖2

)
[Yiβ

(t+1)+Xi].

As long as the initial values are given, we can use (3.3) for iteration and the
MLE of (β, σ) is figured out approximately. If the distribution (εi, u

τ
i )

τ is not
a t-distribution with ν degrees of freedom at (1.1), we still use (3.2) to ob-
tain the estimator of β, σ as the t-type estimator defined in (1.2). The com-
putations of such t-type estimator can use (3.3). We suggest the L1 estima-
tor, argminβ∈Rp

∑n
i=1 |Yi − Xτ

i β|, as the initial value β(0) and MAD{Yi −
Xτ

i β(0)}/0.6745 as the initial value σ(0) of σ.

4. Simulations, Comparisons and Examples

4.1. Simulation 1

As an example, we took the linear EV model (1.1) to be Yi = xτ
i β + εi,

Xi = xi +ui, with p = 2, n = 100, ν = 5, β = (1, 2)τ and x = (i, i2)τ/(3n), where
(εi, u

τ
i )

τ were i.i.d. generated from t3(0, σ2I3, 5) with σ = 0.2. We used the EM
algorithm (the standard program can be packaged by Splus and R) described
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Figure 1. The histograms of β̂1 and β̂2.

Figure 2. The histograms of β̂1 and β̂2.

Figure 3. The histograms of σ̂1 and σ̂2.
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Table 1. Comparison of MSE, bias, std with LSE for Simulation 1.

Error model of ε Estimator MSE(β̂) bias(β̂1) std(β̂1) bias(β̂2) std(β̂2)

N(0, 0.2/3) T-type 0.0301 -0.0227 0.1580 -0.0016 0.0696

(LSE) (0.0243) (-0.0419) (0.1383) (0.0109) (0.0593)

T0 T-type 0.0251 -0.0304 0.1423 0.0003 0.0649

(LSE) (0.0272) (-0.0485) (0.1462) (0.0120) (0.0603)

T1 T-type 0.0328 0.0140 0.1633 -0.0068 0.0766

(LSE) (0.1190) (0.2315) (0.2203) (-0.0937) (0.0902)

T2 T-type 0.0788 0.0760 0.2242 -0.0368 0.1147

(LSE) (0.2989) (0.3626) (0.2714) (-0.1503) (0.1149)

T3 T-type 0.4128 0.1846 0.5439 -0.0899 0.2736

(LSE) (2.2302) (1.1691) (0.7269) (-0.4881) (0.3111)

in (3.3) to get the t-type estimators β̂ and σ̂. We replicated 200 times to get
the histograms for β̂, see Figure 1, and to find the mean and std of β to be
(0.996, 2.002)τ and (0.155, 0.065), respectively. With (εi, u

τ
i )

τ i.i.d. generated
from t3(0, σ2I3, 10), the histograms for β̂ are in Figure 2, while the mean and
std of β̂ were (1.011, 1.994) and (0.150, 0.065), respectively. The histograms for
σ̂ are in Figure 3. From Figures 1−3, we see that the t-type estimators of β̂

and σ̂ by EM algorithm were close to the true values and the distributions were
approximately normal, thus performance looks quite good.

To see how the robust estimators protect us from gross errors in the data,
we considered the model Yi = xτ

i β + εi, Xi = xi + ui with p = 2, n = 100,
β = (1, 2)τ and x = (10i, 30i2)τ/(3n), where (εi, u

τ
i )

τ are i.i.d. and ui generated
from t2(0, σ2I2) with σ = 0.2, where the error variable ε takes one of the following
forms:

N
(
0,

0.2
3

)
, T0 = t(0, 0.22, 5), T1 = 0.90t(0, 0.22, 5) + 0.10t(0, 82, 5),

T2 = 0.80t(0, 0.22, 5) + 0.20t(0, 122, 5), T3 = 0.70t(0, 0.22, 5) + 0.30t(0, 162, 5).

Note that N(0, 0.2/3) has the same variance as T0. We used the ρ function
from the t with ν = 5 degrees of freedom. So when ε is from T0, the t-type
estimates are just the MLE. To measure performance, we used the bias of β̂ and
standard deviation for the β̂ as well as the mean square error of the β̂, MSE(β̂).
The bias, standard errors (std), and MSE of these estimators was computed from
100 Monte Carlo samples and compared with those of the ordinary least squares
estimator (LSE). The results of the simulation study are given in Table 1. Our
studies showed good performance of t-type estimators in the presence of outliers.

4.2. Simulation 2

The data were generated from the model Yi = xτ
i β+εi, Xi = xi+ui, with the

covariate vector x = (x1, x2)τ simulated from a normal distribution with mean
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Table 2. Comparison of MSE with LAD-OR for Simulation 2.

Error model of ε Estimator MSE(β̂)
t(0, 0.22, 5) T-type 0.0081

(LAD-OR) (0.0104)
N(0, 0.2/3) T-type 0.0115

(LAD-OR) (0.0144)

Table 3. Regression estimation for Body height and Arm length data.

LSE-OR LSE-OR without 18, 24 LAD-OR T-type
β̂0 0.9594 1.005 1.002 1.003

zero and cov(xi, xj) = 0.5|i−j|, where εi were i.i.d. generated from t(0, σ2, 5) with
σ = 0.2 and N(0, 0.2/3). In this section, we also used the ρ function from a t

with ν = 5 degrees of freedom.
For Simulation 2, we give a comparison with the estimators proposed by

He and Liang (2000) that minimize n−1
∑

i ρτ ((Yi − Xiβ)/(
√

1 + ‖β‖2), where
ρτ (r) = τ max{r, 0} + (1 − τ)max{−r, 0}. In this simulation, we took τ = 0.5.
The sample size n was set to 100. The number of simulated realizations was
200. To measure performance, we use MSE(β̂), see Table 2. The estimates are
labeled LAD-OR and T-type. It can be seen that the T-type are comparable
with LAD-OR. We also notice the quantile estimators based on orthogonal resid-
uals involve complicated functional optimization because the criterion function is
nondifferentiable, while the t-type estimators are faster by virtue of the EM-type
algorithm.

4.3. Example

We consider the relationship between body height and arm span using a
sample of n = 39 observations. This data set comes from the junior class of
statistics majors in Beijing Normal University, China. Students measured their
own body height and arm span. We take Yi as the height, and Xi as the arm
length of the ith person. Here, we observe Y and X as data with measurement
errors. Figure 4 gives the scatter-plot of Y and X and it shows an approximate
linear relationship between Y and X, where X is the observed variable of x with
error u, whose variance is assumed to be approximately equal to the variance
of error due to the same measurement tool being used. In Figure 4, note the
outlying points #18 and #24. We model the relationship between Y and X as
Y = xβ0 + ε, X = x + u. Table 3 gives the estimated parameters for LSE based
on orthogonal residuals with complete data(labeled as LSE-OR in Table 3) and
after removing the two points #18 and #24 (labeled as LSE-OR without #18,
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Figure 4. Comparison of the fitted straight line using LSE-OR and T-type.

Figure 5. Comparison of the fitted straight line using LSE-OR without
outliers (LSE-OR(-)), T-type and LAD-OR.

#24 in Table 3). We compared quantile estimates based on orthogonal residuals
with τ = 0.5 as proposed by He and Liang (2000) (labeled as LAD-OR in Table
3 and Figures 4, 5) and the t-type estimates studied here (labeled as T-type in
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Table 3 and Figures 4, 5). From Table 3, we can see that the t-type estimates are
comparable to LAD-OR; LAD-OR, and t-type the are very similar to those of the
LSE-OR without #18, #24, and they give a good fit to the data without being
perturbed by a small proportion of outliers. Figure 4 also gives the comparison
of the fitted straight line using LSE-OR and t-type estimates and shows t-type
estimates may have better performance than LSE-OR in the presence of outliers.
Furthermore, Figure 5 gives the comparison of the fitted straight line using LSE
without outliers (#18, #24), t-type, and LSE-OR. From Figure 5, we can see
that the t-type estimates are basically consistent with LSE based on orthogonal
residuals without outliers.

Appendix. Proofs

In this section, we give the proofs of Theorems 1 and 2.

A.1. Outline of Proofs

The proof of consistency can be established by verifying steps (i), (ii). (i) We
use the Maximal Inequality of Pollard (1990) and the concept of polynomial class
of set (VC subgraph class), see Pollard (1984), and van der Vaart and Wellner
(1996), to show

sup
β∈Rp

σ∈[σ1,σ2]

∣∣∣∣∣ 1n
n∑

i=1

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+log(σ)

]
−E

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+log(σ)

]∣∣∣∣∣ a.s.−→ 0,

where σ1 and σ2 to be specified in Lemma 1. (ii) We show that (β0, σ0) is a unique
minimum of E[ρ((Yi−Xτ

i β)/(σ
√

1 + ‖β‖2)+log(σ)]. The proof of the consistency
in this paper is similar to the proof of the consistency of the M-estimator in van
der Vaart and Wellner (1996). The proof of asymptotic normality is based on
Huber’s Z-theorem (see Pollard (1985), and van der Vaart and Wellner (1996)).

A.2. Proof of Theorem 1

Let K0 = {(a, b, c) : ‖a‖ ≤ 1/σ1, b ∈ Rp, ‖b‖ ≤ (1 + ‖β0‖)/σ1, |c| ≤
log(σ2/σ1)},

F =
{

ρ[(ε, uτ )τa + xτ b] + c : (a, b, c) ∈ K0

}
,

where σ1 and σ2 to be specified in Lemma 1. Since ρ(t) is a non-increasing
function when t < 0, and is a non-decreasing function when t ≥ 0, the graphs of
functions in F form a polynomial class of set (VC subgraph class), see Pollard
(1984), and van der Vaart and Wellner (1996), with envelope F = ρ[(1+‖β0‖)(R+
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‖x‖)/σ1] + ρ[−(1 + ‖β0‖)(R + ‖x‖)/σ1] + log(σ2/σ1), and E(F ) < ∞. Therefore,
by Theorem 24 of Chapter II.5 in Pollard (1984), we can get that

sup
(a,b,c)∈K0

∣∣∣∣∣n−1
n∑

i=1

[
ρ
((εi, u

τ
i )a + xτ

i b

σ

)
+ log(σ)

]

−E

[
ρ
((εi, u

τ
i )a + xτ

i b

σ

)
+ log(σ)

]∣∣∣∣∣→0 a.s.

as n → ∞.
It follows that

sup
β∈Rp

σ∈[σ1,σ2]

∣∣∣∣∣ 1n
n∑

i=1

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]
− E

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]∣∣∣∣∣
= sup

β∈Rp

σ∈[σ1,σ2]

∣∣∣∣∣ 1n
n∑

i=1

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]

−Eρ
[ 1
σ

(
ε − xτ (β − β0)√

1 + ‖β‖2

)
+ log(σ)

]∣∣∣∣∣
= sup

β∈Rp

σ∈[σ1,σ2]

∣∣∣∣∣ 1n
n∑

i=1

[
ρ
( εi − uτ

i β

σ
√

1 + ‖β‖2
− xτ

i (β − β0)
σ
√

1 + ‖β‖2

)
+ log(σ)

]

−E

[
ρ
( ε − uτβ

σ
√

1 + ‖β‖2
− xτ (β − β0)

σ
√

1 + ‖β‖2

)
+ log(σ)

]∣∣∣∣∣
≤ sup

K0

∣∣∣∣∣n−1
n∑

i=1

[
ρ
((εi, u

τ
i )a + xτ

i b

σ

)
+ c

]

−E

[
ρ
((εi, u

τ
i )a + xτ

i b

σ

)
+ c

]∣∣∣∣∣ a.s.−→ 0. (A.2.1)

With Kε = ({β : ‖β − β0‖ ≥ ε} ⊗ {σ : |σ − σ0| ≥ ε}) ∩ (Rp ⊗ [σ1, σ2]),

ζ1n = sup
β∈Rp

σ∈[σ1,σ2]

∣∣∣∣∣ 1n
n∑

i=1

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]

−E

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]∣∣∣∣∣,
ζ2n = sup

∣∣∣∣∣ 1n
n∑

i=1

[
ρ
( Yi − Xτ

i β0

σ0

√
1 + ‖β0‖2

)
+ log(σ0)

]



1028 TAO HU AND HENGJIAN CUI

−E

[
ρ
( Yi − Xτ

i β0

σ0

√
1 + ‖β‖2

)
+ log(σ0)

]∣∣∣∣∣.
By (A.2.1), we have ζ1n = o(1) a.s. and ζ2n = o(1) a.s. But

inf
Kε

E

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]
= inf

Kε

E

[
ρ
( Yi−Xτ

i β

σ
√

1+‖β‖2

)
+ log(σ)

]
− inf

Kε

1
n

n∑
i=1

[
ρ
( Yi−Xτ

i β

σ
√

1+‖β‖2

)
+ log(σ)

]

+ inf
Kε

1
n

n∑
i=1

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]

≤ ζ1n + inf
Kε

1
n

n∑
i=1

[
ρ
( Yi − Xτ

i β

σ
√

1 + ‖β‖2

)
+ log(σ)

]
.

If (β̂, σ̂) ∈ Kε, we have

inf
Kε

1
n

n∑
i=1

[
ρ
( Yi−Xτ

i β

σ
√

1+‖β‖2

)
+log(σ)

]
=

1
n

n∑
i=1

[
ρ
( Yi−Xτ

i β̂

σ̂

√
1+‖β̂‖2

)
+log(σ̂)

]
.

(1.2) yields

inf
K

1
n

n∑
i=1

[
ρ
( Yi−Xτ

i β̂

σ̂

√
1+‖β̂‖2

)
+log(σ̂)

]
≤ 1

n

n∑
i=1

[
ρ
( Yi−Xτ

i β0

σ0

√
1+‖β0‖2

)
+log(σ0)

]
.

By Lemma 5, we can get that

inf
Kε

E

[
ρ
( Yi−Xτ

i β

σ
√

1+‖β‖2

)
+log(σ)

]
− E

[
ρ
( Yi−Xτ

i β0

σ0

√
1+‖β0‖2

)
+log(σ0)

]
:= δε > 0.

Hence

inf
Kε

1
n

n∑
i=1

[
ρ
( Yi−Xτ

i β̂

σ̂

√
1+‖β̂‖2

)
+log(σ̂)

]
≤ 1

n

n∑
i=1

[
ρ
( Yi−Xτ

i β0

σ0

√
1+‖β0‖2

)
+log(σ0)

]

= ζ2n + E

[
ρ
( Yi−Xτ

i β0

σ0

√
1+‖β0‖2

)
+ log(σ0)

]
,

which leads to

inf
Kε

E

[
ρ
( Yi−Xτ

i β

σ
√

1+‖β‖2

)
+log σ

]
≤ ζ1n + ζ2n + E

[
ρ
( Yi−Xτ

i β0

σ0

√
1+‖β0‖2

)
+log(σ0)

]
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:= ζn + E

[
ρ
( Yi−Xτ

i β0

σ0

√
1+‖β0‖2

)
+log(σ0)

]
.

Hence, we can get that ζn ≥ δε. Furthermore, we have {(β̂, σ̂) ∈ Kε} ⊆ {ζn ≥
δε}. Then, ∪∞

k=1 ∩∞
n=k {(β̂, σ̂) ∈ Kε} ⊆ ∪∞

k=1 ∩∞
n=k {ζn ≥ δε}. This completes the

proof.

A.3. Proof of Theorem 2

Let

ei(β) =
εi − uτ

i β − xτ
i (β − β0)√

1 + ‖β‖2
, e(β) =

ε − uτβ − xτ (β − β0)√
1 + ‖β‖2

,

x̃i(β) = xi + ui +
εi − uτ

i β − xτ
i (β − β0)

1 + ‖β‖2
β.

Then we can write gn(β, σ) = n−1x̃i(β)ψ(ei(β)/σ) = Pnx̃(β)ψ(e1(β)/σ) :=
Png(β, σ) and fn(β, σ) = n−1

∑n
i=1 χ(ei(β)/σ) = Pnχ(e1(β)/σ) := Pnf(β, σ).

Let Ψn(β, σ) = (gn(β, σ), fn(β, σ))τ . Then by (1.3) we get that Ψn(β̂, σ̂) = 0.
Let Ψ(β, σ) = EΨn(β, σ). It easy to see that Ψ(β0, σ0) = 0.

By Theorem 1, we conclude that β̂ → β0, σ̂ → σ0 a.s.. Finally, our goal is to
use Huber’s Z-theorem, see Pollard (1985), and van der Vaart and Wellner (1996),
to establish asymptotic normality. It suffices for this to verify the conditions
A.1−A.4 of Huber’s Z-theorem in van der Vaart and Wellner (1996).

For A.1, note that
√

n(Ψn(β, σ)−Ψ(β, σ)) =
√

n(Pn −P )(g(β, σ), f(β, σ))τ .
It follows from Lemma 6 and Lemma 7 that

√
n(Pn − P )g(β0, σ0)

d−→ N(0,Σ)
as n → ∞, where Σ is defined in (A.4.2) below.

By the Central Limit Theorem, we have
√

n(Pn − P )f(β0, σ0)
d−→ N(0, A),

where A = Eχ2(e(β0)/σ0), and
√

n(Ψn(β0, σ0) − Ψ(β0, σ0))
d−→ (N(0,Σ), N(0,

A))τ .
It follows from A1 and A2 in Section 2 and the expression for Ψ(β, σ), that

A.1 in van der Vaart and Wellner (1996) holds.
For A.4, notice that

∂gn(β0, σ0)
∂β

=
1
n

n∑
i=1

{(
xi + ui +

εi − uτ
i β0 − xτ

i (β0 − β0)
1 + ‖β‖2

β0

)
ψ′

(εi − uτ
i β0 − xτ

i (β0 − β0)
σ0

√
1 + ‖β0‖2

)
·
[

xi + ui√
1 + ‖β0‖2

+
εi − uτ

i β0 − xτ
i (β0 − β0)

1 + ‖β0‖3/2
β0

]τ

+ ψ
(εi − uτ

i β0 − xτ
i (β0 − β0)

σ0

√
1 + ‖β0‖2

)
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×
[
−(xi+ui)βτ

0 +(εi−uτ
i β0−xτ

i (β0−β0))Ip√
1 + ‖β0‖2

− 2εi − uτ
i β0−xτ

i (β0−β0)
(1 + ‖β0‖2)2

β0β
τ
0

]}
.

It then follows from that

E
(∂gn(β0, σ0)

∂β0

)
= E

{
ψ′

(ε − uτβ0 − xτ (β0 − β0)
σ0

√
1 + ‖β0‖2

)}
×

(
x+u+

ε−uτβ0−xτ (β0−β0)
1+‖β0‖2

β0

)(ε−uτβ0−xτ (β0−β0)
σ0(1+‖β0‖3/2)

)τ

+ψ
(ε − uτβ0 − xτ (β0 − β0)

σ0

√
1 + ‖β0‖2

)[
ε − uτβ0 − xτ (β0 − β0)√

1 + ‖β0‖2
Ip

− (x + u)βτ
0√

1 + ‖β‖2
− 2ε − uτβ0 − xτ (β0 − β0)

(1 + ‖β0‖2)2
β0β

τ
0

]
= E

{
− 1

σ0

√
1 + ‖β‖2

ψ′
( ξ1

σ0

)[
x + Γ∗ξ +

ξ1√
1 + ‖β0‖2

β0

]
×

[
x + Γ∗ξ +

ξ1√
1 + ‖β0‖2

β0

]τ

+
1

σ0

√
1+‖β0‖2

ψ′
( ξ1

σ0

)
ξ1Ip −

(x+Γ∗ξ)βτ
0√

1+‖β0‖2
− 2ξ1β0β

τ
0

1+‖β0‖2

2]}

= −E[ψ′(ξ1/σ0)]Σx

σ0

√
1 + ‖β0‖2

− 1
σ0

√
1 + ‖β0‖2

E

[
ψ′

( ξ1

σ0

)(
Γ∗ξξτΓ∗τ

+Γ∗ξ
ξ1β

τ
0√

1 + ‖β0‖2
+

β0ξ1√
1 + ‖β0‖2

ξτΓ∗ +
ξ2
1β0β

τ
0

1 + ‖β0‖2

)]
+E

[ψ′(ξ1/σ0)ξ1]√
1 + ‖β0‖2

Ip −
1√

1 + ‖β0‖2

(
Γ∗E

[
ψ

( ξ1

σ0

)]
βτ

0

+
E[ψ(ξ1/σ0)ξ1]β0β

τ
0√

1 + ‖β0‖2

)
= −E[ψ′(ξ1/σ0)]Σx

σ0

√
1 + ‖β0‖2

− 1
σ0

√
1 + ‖β0‖2

(
E

[
ψ′

( ξ1

σ0

)
ξ2
2

−σ0E[ψ(ξ1)ξ1]]
)(

Ip −
β0β

τ
0

1 + ‖β0‖2

)
= −E[ψ′(ξ1/σ0)]Σx

σ0

√
1 + ‖β0‖2

. (A.3.1)

Moreover, we have ∂f(β, σ)/∂σ = −e1(β0)χ′(e1(β0)/σ0)/σ2
0. Now Ψ is differen-



t-TYPE ESTIMATORS FOR A CLASS OF LINEAR ERRORS-IN-VARIABLES MODELS 1031

tiable at β0, σ0 with derivative (matrix)

Ψ̇(β0, σ0) =

−E[ψ′(ξ1/σ0)]Σx

σ0

√
1 + ‖β0‖2

0

0 − E
[e1(β0)

σ2
0

χ′
(e1(β0)

σ0

)]
 .

So Ψ̇(β0, σ0) is negative definite by the conditions B1−B2 in Section 2. Thus
it remains only to verify the asymptotic equicontinuity condition of Huber’s Z-
theorem. For this A.2, note that

√
n(Ψn(β, σ) − Ψ(β, σ)) −

√
n(Ψn(β0, σ0) − Ψ(β0, σ0))

=
√

n(Pn − P )(g(β, σ) − g(β0, σ0), f(β, σ) − f(β0, σ0))τ ,

so, according to Theorem 2.1 in van de Geer (2000), we need only show that
the two function classes Fj(β, σ) = {fj(β, σ) : ‖β − β0‖ ≤ δ, ‖σ − σ0‖ ≤ δ},
j = 1, 2, where f1(β, σ) = g(β, σ) = x̃(β)ψ(e1(β)/σ), f2(β, σ) = f(β, σ) =
−χ(e1(β)/σ)/σ2 are both VC subgraph classes.

With A3 in Section 2, using the same argument in Lemma 9, we can get that
the class F2(β, σ) is VC subgraph class. So F1(β, σ) is also a VC subgraph classes.
Then the asymptotic equicontinuity condition of Huber’s Z theorem holds.

From the fact that −E[ψ′(ξ1/σ0)]Σx
√

n(β̂ − β0)/(σ0

√
1 + ‖β0‖2) and

√
ngn

(β0, σ0) = n−1/2
∑n

i=1 x̃i(β0)ψ(ei(β0)/σ0) have the same asymptotic distribution,
by Lemma 6 and Lemma 7 we can conclude from Huber’s Z-theorem that

Eψ′(ε/σ0)
σ0

√
1 + ‖β0‖2

√
nΣ−1/2Σx(β̂ − β0)

d−→ N(0, Ip),

σ−2
0 A−1/2E(e(β0)χ′

(e(β0)
σ0

)
n−1/2(σ̂ − σ0)

d−→ N(0, 1).

This completes the proof.

A.4. Technical Lemmas

Lemma 1. Under A1−A3, there exists constants σ1, σ2 > 0 such that σ1 ≤ σ0 ≤
σ2 for sufficient large n.

Proof. If there exists a subsequence 0 < σ0n′ → 0 as n′ → ∞, then by the conti-
nuity and boundedness of χ(·) we have limn′→∞ E[χ{ε−uτβ0/σ0n′(

√
1+‖β0‖2)}]

= κ uniformly for 1 ≤ i ≤ n. Therefore, limσ0n′→0 E{χ[(εi − uτβ0)/(σ0n′√
1+‖β0‖2)]} = κ > 0, which contracts the definition of σ0. If for some subse-

quence σ0n′′ → ∞ as n′′ → ∞, then limσ0n′′→∞ E{χ[(ε−uτβ0)/(σ0n′′
√

1+‖β0‖2)]}
= −1, which contracts the definition of σ0. The proof is complete.
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Lemma 2. Under A1−A3 and B1, we have limσ→0 infs≥0 Eχ[(εi + s)/σ] > 0.

Proof. For all δ1 > 0,

Eχ
[(εi + s)

σ

]
= Eχ

[(εi + s)
σ

]
I(|(εi + s)| ≥ δ1) + Eχ

[(εi + s)
σ

]
I(|(εi + s)| < δ1)

≥ E

[
χ
[δ1

σ

]
P{(|(εi + s)| ≥ δ1)}

]
− P{(|(εi + s)| < δ1)}

≥ χ
[δ1

σ

]
− (1 + κ)P{(|(εi + s)| < δ1)} ≥ χ

[δ1

σ

]
− C1δ1,

where C1 > 0 is a constant depending on f0 only. Thus limσ→0 infs≥0 Eχ[((εi +
s)/σ] > [κ − C1δ1]. The proof of Lemma 2 is completed by taking δ1 = κ/2C1.

Lemma 3(Maximal inequality). (Pollard (1990)). If independent random
processes {fi(ω, t)}∞i=1 are manageable with respect to the envelopes {Fi(ω)}∞i=1,
then there exists a constant Kq ≥ 0 such that E supt |

∑n
i=1(fi(ω, t)−Efi(ω, t))|q

≤ Kq‖Fn(ω)‖q, for q > 1, where Fn = (F1, . . . , Fn)t.

Lemma 4. Under A1−A3 and B1, there exist two constants σ1 > 1, and 0 <

σ2 < 1 such that limn→∞P{σ̂ ≤ σ2, σ̂ ≥ σ1} = 0.

Proof. Let ξn(β, σ) = n−1
∑n

i=1 χ{[εi − xτ
i (β − β0)]/(σ

√
1 + ‖β0‖2))}. Since

χ(·) is continuous and bounded, it follows from Lemma 3 that Z1n =: supβ>0,σ>0

|ξn(β, σ) − E(ξn(β, σ))| = Op(1/
√

n). By Lemma 2, there exists a constant
0 < σ1 < 1, such that infs≥0 Eχ[(εi + s)/σ] ≥ δ2/4, as n is large sufficiently.
Hence, on one hand, if σ̂ ≤ σ2 then 0 = ξn(β̂, σ̂)) ≥ δ2/4 − Z1n. This implies
that P{Z1n ≥ δ2/4} → 0 as n → ∞.

On the other hand, with Z2n =: |n−1
∑n

i=1[ρ(εi) − Eρ(εi)]| = Op(1/
√

n), if
σ̂ ≥ σ2,

1
n

n∑
i=1

[ρ(εi) − Eρ(εi)] ≥
1
n

n∑
i=1

{[
ρ

[
1
σ̂

(
εi −

xi(β̂ − β0)√
1 + ‖β̂‖2

)]
+ log(σ̂)

]
− Eρ(εi)

}
≥ log(σ2) − Eρ(εi) ≥ log(σ2) − C3.

Therefore, Z2n ≥ log(σ1) − C3, where C3 > 0 is a constant, and P{σ̂ ≥ σ2} ≤
P{Z2n ≥ log(σ1)−C3} → 0 as n → ∞ by taking σ2 large enough. This competes
the proof.

Lemma 5. Under the conditions of Theorem 1,

(β0, σ0) = arg min
β∈Rp,σ>0

Eρ

[
1
σ

(
ε − xτ (β − β0)√

1 + ‖β‖2

)
+ log(σ)

]
and (β0, σ0) is unique.



t-TYPE ESTIMATORS FOR A CLASS OF LINEAR ERRORS-IN-VARIABLES MODELS 1033

Proof. Let

h(β, σ) = E

{
ρ

[
1
σ

(
ε − xτ (β − β0)√

1 + ‖β‖2

)]
− ρ

( ε

σ

)}
+

[
Eρ

( ε

σ

)
+ log(σ)

]
:= h1(β, σ) + h2(β, σ).

First, we have

h1(β, σ) = E

∫ ε
σ
− xτ (β−β0)

σ
√

1+‖β‖2

ε
σ

ψ(t)dt = E

∫ − xτ (β−β0)

σ
√

1+‖β‖2

0
ψ

( ε

σ
+ t

)
dt

= Ex

∫ − xτ (β−β0)

σ
√

1+‖β‖2

0
Eψ

( ε

σ
+ t

)
dt ≥ 0

and h1(β0, σ) = 0. Next, if there exists β̃ such that h1(β̃, σ) = 0, then β̃ = β0.
In fact, if h1(β̃, σ) = 0 and |Eψ(ε/σ + t)dt| > 0, then

Ex

∫ − xτ (eβ−β0)

σ
√

1+‖β‖2

0
min

{
Eψ(

ε

σ
+ t), Eψ(

ε

σ
− t)

}
dt = 0.

Thus, xτ (β̃ − β0)/σ

√
1 + ‖β̃‖2 = 0, a.s. Px. It follows from x being non-

degenerate that β̃ = β0.
We need only prove σ0 is the unique maximum of h2(β, σ) and since σ0 satis-

fies E[χ{cε/σ0}] = 0, we need only prove σ0 is unique solution of E[χ(ε/σ0)] = 0.
Assume σ1 is another solution, and without loss of generality that σ0 < σ1,

hence E[χ(ε/σ0) − χ(ε/σ1)] = 0. By an elementary calculation, we have∫ ∞

0

[
χ
( y

σ0

)
−χ

( y

σ1

)]
f(y)dy +

∫ ∞

0

[
χ
(−y

σ0

)
−χ

(−y

σ1

)]
f(y)dy = J1 + J2 = 0.

Notice that both J1 and J2 are nonnegative, so we get that J1 = 0 and
J2 = 0.

From J1 = 0 by A3 and C1, we have σ0 = σ1. From J2 = 0 by A3 and C1,
we have σ0 = σ1.

For the t distribution, without loss of generality, let ν = 1, ρ(x) = 2−1 log(1+
x2). Then ψ(x) = x/(1 + x2), χ(x) = xψ(x) − 1 = −1/(1 + x2), χ′(x) =
2x/(1 + x2)2. Then, we have Eχ′(ε/σ)ε/σ =

∫
2y2f(y)/(1 + y2)2dy > 0. And

the solution is unique.

Lemma 6. If

g(β, σ) = E

{[(
x + u +

ε − uτβ − xτ (β − β0)
1 + ‖β‖2

β
)]

ψ
(ε − uτβ − xτ (β − β0)

σ
√

1 + ‖β‖2

)}
,

then g(β0, σ0) = 0.
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Proof. From the expression for g(β, σ) we have

g(β0, σ0) = E

{(
x + u +

ε − uτβ0

1 + ‖β0‖2
β0

)
ψ

( ε − uτβ0

σ0

√
1 + ‖β0‖2

)}
.

Consider the (p + 1) × (p + 1) orthogonal matrix

Γ =

 1√
1 + ‖β0‖2

−β0√
1+‖β0‖2

? Γ1

 ,

where ? denotes a submatrix that not need be specified. Let

ξ = Γ(ε, uτ )τ ∼ ECp+1(0, Ip+1), (A.4.1)

where ECp+1(0, Ip+1) represents the spherical distribution.
Then we have u = −(β0/

√
1 + ‖β0‖2, Γτ

1)ξ = Γ∗ξ. From the above facts, we
have

g(β0, σ0) = E

{(
x + u +

ε − uτβ0

1 + ‖β0‖2
β0

)
ψ

( ε − uτβ0

σ0

√
1 + ‖β0‖2

)}
+ E

[
xψ

( ε

σ0

)]
= E

{[( −β0√
1 + ‖β0‖2

, Γτ
1

)
ξ +

β0ξ1√
1 + ‖β0‖2

]
ψ

( ξ1

σ0

)}
=

−β0√
1 + ‖β0‖2

E

(
ξ1ψ

( ξ1

σ0

))
+

E(ξ1ψ(ξ1/σ0))√
1 + ‖β0‖2

· β0 = 0.

Lemma 7. Under the conditions of Theorem 1, we have E[ψ′(ξ1/σ)ξ2
2 ] =

σE[ψ(ξ1/σ)ξ1], and

Σ = Cov
[(

x + u +
ε − uτβ0

1 + ‖β0‖2
· β0

)
ψ

( ε − uτβ0

σ0

√
1 + ‖β0‖2

)]
= Eψ2

( ε

σ0

)
Σx + E

[
ψ2

( ε

σ0

)
u2

11

](
Ip −

β0β
τ
0

1 + ‖β0‖2

)
, (A.4.2)

where ξ = (ξ1, . . . , ξp+1)τ is the same as in (A.4.1).

Proof. Since ξ
d∼ ECp+1(0, Ip+1), ξ

d= R · Z/‖Z‖, where Z = Z1, · · · , Zτ
p+1

d∼
N(0, Ip+1), R ≥ 0 and Z are independent. Denote by G(r) the distribution
function of random variable R and, invoking the independence of ‖Z‖ and Z/‖Z‖,
we have

E[ψ′(
ξ1

σ
)ξ2

2 ]

= (2π)−(p+1)/2

∫ ∞

0

∫
Rp+1

ψ′
( rz1

σ‖z‖

) r2z2
2

‖z‖2
exp

{
− ‖z‖2

2

}
dz1 · · · dzp+1dG(r)



t-TYPE ESTIMATORS FOR A CLASS OF LINEAR ERRORS-IN-VARIABLES MODELS 1035

=
(2π)−(p+1)/2

p

∫ ∞

0

∫
Rp+1

ψ′
( rz1

σ‖z‖

)
r2‖z‖−2

p+1∑
i=2

z2
i exp

{
− ‖z‖2

2

}
dz1 · · · dzp+1dG(r)

= σ
(2π)−(p+1)/2

p

∫ ∞

0

∫
Rp

exp
{
− 1

2

p+1∑
i=2

z2
i

}(∫
R1

r‖z‖ exp
{
− 1

2
z2
1

}
dψ

( rz1

σ‖z‖

))
·dz2 · · · dzp+1dG(r)

= −σ
(2π)−(p+1)/2

p

∫ ∞

0

∫
Rp

exp
{
− 1

2

p+1∑
i=2

z2
i

}(∫
R1

rψ
( rz1

σ‖z‖

)[ z1

‖z‖
− z1‖z‖

]
· exp

{
− 1

2
z2
1

}
dz1

)
dz2 · · · dzp+1dG(r)

= σ
(2π)−(p+1)/2

p

∫ ∞

0

∫
Rp+1

(‖z‖2−1)
rz1

σ‖z‖
ψ

( rz1

σ‖z‖

)
exp

{
− ‖z‖2

2

}
dz1 · · · dzp+1dG(r)

= σ
1
p
E

{
[E(χ2

p − 1)]Rψ
(
R

Z1

σ‖Z1‖

)}
= σE

[
ψ

(ξ1

σ

)
ξ1

]
.
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