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PROOF OF THEOREM 1.

First we prove A,(-) is bounded on [0,7]. We then invoke the compactness of
the parameter space and Helly’s selection theorem to conclude the existence of a
convergent subsequence of {6,}. Finally we show the limit of this subsequence must
be 6.

First, we let

dij (1 = Yy(2))

A, (t) = , | |
" %: > Vi (Xij)ePoZuEy (e Wit |y )

a(t)=n;') / AN () = Yij(u)ePo% By (e Wi ly;) dAo(u)},
j=17=

fulw) =n 3 ongt 3 Vi) E (PO ).

i=1 j=1
We show sup;c(o 1 [An(t) = Ag(t)| — 0 almost surely. Note that {a;(t) :i=1,2,...}is
a mean zero independent sequence for fixed ¢, and by the strong law of large numbers
(SLLN) n~'>".a;(t) — 0 almost surely. Also, by the boundedness assumption on
W, and Z;;, Ey(e?"Wily;) and ePo%i are both bounded. Again by SLLN, f,(u) —
E[Y;;(u)ePoZis Ey(e”Wii |y,)] almost surely.
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By the above, for fixed ¢, we have:
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by SLLN.
Since lim f,(u) = BE[Y;;(u)ePoZiEy(ePiWi
exists some ci(u) > 0 such that eventually f,(u) > c¢;(u) almost surely. Let ¢; =

y;)] is bounded away from zero, there

SUPye(o,r C1(u). For sufficiently large n, we can write

0<e /t d(R, — Ag)(u) < /tzo £ (w) d(A, — Ao) (1) — 0 aus.,
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and by the squeeze theorem, we have

/t d(R, — Ag)(u) = 0 as..

It follows that A, (t) — Ao(t) a.s. for all ¢t € [0,7]. Pointwise convergence of non-
decreasing functions to a continuous limit implies local (on [0, 7] in particular) uniform
continuity.

Since Bn, ﬁ]n, Zy;, and Wy, are in compact sets, there exists some finite, possibly

negative ¢, such that
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Therefore
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Now that we have established A has an upper bound almost surely, and Bn and
3, are in compact sets; we can apply Helly’s selection theorem to infer the existence
of a convergent subsequence which we now denote by 0, = (An, Bn, fln) with limit
0*. Next we show 0* = 0.

Since
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0 Y Yru(u) exp{B,Zy +logE; (e Wit ]y, ]}

we see that A* is absolutely continuous with respect to Ag. Furthermore, A*(¢) is
differentiable with respect to ¢ and dA,(t)/ dA,(t) converges to dA*(t)/ dAo(t).

Note that the finite sample likelihood as expressed via (4) has no finite maximum,

dA,(u) = A*(t),  (12)

since A is free to go to infinity at any X;;. We restrict A to be right continuous
with jumps at Xj;;; and for cluster 7, conditional on the random effect b;, we let the
log-likelihood be (6), where A{t} is the size of the jump in A at t. The likelihood of
the observed data, L,(#), is still as defined in (4) and we let ,(#) = log L,(#). In

place of Ay, which is continuous at X;;, we use A,. In particular we have:
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where

Rii(B,A,b) = [ [ exp[0:;(8'Zi; + B'Wyj) — A(Xy;) exp(B'Zy; + bW )],
7j=1
and ¢ is the multivariate normal distribution. The limit above is negative the

Kullback-Leibler information, so almost surely
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Now we adapt techniques used in the identifiability step of the proportional odds
case (Zeng et al., 2005) to conclude #* = 6. Note that P[(X;;,d;;) = (x,9)] > 0 for
any (x,0) in [0, 7] x {1}U{7} x{0}. This allows us to manipulate (.X;;, §;;) within that
set and maintain the almost sure equality (13). A particular manipulation, which we
now demonstrate, will allow us to conclude 6* = 6.
Fix some k in 1,...,n,. For j <k, let §;; = 1, X;; = 0 in (13) and note that we
assume A*(0) = Ag(0) = 0. If j > k and §;; = 0, we replace X;; with 7. Otherwise,
if j=k+1,...,n; and 0;; = 1, we integrate X;; from 0 to 7. We get:
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For j > k, we can choose d;; to be 0 or 1. If we sum (14) over all possible

combinations of J;;, the j > k factors sum to one and we are left with:
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We assume A*(0) > 0. Since k is arbitrarily chosen, the index set of the above
summations can be replaced by any subset of {1,...,n;}. In particular, if we choose
an index set {j,j'}, j # j', we get
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( J+ J)Q( J+ ])+210g>\*(0)
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If we subtract from this equality the resulting equalities with the singleton index sets
{j} and {j'}, we have:

B*(Zij + Zijr) +

= B0 (Zij + Zy) + + 21og Ao (0).
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We also clearly have
CI[]_, Z;j], + W;](E* - EO)WU = 0, ] = ]_, N
where ¢ = 2[log A*(0) — log \g(0), B*' — B}]'. Therefore under C7 ¢ = 0 and it follows
= 20, B* = ,30, and )\*(0) = )\0(0)
To show A* = Ay, we manipulate the terms of (13) again. Let §;; = 1 and integrate
X1 from 0 to t. Also for j = 2,...,n,, if d;; = 0, replace X;; with 7 and if §;; = 1

integrate X;; from 0 to 7. Summing the result over all possible values of ¢;;, j > 1,
this time we get

/b 1 — exp[—A*(t) exp(Bo' Zin + b'Wi1)]¢(b, 3p)db
_ / 1 — expl—Ao(t) exp(Bo' Zit + b'Wir)|é(b, Zo)db. (15)
b

Because both sides of (15) are strictly monotone in A*(¢) and Ag(t), we have A*(t) =
Ao(t). Since Aq is non-decreasing and continuous, the pointwise convergence can be

extended to uniform convergence on [0, 7].
PROOF OF THEOREM 2.
First let
H ={(hy, hy, h3) : hy € R" hy € R®(BHD/2,
hs(+) is a function on [0, 7]; ||y ||, [[hol|, ||hs|lv < 1}

where |||y denotes the total variation of h3(:) in [0,7]. Let S, be a sequence of
maps from U, a neighborhood of (By, X¢, Ag), into [*°(H):

Sn(lga 27 A)[hla h27 h’3]
= nl%ln <,3 + ehy, ¥ + chy, A(t) + 6/0 hs(s) dA(S)>
Ap[hy] + Apolho] + Ansfhs].

e=0

Here we treat ¥ as an extended column vector consisting of the upper triangle el-
ements of the covariance matrix. The terms A,,, p = 1,2,3, are linear function-
als on R4, R%(©+1)/2 and BV[0,7] (the space of functions with finite total vari-
ation in [0,7]). Let lg, Is and [y be the score functions for 3,3, and A (along
fot 1+ €h3(s) dA(s)) for a single cluster, then

Api[hy] = Pulhilg], Anolhs] = Puhbls], and Aps[hs] = Py [Ia[h3]]



where P,, denotes the empirical measure based on n independent clusters. We now

seek explicit expressions for A,,. Recall the log-likelihood

n
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=
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Rli (B, A, b) = exXp {Z 6,~j(ﬂ’Zij + b,Wi]’) — A(X”) exp(,@'Zij + b,W”)} .
7=1
Note that
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Furthermore let A(t) = fot 1+ ehz dA, then ZA(t) = fot hs(s) dA(s) and

0
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Also A {t} = (1 + ehs(t)) A{t}, so
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If we let H, denote the matrix corresponding to the extended vector hy, then
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Finally, we can explicitly write A,, as
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We define the limit map S : (8, X, A)[hy, ho, hg] — [*°(H) as
S(B8,%3,A)[hy, hy, hs) = Aj[hy] + As[hy] + Azlhs]

where the linear functionals A, are obtained by replacing the empirical sum in A,,
by the expectation. By construction, Sn(Bn, ., An) = 0 and S(Bo, X0, Ay) = 0.



As in Murphy (1995), asymptotic normality follows by verifying four conditions
on the score function: convergence to a tight Gaussian process, Fréchet differen-
tiability, invertibility, and the approximation condition. First, v/n(S, (80, X¢, Ao) —
S(Bo, Xo, Ap)) weakly converges to a tight Gaussian process on [*°(#H), because H
is a Donsker class and the functionals A,, are bounded Lipschitz functionals with

respect to H. The approximation condition that

sup |(Sn_S)(Bn72mAn) - (Sn_S)(607207A0)|

(hi,ha,h3)eH

= 0p (n_m v {IIBn = Boll + [0 — ol + . [Ant) — Ao(ﬂl})

te[0,7

can be proved in a manner similar to Lemma 1 in the appendix of Murphy (1995).
Fréchet differentiability holds by the smoothness of S(B,X,A). We consider the
derivative, denoted S(By, Xo, Ag), to be a linear map, T, from the space

{(B—Bo, X —Xg,A—Ay) : (B,%,A) is in the neighborhood U of (Bg, X, Ao)}
to [°°(H). Lastly, we need to show T is continuously invertible on its range. We write

T(B—PBo,X— X0, A—Ag) =(8 — Bo) Qi(hy,hy, h3) + (X — 2¢)' Qa(hy, hy, hs)

+ / Qg(hh hy, h3) d(A - AO)
0

where the Q; are the respective partial derivatives of S with respect to 8, X, and A.
The Q; are of the form

h T
Qi(hy, hy, h3) =B, <h;> + / hs(t)Ds (t) dt,
0

h T
Q,(hy, hy, hy) =B, <h;> + / hs(t)Ds(t) dt,
0

and

h T
Q?)(hl; h27 h3) = B3 <h;) + b4h3(t) + / h3 (t)D?)(t) dt’
0

where Bj, B,, and Bj are constant matrices; D;(t), Do(t), Ds(t) are continuously
differentiable functions; and by > 0; each of which depends on . The operator
Q = (Q1,Qs,Q3)" is the sum of a continuously invertible operator and a compact
operator from 7 to itself and to prove T is invertible it suffices to show the invertibility
of the linear operator Q(hy, hy, h3) (Rudin, 1973). Suppose Q(hy, hy, h3) = 0, then
T(B — By, X — X, A — Ap)[hy, hy, hg] = 0 for any (8,3, A) in the neighborhood U.



For a small constant e, let
B = Bo+ch;, 3 =3+ chy,
A(t) = Ao(t) + e/ot hs(t) dAo(t).
It follows, by the definition of T, that

0 :T(B - ,30, 2 - 20, A - Ao)[hl, h2, hg]
:GE{(Z,BO [hl] + 120 [hQ] + l/\o [h’3])2}7

so that lg,[hi]+ I, [ha] + s, [h3] = 0 almost surely. Expanding this expression we get
0= Z/ h)Z,; (5z'j - Ao(Xij)eﬁé’Zijer,W”) Ryi(Bo, Ao, b) dpN (0, %)
j=17P
+ / {b'EalHZZEIbﬂ - trace(Zale)/2} Rgi(ﬁg, Ao, b) de(O, 20)
b

n; Xz-j , , -
+ Z/b (&jhg (XZ]) — /0 h3(8) dAO(S)GﬂOZij+b W”) Rgi(ﬁg, Ao, b) de(O, 20)
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(16)
where
Ryi(Bo, Ao, b) = Rii(Bo, Ao, b) H{)\O(Xij)}éij
j=1
= [ [ exploii(B6Zis + B'Wij) — Ao(Xi) exp(ByZis + bW i) [{Ao(Xis)} .

j=1
Similar to the identifiability step of the consistency proof, we show that (16)
implies h; = 0, hy, = 0, and h3 = 0. Let Z;; and W;; be fixed. Then for fixed integer

kin 1,...,n;, we define measures p,..., i, on the set {0,1} x [0, 7] as follows:
({0} x A) =0, ({1} x A) =1(0€ A), m <k,

and
im({0} X A) = I(7 € 4), ({1} x A) = / Lide, m >k,

where A is any Borel set in [0,7]. We integrate both sides of (16) with respect
to {(di1, Xi1),- -+, (Oin;, Xin,)} and the product measure dpy, - - - dp,,. That is, we let
0im = 1 and X;,, = 0 for all m < k. Where m > k, we choose X;,,, = 7 if §;,, = 0,
integrate X, from 0 to 7 if §;,, = 1, then sum over ¢;; € {0,1}. Then we sum all of
the equalities of (16) for all possible combinations of {d;i, ..., 8, } € {0, 1} F.



We compute the integral of each term on the right side of (16) with respect to the

product measure, [[_, /s, the sum of which must be 0. First note, for any b,

.

— H {)\0 eﬂo im+b’ Wzm}

m<k

Z H exp[—Ao(T exp(BOZ,m+bW,m)]) ~Oim

0im€{0,1} m>k
m>k

. { / expBlZim + b Wi, — Ao(y) exp(BLZom + b'wim)uo(wdy}
y=0

= TT (o) Weny

m<k

Oim

Z H exp[—Ao(T exp(BOZ,m+bW,m)]) ~Oim

dim€{0,1} m>k
m>k

x (1 — exp[—Ao(7) exp(B)Zim + b Wip)]) "™
= T] Duo(0)ePirmm e Wony,

m<k

For the first term of (16), where j < k, we have for any b:
/hllzij (5ij - Ao(Xij)‘fB‘l)ziﬁblwij) Ryi(Bo, Ao, b (H Mm>
/h, ZZJRZz BU;A07 (H Mm)

:hllzlj H {AO eﬂo im+b’ Wlm}.

m<k



When j > k,

[ 1025 (85 = Aa(X5)e%2 505 ) Ry (B, Ao, (H um>

=h{Z;; [T {Ao(0)ePo%n Wi}

m<k

Z H exp[—Ao(T exp(,@OZ,m+bW,m)]) ~Oim

dim €{0,1} m>k
m>k,m#£j M#]

X (1 — exp[—Ao(7) exp(ByZim + bIWim)])Jm
X Z (1 —0;5) (—AU(T)eBBZiﬁb'Wij) exp[—Ao(7) exp(ByZij + b'W,;)]

5ij€{071}
T

oy [ (1= Ao(y)eP% W ) explB)Zi; + B'Wij — Aofy) exp(B3Zi; + b'Wi)Ao(y)dy

y=0

= Z;; [ | {hg(0)em s Wony

m<k

X Z (]_ — 51]) (—AO(T) exp[,@ﬁZi]’ + b,Wi]’ — AO(T) exp(,@éZi]’ + b,Wl])])

0;7€{0,1}
+ (SijAo(T) exp[,@BZij + b,Wij — AO(T) exp(,@BZij + b,WU)]
=0

So contributions from the first term of (16) reduce to:

/Z/bhllzij (5ij N AO(Xij)eﬁf)Zijer’Wij) R2i(/307A07 )de 0 20 <H Mm)
7=1
:Zh’lzw/ H{)\O 0)eBoZim+B' Win g N (0, ). (17)

j<k m<k

Similarly, contributions from the second term of (16) reduce to:

//{b’ S, Hy Sy 'b/2 — trace(Sy " Hy)/2} Ro:(Bo, Ao, b) dy N (0, Zo) d (H um)

= / {b'S Hy30'b/2 — trace(Sg ' Hy) /2} [ ] {0(0)ePo%m > Wir} gy N (0, ).
b

m<k

(18)
From the third term of (16), if j < k then

/ <62Jh3(XU) - /Xij h?,(S) dAU(S)eﬁézijerlwij) RZz /307 AU: (H Mm)
0
0) [ ] {Ao(0)eP%en o Wi} (19)

m<k



if j > k, then

Xl] ! ’ L.
/ <5z]h3(XZ]) - / h3(3) dAO(S)@ﬂOZij—i—b W”) RQZ BOaAﬂa (H Mm)
0
= [T o0y s Wery

;}{ ~b) [ hals) ol

x exp[ByZij + b"Wi; — Ao(t) exp(ByZi; + b'Wij)]

T y
voy [ (hg(w e dAo<s>eﬁ’oZif+b’Wij)
y:O s=0

X exp[,@éZU =+ b,Wij — Ag(t) exp(,@éZi]’ + b,Wl])])\O(y)dy}

= [T ro(0)e7m s Wiy

m<k

x> { (1—6;) /OThg,(s)dAg(s)

d;;€{0,1}

X exp[,@éZij + b,Wij — Ag(t) exp(,@BZi]’ + b,Wl])]
+ 5ij / hg (S) dA()(S) exp[,Bf)ZZ-j + b'WZ-j — Ag(t) exp(,Bf)Zij + b'WU)] =0.
s=0

So contributions from the third term (16) reduce to:

/znl:/ <6Uh,3 i) / ’ hs(s) dAO(g)@ﬂézijer'Wij) R (Bo, Ao, b) dpyN(0,3%) d (H ,um>
= _hs(0 /H{Ao )ePoZim D Win } 1, N (0, 329) (20)

i<k m<k

Combining (17), (18), and (20) and integrating over b, we obtain

Zh’ Zi; + - (ZW”> H, (Z W”> + kh3(0) = 0.

7j=1

Since the choice of k is arbitrary, we conclude

Z W, Z; + = ( Z W”> H2< ﬁ: WZ-]) + (ks — k1)hs(0) = 0.

Jj=ki1+1 Jj=k1+1 Jj=ki1+1
for any 1 < k; < ky < n;. Finally we have W, HyW; = 0 for j # j' and Zj;h, +
Wi, HyW;;/2+h3(0) = 0, so that applying Condition C7 yields Hy = 0, h; = 0, and



Setting X;; =0, j=2,--+,n;, and 6;; =1, j =1,...,n; in (20) gives us

) (X ) B fOXil h3(5) dAo(S) fb eﬂf)Zil-I-b’Wil R2z' (/307 Ag, b)de(O, 20)
e [, R2i(Bo, Ao, b)dp N (0, ) :

Therefore g(y) = [} hs(t) dAo(t) satisfies the homogeneous equation

9'(y)
)\o(y) - g(y

)fb 656Zi1+b’WilR2i(IBU, A(), b)de(O, 20) _
i, R2i(Bo, Ao, b)dL N (0, )

with boundary condition ¢g(0) = 0. We conclude g(y) = 0, h3(y) = 0, Q is one-to-
one, and S(,Bo, 3, Ap) is invertible. Asymptotic normality follows from Theorem 2
of Murphy (1995).

Asymptotic efficiency of 0, follows from Bickel, Klaasen, Ritov, and Wellner
(1993), Chapter 5 by showing each component is asymptotically linear with effi-
cient influence function in the tangent space of the model. The proof relies on the

decomposition of S(f) in terms of the invertible Q operator.

PROOF OF THEOREM 3.
The proof is analogous to that in Parner (1998). The first step is to derive the
linear approximation to the Fréchet derivative, S(6y)(# — 6y)[hy, hy, hs], in terms of

J.. Then we use Theorem 2 and the invertibility of J,, to conclude the result.



