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Abstract: A Proportional Hazards Mixed-effects Model (PHMM) was recently pro-

posed, which associates general random effects with arbitrary covariates and in-

cludes the univariate frailty model as a special case. In this paper, we estab-

lish the asymptotic properties of the nonparametric maximum likelihood estimator

(NPMLE) of the parameters of the PHMM. This estimator is computed using a

Monte Carlo Expectation-Maximization algorithm. The finite sample performance

of the NPMLE is examined in a series of simulations and compared with the per-

formance of a penalized partial likelihood estimator and an approximate Laplace

EM estimator. The model and NPMLE are applied to an analysis of twin data.
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1. Introduction

Clustered survival data arise from various areas of application: genetic and
familial studies, multi-center clinical trials, group-randomized trials, studies of
unemployment duration, etc. To analyze this type of data, frailty models were
introduced to model the correlation among the survival times from the same
clusters (cf. Oakes (1992) and Hougaard (2000)). More recently, Ripatti and
Palmgren (2000), Vaida and Xu (2000), and Ripatti, Larsen and Palmgren (2002)
proposed the proportional hazards model with mixed effects. It includes the
frailty model as a special case, but is more general in that it allows random
effects on arbitrary covariates. It is therefore able to model covariate by cluster
interactions in a way similar to the linear, generalized linear, and non-linear
mixed-effects models. For example, in a multi-center clinical trial, a treatment
effect that varies from center to center can be modelled as a random treatment
effect, where center here serves as the cluster for patients.

Assume that the data consist of possibly right-censored event time observa-
tions from n clusters, with ni observations in the ith cluster, i = 1, . . . , n. Within
a cluster the observations are dependent, but conditional on the cluster-specific
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d×1 vector of random effects bi, the survival times Tij are independent and their
hazard functions follow the proportional hazards mixed-effects model (PHMM):

λij(t) = λ0(t) exp(β′Zij + b′
iWij), (1.1)

where λij(t) is the hazard function of the jth observation from the ith cluster, bi

is a vector of random effects for the ith cluster, and Zij , Wij are the covariate
vectors for the fixed and random effects. In (1.1) Wij is usually a subset of
Zij , apart from possibly a ‘1’ which represents the cluster effect on the baseline
hazard. To insure identifiability, we assume that E(bi) = 0. For distribution of
the random effects we also assume that

bi
i.i.d.∼ N(0,Σ). (1.2)

The immediate interpretation of the random effects or the variance compo-
ments is on the log hazards. In some practical applications, it is also helpful to
consider the mathematically equivalent linear transformation model formulation
of PHMM:

g(Tij) = −β′Zij − b′
iWij + eij , (1.3)

where T is the time to event of interest, g(·) is a monotone transformation corre-
sponding to the cumulative baseline hazard function under (1.1), and the error e

has a fixed extreme value distribution with Var (e) = 1.645. Under (1.3) the total
variance of the transformed survival time is decomposed into different attributes,
just as it is under the linear mixed models.

Under PHMM (1.1), Ripatti and Palmgren (2000) developed a penalized par-
tial likelihood estimate of the parameters, and Vaida and Xu (2000) developed the
nonparametric maximum likelihood estimator (NPMLE), computed using an EM
algorithm and Markov Chain Monte Carlo (MCMC) methods. Ripatti, Larsen
and Palmgren (2002) further improved the MCEM algorithm with an automated
stopping rule. Cortiñas-Abrahantes and Burzykowski (2005) compared the pe-
nalized partial likelihood estimate with an approximate Laplace EM estimate
through simulations. Earlier analytic results include Murphy (1994, 1995) and
Parner (1998) on the asymptotics for gamma frailty models, and Kosorok, Lee,
and Fine (2001) on the identifiability of frailty models for independent identically
distributed (i.i.d.) data. Kosorok, Lee and Fine (2004) studied robust inference
under the univariate frailty models. The asymptotic properties of the NPMLE,
however, remain unproven under the PHMM. The finite sample performance of
the NPMLE also has not been studied in the literature.

In the next section we show the consistency and asymptotic normality of the
NPMLE under the PHMM. In Section 3 we study the finite sample property of
the estimator using simulation, and compare it to the penalized partial likelihood
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estimator and the approximate Laplace EM estimator mentioned above. Section
4 provides an example of the application of PHMM to the analysis of twin data.
The last section contains discussion.

2. Asymptotic Theory under PHMM

In this section we state and sketch the proof of each of our main results.
Detailed proofs are contained in an appendix available through http://www.
stat.sinica.edu.tw/statistica. The main idea follows Murphy (1994, 1995),
and we make use of the identifiability argument as in Zeng, Lin and Yin (2005).

The data from subject j in cluster i can be written yij = (Xij , δij ,Zij ,Wij),
where Xij is the possibly right-censored failure time and δij is the failure-event
indicator. Let Yij(t) = I{Xij ≥ t} and yi = (yi1, . . . ,yini) be the data for cluster
i. Conditional on the random effect bi, the log-likelihood for the i-th cluster is

li(β, λ;yi|bi) =
ni∑

j=1

{
δij

[
log λ(Xij) + β′Zij + b′

iWij

]
− Λ(Xij)eβ′Zij+b′

iWij

}
,

(2.1)
where Λ(t) =

∫ t
0 λ(s)ds. The log-likelihood of the observed data is then

Ln(θ) =
n∑

i=1

log
{ ∫

exp[li(β, λ;yi|bi)]φ(bi;Σ)dbi

}
, (2.2)

where θ = (β,Σ, λ) and φ is a multivariate normal density.
Note that the log-likelihood (2.2) has no maximum over the space of abso-

lutely continuous Λ when the sample size is finite. To define the nonparametric
maximum likelihood estimator, we extend the parameter space to include all Λ
on [0, τ ] that are continuous on the right with left-hand limits, and modify the
log-likelihood so that

li(β,Λ;yi|bi) =
ni∑

j=1

{
δij

[
log Λ{Xij} + β′Zij + b′

iWij

]
− Λ(Xij)eβ′Zij+b′

iWij

}
,

(2.3)
where Λ{t} is the size of the jump in Λ at time t.

Let θ̂n = (β̂n, Σ̂n, Λ̂n) be the NPMLE of θ. Taking derivatives with respect
to β, Σ, and the jumps in Λ gives the score equations

0 =
∑
ij

(
δij − Λ̂n(Xij)eβ̂′

nZijEθ̂n
(eb′

iWij |yi)
)
Zij (2.4)

nΣ̂n =
∑

i

Eθ̂n
(bib′

i|yi) (2.5)

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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Λ̂n(t) =
∑
ij

δij(1 − Yij(t))∑
kl Ykl(Xij)eβ̂′

nZklEθ̂n
(eb′

kWkl |yk)
. (2.6)

We assume the following fairly standard conditions on the model.

C1. Conditional on the covariates, Zij and Wij , the latent censoring times Cij

are independent of the event times Tij and the random effects bi.
C2. There is some ε > 0 such that P (Cij ≥ τ |Zij ,Wij) ≥ ε, almost surely.
C3. The baseline hazard function λ0(t) > 0 and is continuous on the finite time

interval [0, τ ].
C4. The covariates, Zij and Wij , are bounded.
C5. The true parameters β and Σ are elements of the interior of a known com-

pact set K = {(β,Σ) : |β| ≤ B, for some constant B, and Σ is symmetric
and positive definite, with eigenvalues bounded away from 0 and ∞.}

C6. The clusters {(yi, ni)}n
i=1 are i.i.d., and P (ni ≥ 2) > 0.

C7. If there is a vector c and a symmetric matrix S, such that, for k 6= j =
1, . . . , ni, c′[1,Z′

ij ]
′ + W′

ijSWij = 0 and W′
ijSWik = 0 almost surely, then

c = 0 and S = 0.

Condition C1 is standard and required for identifiability in the presence of
censoring. Condition C2 ensures that we observe failures on the interval [0, τ ],
so that we can estimate Λ0 on that interval. Conditions C2 and C3 imply that
infu∈[0,τ ] EYij(u) > 0, and conditions C4 and C5 imply that eβ′ZklEθ(eb′

kWkl |yk)
> 0, so the NPMLE Λ̂n is almost surely, eventually, finite on [0, τ ]. The addition
of condition C6, implies that the score equations can be solved, almost surely,
eventually, for (β̂n, Σ̂n) in K. Intuitively, this is because once enough of the
ni’s are ≥ 2, we can tell the difference between bi and β, which allows us to
construct estimates of Σ. These then imply that θ̂n is almost surely, eventually,
in a compact set Θ and we can apply Helly’s Selection Theorem to conclude that
some subsequence of θ̂n converges to some θ∗ in Θ, as n → ∞. All we have to
do now is to show that, for every such convergent subsequence, we must have
θ∗ = θ0.

We would like to compare θ̂n to θ0 directly, but Ln(θ̂n)−Ln(θ0) diverges as
n → ∞, due to the absolute continuity of Λ0. Therefore we have to replace the
absolutely continuous Λ0 with the function

Λ̄n(t) =
∑
ij

δij(1 − Yij(t))∑
kl Ykl(Xij)eβ0

′ZklEθ̂0
(eb′

kWkl |yk)
,

which is close to Λ0 but of the same form as Λ̂n. Indeed, it is easy to see that
supu∈[0,τ ] |Λ̄n(u) − Λ(u)| → 0 and θ̄n = (β0,Σ0, Λ̄n) → θ0, as n → ∞. Now, a
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version of the Glivenko-Cantelli Theorem implies that supθ∈Θ |Ln(θ)−L(θ)| → 0
as n → ∞, where L(θ) = Eθ0Ln(θ), and therefore that Ln(θ̂n) → L(θ∗) and
Ln(θ̄n) → L(θ0) as n → ∞. But we know that Ln(θ̂n) ≥ Ln(θ̄n), by definition,
and L(θ0) ≥ L(θ∗), by the properties of Kullback-Leibler Information. This
means that we must have L(θ∗) = L(θ0).

Finally, Condition C7 is an extension of Condition 2(g) in Parner (1998),
which is to avoid collinearity among the covariates; see Parner (1998) for more
discussion. This ensures that the semiparametric Fisher information operator
is one-to-one, which implies that L has a unique maximum and therefore that
θ∗ = θ0. The above argument proves the following.

Theorem 1. Under conditions C1−7, ‖β̂n − βn‖ → 0, ‖Σ̂n − Σn‖ → 0, and
supt∈[0,τ ] |Λ̂n(t)−Λ0(t)| → 0, almost surely, as n → ∞, where ‖·‖ is the Euclidean
norm.

We could argue, as above, taking derivatives at the jumps in Λ and work-
ing with the finite sample scores in studying the asymptotic distribution of the
NPMLE, but it is equivalent and more convenient to work with one-dimensional
sub-models through the distribution identified by θ. To that end let h = (h1, h2,
h3), where h1 is a d1-vector, h2 is a d2(d2−1)-vector corresponding to the upper-
triangle of the symmetric matrix H2, and h3 is a function of bounded varia-
tion on the interval [0, τ ]. Set βs = β + sh1, Σs = Σ + sH2, and Λs(t) =∫ t
0 (1+sh3(u))dΛ(u). Take the derivative of Ln(θs) in s at 0 to compute the score

operator

Sn(θ)[h] =
1
2
tr

({
Σ−1 1

n

∑
i

Eθ(bib′
i|yi) − I

}
Σ−1H2

)

+
1
n

∑
ij

(∫ τ

0
(h′

1Zij + h3(u))
{

dNij(u)−Yij(u)eβ′ZijEθ(eb′
iWij |yi)dΛ(u)

})
.

Note that the random measure in the second term of the equation above is a
martingale and that Sn(θ̂n)[h] = 0 for all h ∈ H. The Martingale Central Limit
Theorem from Pollard (1984) implies that

√
nSn(θ0) converges in distribution

to a mean-zero Gaussian process G on `∞(H), the set of bounded real-valued
functions on H.

Now, let S(θ) = Eθ0Sn(θ). Note that S(θ0)[h] = 0 for all h ∈ H. It can be
seen that S(θ) is Fréchet differentiable on `∞(H) at θ0; that is, there is a bilinear
operator Ṡ(θ0) such that S(θ) − S(θ0) = Ṡ(θ0)[θ − θ0, ·] + oP (n−1/2 ∨ ‖θ − θ0‖).
Furthermore, under condition C7, Ṡ(θ0) is continuously invertible on its range.
The approximation condition ‖(Sn−S)(θ)−(Sn−S)(θ0)‖ = oP (n−1/2∨‖θ−θ0‖)
can be shown directly and we have

0 = Sn(θ̂n) = Sn(θ0) + Ṡ(θ0)[θ̂n − θ0] + oP

(
n−1/2

)
. (2.7)
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Note the similarity between this expression and the usual Taylor expansion of
the score with finite dimensional parameters. As usual, the trick is making sure
that the remainder term is oP (n−1/2). From (2.7) and the fact that Ṡ(θ0) is
continuously invertible on its range, we have

√
n(θ̂n − θ0) = −

√
nṠ(θ0)−1Sn(θ0) + oP (1). (2.8)

Finally, the Continuous Mapping Theorem implies
√

n(θ̂n − θ0) tends in dis-
tribution to a mean-zero Gaussian process −Ṡ(θ0)G. Now θ̂n is efficient by
Theorem 5.1 of Bickel, Klaasen, Ritov and Wellner (1993) and the fact that
−
√

nṠ(θ0)−1Sn(θ0) is the efficient influence function. This gives us the follow-
ing.

Theorem 2. Under conditions C1−7,
√

n(θ̂n − θ0) converges in distribution to
a mean-zero Gaussian process on H. Furthermore, θ̂n is asymptotically efficient.

The proof of Theorem 2 also demonstrates Theorem 3.

Theorem 3. Let s be the d2(d2−1)/2-vector corresponding to the upper-triangle
of the symmetric matrix Σ, V (h) be the asymptotic variance of

√
n

[
h′

1(β̂n − β0) + h′
2(ŝn − s0) +

∫ τ

0
h3(u)d{Λ̂n − Λ0}(u)

]
,

and Jn be the negative Hessian matrix of the log-likelihood Ln(θ̂n) with respect
to β, Σ, and the jumps in Λ at those Xij with δij = 1. Then, under C1−7, the
variance estimator

nh′
nJ

−1
n hn → V (h)

uniformly in probability, where hn is the vector with elements h1, h2, and h3(Xij)
at those Xij for which δij = 1.

Remark. At the first submission of this manuscript, an Associate Editor pointed
out the forthcoming publication of Zeng and Lin (2007), that contains PHMM as
a special case. Our work has been done independently, with proof of the asymp-
totics posted at http://www.bepress.com/harvardbiostat/paper43, under
Harvard University Biostatistics Working Paper Series dated May, 2006.

3. Simulations

In this section we carry out simulations to compare the finite sample proper-
ties of the NPMLE obtained using the MCEM algorithm (Vaida and Xu (2000)) to
the penalized partial likelihood (PPL) estimator (Ripatti and Palmgren (2000)).
In addition, as mentioned earlier, Cortiñas-Abrahantes and Burzykowski (2005)
considered an approximate Laplace EM estimator. The Laplace estimator re-
quires large cluster sizes, and we also compare the MCEM estimator with the
two other estimators in this setting.

http://www.bepress.com/harvardbiostat/paper43
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Table 1. Parameter estimates and standard errors for NPMLE (first row for
each parameter value) and PPL estimate (second row) (n = 100, ni = 2, no
covariates)

Parameter True Value Mean Estimated SE Empirical SE
σ̂2 0.2 0.181 0.192 0.148

0.223 0.091 0.185
σ̂2 0.5 0.449 0.252 0.232

0.532 0.151 0.275
σ̂2 1 0.914 0.359 0.363

1.073 0.232 0.408

We first consider the simulation settings of Ripatti and Palmgren (2000)
in Tables 1−4. We carried out 500 simulations for each of the tables with
λ0(t) = 0.1. In Tables 1 and 2 there are n = 100 clusters, and each cluster
has ni = 2 observations. The data in Table 1 were generated with no covariates,
λij(t) = λ0(t) exp(bi), and with three values of σ2 = Var (bi) : 0.2, 0.5, and 1. It
can be seen from the table that the NPMLE and the PPL estimator are compa-
rable in terms of bias. Although their biases appear to be in different directions,
that is not always the case as will be seen in the other tables. The main prob-
lem with the PPL estimator, as pointed out in Ripatti and Palmgren (2000), is
the underestimation of the standard errors. We showed in Theorem 3 that the
variance of the NPMLE is consistently estimated using the observed information
matrix. We see from simulations that, in finite samples, the estimate of standard
error associated with the NPMLE is closer to the observed standard error than
the estimator associated with the PPL estimator.

The data of Table 2 were generated with three covariates (Zij1, Zi2, Zi3)′, one
of which is on the individual observation level, and the other two on the cluster
level. We took Zij1, Zi2 ∼ N(0, 1), and Zi3 binary. Censoring was at 20%. Both
the NPMLE and the PPL estimate of the β’s had a slight bias towards zero, but
in comparison the NPMLE had less bias in almost all cases (except for β1 when
σ2 = 0.5). Ripatti and Palmgren (2000) also noted that the bias increases with
the variance of the random effects for the PPL estimator, but this does not seem
to be the case for the NPMLE. The NPMLE however, consistently had larger
variances for β̂3 than the PPL estimator. It is once again noted that the standard
errors of the PPL estimator were underestimated, while the standard errors of
the NPMLE appear to be estimated with reasonable accuracy.

The data of Table 3 were generated similarly to those of Table 2, but with
50 clusters of 4 observations each. Although the β̂’s of both methods become
generally less biased with increased cluster sizes (despite fewer clusters), β̂2 and
β̂3, which correspond to the cluster level covariates, had larger standard errors for
both methods. The estimate of the variance component, as compared to Table
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Table 2. Parameter estimates and standard errors for NPMLE (first row for
each parameter value) and PPL estimate (second row) (n = 100, ni = 2)

Parameter True Value Mean Estimated SE Empirical SE
σ2 = 0.5

β̂1 1 0.984 0.132 0.131
0.987 0.118 0.144

β̂2 -0.7 -0.691 0.126 0.125
-0.689 0.123 0.133

β̂3 0.5 0.484 0.223 0.220
0.481 0.178 0.176

σ̂2 0.5 0.448 0.255 0.250
0.538 0.176 0.267

σ2 = 1
β̂1 1 0.971 0.139 0.140

0.965 0.122 0.139
β̂2 -0.7 -0.689 0.146 0.145

-0.668 0.140 0.153
β̂3 0.5 0.475 0.264 0.272

0.471 0.181 0.186
σ̂2 1 0.896 0.364 0.359

0.962 0.243 0.371
σ2 = 2

β̂1 1 0.980 0.146 0.138
0.921 0.126 0.149

β̂2 -0.7 -0.688 0.179 0.188
-0.643 0.167 0.182

β̂3 0.5 0.485 0.332 0.328
0.469 0.185 0.188

σ̂2 2 1.822 0.593 0.599
1.766 0.355 0.598

2, was improved under the PPL, but became less accurate for the NPMLE. It is
understood that for the NPMLE the number of clusters is the effective ‘sample
size’ for estimating Var (bi), while the improved performance of the PPL with
the cluster sizes might be explained by the Laplace approximation that was used
in the PPL.

Finally, for Table 4 we had nested random effects. There were 50 clusters,
each cluster had a left and a right sub-cluster, and each sub-cluster had two
observations. There were three independent random effects, one at the cluster
level, and one each for the two sub-clusters. Their variances were σ2

1, σ2
2 and

σ2
3. The covariates were the same as in Tables 2 and 3. The estimates of the

β’s by the two methods were comparable, although again, the standard errors
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Table 3. Parameter estimates and standard errors for NPMLE (first row for
each parameter value) and PPL estimate (second row) (n = 50, ni = 4)

Parameter True Value Mean Estimated SE Empirical SE
σ2 = 0.5

β̂1 1 0.993 0.118 0.117
0.976 0.113 0.127

β̂2 -0.7 -0.703 0.140 0.140
-0.673 0.139 0.145

β̂3 0.5 0.504 0.258 0.260
0.476 0.174 0.171

σ̂2 0.5 0.433 0.190 0.195
0.493 0.168 0.237

σ2 = 1
β̂1 1 0.977 0.120 0.120

0.978 0.116 0.118
β̂2 -0.7 -0.688 0.172 0.181

-0.690 0.173 0.179
β̂3 0.5 0.503 0.325 0.333

0.491 0.177 0.188
σ̂2 1 0.893 0.308 0.319

0.978 0.268 0.346
σ2 = 2

β̂1 1 0.980 0.123 0.124
0.964 0.117 0.128

β̂2 -0.7 -0.695 0.225 0.241
-0.666 0.224 0.232

β̂3 0.5 0.501 0.428 0.409
0.483 0.178 0.186

σ̂2 2 1.778 0.533 0.548
1.928 0.462 0.600

were underestimated for the PPL. The NPMLE gave much better estimates of
the variance components, especially for σ2

1.
Note that the approximate Laplace estimator considered in Cortiñas-

Abrahantes and Burzykowski (2005) is not suitable for small cluster sizes as in
the above settings. In the simulations of Cortiñas-Abrahantes and Burzykowski
(2005), the cluster sizes were ni = 20 or 100. In the following we take their set-
tings and compare the MCEM to the PPL and the Laplace estimators in Tables
5 and 6. The results for the latter two estimators are copied from Cortiñas-
Abrahantes and Burzykowski (2005).

The data were generated for a pair of bivariate failure times for each subject
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Table 4. Parameter estimates and standard errors for NPMLE (first row
for each parameter value) and PPL estimate (second row) (nested random
effects, n = 50, ni1 = ni2 = 2)

Parameter True Value Mean Estimated SE Empirical SE
β̂1 1 0.978 0.136 0.136

0.921 0.116 0.139
β̂2 -0.7 -0.692 0.150 0.154

-0.691 0.131 0.157
β̂3 0.5 0.507 0.272 0.281

0.511 0.235 0.249
σ̂1 0.2 0.173 0.198 0.181

0.093 0.082 0.156
σ̂2 0.5 0.428 0.378 0.361

0.401 0.209 0.352
σ̂3 1 0.932 0.506 0.490

0.865 0.312 0.457

j in cluster i, i = 1, . . . , n, j = 1, . . . , n′
i (ni = 2n′

i in our notation), according to

λij1(t) = λ01(t) exp(βZij + bi1),

λij2(t) = λ02(t) exp(βZij + bi2).

λ01(t) = 0.5, λ01(t) = 1, and(
bi1

bi2

)
∼ N

{(
0
0

)
,

(
σ2

1 σ12

σ12 σ2
2

)}
.

Note that the above model allows two different baseline hazard functions, and it
is straightforward to modify all three methods considered here to fit such a model.
The single covariate Zij was binary, β = 1, and censoring was again at 20%. We
generated 250 datasets for each simulation. In Table 5, σ2

1 = σ2
2 = 0.2, and in

Table 6, σ2
1 = σ2

2 = 1. In both tables the values of the correlation coefficient
considered were ρ = 0.5 and 0.9.

The results are reported here in terms of bias and mean squared error
(MSE). From the tables we see that the MCEM estimator had the smallest
MSE in the majority of cases, while between the other two methods the Laplace
estimator tended to have smaller MSE when σ2

1 = σ2
2 = 0.2, and the opposite

held when σ2
1 = σ2

2 = 1. The main difficulty of the Laplace and the PPL esti-
mators lies in the estimation of the variance components (Cortiñas-Abrahantes
and Burzykowski (2005)) when the number of clusters is small (n = 10) and the
variance components are small (σ2

1 = σ2
2 = 0.2); here the relative bias can be over

60%. The MCEM estimator performed much better in comparison, especially for
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Table 5. Bias and mean squared error (in parentheses) for the NPMLE (first
row for each n), the approximate Laplace estimator (second row), and the
PPL estimator (third row) (σ2

1 = σ2
2 = 0.2)

n ni σ12 β̂ σ̂2
1 σ̂2

2 σ̂12 ρ̂

10 20 0.1 -0.015 (0.028) -0.024 (0.019) -0.029 (0.022) -0.011 (0.011) 0.012

0.069 (0.097) 0.069 (0.020) 0.063 (0.019) 0.022 (0.014) -0.042

0.007 (0.077) 0.058 (0.030) 0.035 (0.026) 0.034 (0.029) 0.046

50 0.006 (0.005) -0.007 (0.005) -0.009 (0.005) -0.004 (0.003) -0.001

0.069 (0.019) 0.010 (0.003) 0.011 (0.002) 0.001 (0.003) -0.019

-0.010 (0.011) 0.000 (0.005) -0.008 (0.004) -0.003 (0.003) -0.003

100 0.004 (0.003) 0.003 (0.003) 0.001 (0.002) -0.001 (0.001) -0.010

0.074 (0.013) 0.006 (0.002) 0.008 (0.001) 0.000 (0.002) -0.014

-0.008 (0.005) -0.004 (0.003) -0.006 (0.002) -0.003 (0.001) -0.002

10 100 0.1 -0.007 (0.006) -0.015 (0.011) -0.008 (0.010) -0.011 (0.005) -0.027

0.015 (0.012) -0.020 (0.010) -0.018 (0.009) -0.013 (0.006) -0.018

0.004 (0.013) -0.019 (0.011) -0.020 (0.010) -0.006 (0.007) 0.018

50 0.000 (0.001) -0.006 (0.002) 0.000 (0.002) -0.003 (0.001) -0.007

0.010 (0.002) -0.005 (0.002) -0.005 (0.002) -0.003 (0.001) -0.005

0.002 (0.002) -0.003 (0.002) -0.005 (0.002) -0.001 (0.001) 0.004

100 0.001 (0.000) -0.005 (0.001) -0.002 (0.001) -0.002 (0.001) -0.002

0.012 (0.001) -0.001 (0.001) -0.002 (0.001) -0.001 (0.001) -0.001

-0.001 (0.001) -0.001 (0.001) 0.000 (0.001) 0.000 (0.000) 0.001

10 20 0.18 0.010 (0.035) 0.007 (0.027) -0.033 (0.015) -0.013 (0.014) 0.001

0.080 (0.076) 0.122 (0.044) 0.101 (0.035) 0.083 (0.016) -0.055

0.020 (0.073) 0.118 (0.046) 0.090 (0.038) 0.083 (0.019) -0.033

50 -0.004 (0.006) -0.004 (0.005) -0.002 (0.004) -0.003 (0.003) -0.002

0.071 (0.019) 0.062 (0.007) 0.055 (0.006) 0.046 (0.004) -0.023

0.000 (0.011) 0.056 (0.016) 0.041 (0.012) 0.041 (0.009) -0.009

100 0.000 (0.003) -0.002 (0.002) -0.003 (0.002) -0.003 (0.001) -0.004

0.076 (0.013) 0.029 (0.002) 0.022 (0.002) 0.019 (0.001) -0.015

-0.003 (0.006) 0.024 (0.007) 0.018 (0.006) 0.018 (0.003) -0.005

10 100 0.18 0.001 (0.008) -0.015 (0.011) -0.006 (0.011) -0.014 (0.009) -0.024

0.015 (0.012) -0.009 (0.011) -0.009 (0.010) -0.010 (0.009) -0.011

0.007 (0.013) -0.006 (0.008) -0.005 (0.007) -0.004 (0.007) 0.003

50 -0.003 (0.001) -0.003 (0.002) -0.005 (0.002) -0.004 (0.002) -0.003

0.010 (0.002) -0.004 (0.002) -0.005 (0.002) -0.005 (0.002) -0.004

0.002 (0.002) 0.000 (0.004) -0.003 (0.003) -0.001 (0.003) 0.002

100 0.002 (0.001) -0.003 (0.001) -0.003 (0.001) -0.003 (0.001) 0.000

0.012 (0.001) 0.000 (0.001) -0.001 (0.001) -0.001 (0.001) -0.001

-0.001 (0.001) -0.001 (0.001) -0.001 (0.001) 0.000 (0.001) 0.003

ni = 20 where the biases for the other two methods are severe. The same
effects were also seen in estimating the correlation coeffcient ρ, where the MCEM
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Table 6. Bias and mean squared error (in parentheses) for the NPMLE (first
row for each n), the approximate Laplace estimator (second row), and the
PPL estimator (third row) (σ2

1 = σ2
2 = 1)

n ni σ12 β̂ σ̂2
1 σ̂2

2 σ̂12 ρ̂

10 20 0.5 -0.028 (0.035) -0.099 (0.276) -0.104 (0.276) -0.084 (0.140) -0.037

0.078 (0.082) -0.100 (0.482) -0.105 (0.392) -0.086 (0.157) -0.039

-0.006 (0.081) -0.075 (0.252) -0.114 (0.242) -0.056 (0.136) -0.009

50 0.002 (0.007) -0.032 (0.051) -0.032 (0.061) -0.021 (0.029) -0.005

0.068 (0.020) -0.026 (0.190) -0.026 (0.082) -0.028 (0.038) -0.015

-0.005 (0.013) -0.018 (0.033) -0.029 (0.035) -0.010 (0.013) 0.002

100 0.000 (0.004) 0.011 (0.029) 0.000 (0.035) 0.004 (0.019) 0.001

0.075 (0.013) -0.018 (0.080) -0.016 (0.043) -0.019 (0.022) -0.011

-0.005 (0.006) -0.017 (0.033) -0.021 (0.027) -0.007 (0.018) 0.003

10 100 0.5 0.005 (0.006) -0.036 (0.210) -0.076 (0.237) -0.042 (0.134) -0.014

0.011 (0.012) -0.107 (0.249) -0.099 (0.216) -0.061 (0.128) -0.011

0.007 (0.013) -0.101 (0.241) -0.089 (0.204) -0.034 (0.119) -0.004

50 0.000 (0.001) -0.005 (0.052) -0.008 (0.044) -0.007 (0.027) -0.004

0.009 (0.002) -0.024 (0.081) -0.021 (0.041) -0.014 (0.029) -0.002

0.003 (0.002) -0.021 (0.051) -0.024 (0.039) -0.009 (0.027) -0.001

100 0.002 (0.000) 0.020 (0.027) 0.001 (0.022) 0.003 (0.013) -0.002

0.011 (0.001) -0.009 (0.026) 0.003 (0.021) -0.003 (0.015) -0.002

-0.001 (0.001) -0.010 (0.022) 0.004 (0.019) 0.004 (0.014) 0.004

10 20 0.9 0.005 (0.036) -0.084 (0.343) -0.072 (0.343) -0.085 (0.255) -0.016

0.081 (0.084) -0.119 (0.269) -0.124 (0.264) -0.120 (0.168) -0.013

-0.005 (0.076) -0.114 (0.182) -0.140 (0.180) -0.121 (0.075) -0.007

50 -0.002 (0.006) -0.042 (0.052) -0.036 (0.053) -0.039 (0.041) -0.004

0.069 (0.020) -0.023 (0.073) -0.031 (0.060) -0.031 (0.044) -0.007

-0.008 (0.012) -0.021 (0.051) -0.029 (0.052) -0.022 (0.016) 0.000

100 0.000 (0.004) -0.005 (0.027) -0.015 (0.033) -0.012 (0.022) -0.003

0.076 (0.013) -0.020 (0.035) -0.029 (0.027) -0.027 (0.021) -0.005

-0.007 (0.006) -0.015 (0.031) -0.024 (0.029) -0.016 (0.025) 0.001

10 100 0.9 0.008 (0.007) -0.097 (0.181) -0.111 (0.179) -0.098 (0.157) -0.005

0.013 (0.012) -0.107 (0.266) -0.098 (0.236) -0.102 (0.194) -0.011

0.005 (0.012) -0.099 (0.237) -0.096 (0.210) -0.085 (0.197) 0.003

50 -0.004 (0.001) -0.012 (0.042) -0.009 (0.038) -0.010 (0.035) -0.001

0.010 (0.002) -0.020 (0.053) -0.026 (0.047) -0.024 (0.043) -0.004

-0.001 (0.002) -0.020 (0.054) -0.024 (0.046) -0.025 (0.050) -0.005

100 0.000 (0.001) 0.001 (0.018) -0.008 (0.018) -0.003 (0.016) 0.000

0.012 (0.001) -0.007 (0.030) -0.003 (0.023) -0.006 (0.023) -0.002

-0.002 (0.001) -0.006 (0.025) -0.001 (0.021) -0.002 (0.021) 0.001

estimator appeared much more accurate for the small sample sizes. With an
increasing number of clusters and an increasing number of subjects per cluster,
both the bias and MSE decreased for all three methods.
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4. An Example

We consider the application of model (1.1) to twin data. Ripatti, Gatz,
Pedersen and Palmgren (2003) applied (1.1) to twin data, where the twins share
a common unobserved random effect. In the Vietnam Era Twin (VET) Registry
data, zygosity was known for 3,372 complete twin pairs (1,874 monozygotic pairs
and 1,498 dizygotic pairs). The monozygotic (MZ) twins are often assumed to
have the same genes, and the dizygotic (DZ) twins share half of their genes. Using
the two different types of zygosity we can examine the relative contributions of
genetic and environmental factors to age at onset of disease, in this case, age at
onset of alcohol dependence (DSM-III-R, Robins, Helzer, Cottler and Goldring
(1989)). Prior to the development of survival analysis tools, this type of research
in psychiatric epidemiology had been done using linear mixed effects models
(when there was no censoring) and structural equation models.

To model the dependence structure of the MZ and DZ twins using PHMM,
for an MZ twin pair i, let b1i denote the contribution from the common genetic
G and the common environmental C factors, and b2i and b3i denote the unique
environmental E factors for twin 1 and twin 2, respectively, so that

λi1(t) = λ0(t) exp(b1i + b2i),

λi2(t) = λ0(t) exp(b1i + b3i).

We can write Var (b1i) = σ2
G + σ2

C , and Var (b2i) = Var (b3i) = σ2
E . For a DZ

twin pair i, let b4i denote the common genetic (1/2) and the common environ-
mental factors, and b5i and b6i denote the unique genetic (1/2) and the unique
environmental factors for twin 1 and twin 2, respectively, so that

λi1(t) = λ0(t) exp(b4i + b5i),

λi2(t) = λ0(t) exp(b4i + b6i).

We can then write Var (b4i) = σ2
G/2 + σ2

C and Var (b5i) = Var (b6i) = σ2
G/2 + σ2

E .
Due to the construction of these six random effects, to decompose the total vari-
ance it is necessary to assume that they are independent of each other. There-
fore the variance matrix for b is Σ = diag(σ2

G + σ2
C , σ2

E , σ2
E , σ2

G/2 + σ2
C , σ2

G/2 +
σ2

E , σ2
G/2 + σ2

E).
After fitting (1.1) to the data, the NPMLE gives σ̂2

G = 1.08(0.15), σ̂2
C =

0.27(0.05), and σ̂2
E = 0.02(0.01), where the standard errors are given in paren-

theses. According to the convention in genetic epidemiology, these are to be
reported as percentages of the total variation in the age at onset of alcohol de-
pendence. Direct calculation gives 79%, 20% and 1%, respectively, of genetic,
common environmental, and unique environmental contributions. This is very
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different from what has been reported in the past in studies of alcohol depen-
dence; in particular, the genetic contribution is about twice as high as reported
in the literature. Note that what we have here is in fact a decomposition of the
total variance on the log hazard scale in model (1.1), not on the variable age
at onset itself. The equivalent formulation (1.3) gives the decomposition for the
transformed age at onset, i.e. with the additional error variance Var (e) = 1.645,
given the hazard function of an individual. With σ̂2

G + σ̂2
C + σ̂2

E + 1.645 as the
estimated total variation, the percent contributions are Ĝ = 36%, Ĉ = 9%, and
Ê = 55%. The corresponding standard errors are 5%, 2%, and 4%, respectively,
obtained using the Delta method. The 36% genetic contribution is very com-
parable to what has been reported in the literature on alcohol dependence, and
agrees quite well with the results obtained by our collaborators using structural
equation modelling (not shown here) for the same dataset.

5. Discussion

In this paper we studied the asymptotic as well as finite sample properties
of the nonparametric maximum likelihood estimator under the proportional haz-
ards mixed-effects model. We have established that the NPMLE is consistent,
asymptotically Gaussian, and efficient. In contrast the theoretical properties of
the PPL has not been rigorously studied.

Since the initial proposal of the PHMM in 2000, there has not been widely
agreed-upon finite sample implementation of estimation under the model. As
having been known in the literature, as well as confirmed in our simulation,
inference based on the PPL can be problematic at least due to its difficulty in
estimating the variance. Bootstrap has been proposed to estimate the variance of
the PPL estimator; however, it is not clear that the bootstrap will be consistent if
the consistency of the PPL estimator is not established. For the implementation
of the NPMLE, currently the only alternative to the MCEM algorithm is based
on Laplace approximation. The Laplace approximation requires reasonably large
cluster sizes, and is not suitable for certain data structures such as twins. We
have shown in our simulation that the MCEM algorithm is numerically stable
and that the inference procedure is accurate.

Nonethless the MCEM algorithm is computationally intensive, and its con-
vergence can sometimes be slow, especially when the random components are
relatively small. Even under today’s rapidly growing computational power, there
is incentive to develop more efficient algorithms for practical use of the PHMM.
Various faster EM algorithms have been proposed; for the linear mixed models,
for example, Meng and van Dyk (1997, 1998) proposed to speed up the common
EM algorithms by the addition of a ‘working parameter’ which transfers the ran-
dom effect variance into a regression slope. A separate project is currectly under
way to implement such faster algorithms under the PHMM.
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