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This supplement has two sections. In Section S1, we give a derivation of the

information bound for estimation of the Euclidean component of the model. In

Section S2, we provide the proof of Lemma A.1 as well as some details of the

Hoeffding expansion used in the proof of Propositions 3.1 and 3.2.

S1.Information bound

In the following the Euclidean parameter of interest is denoted by ξ = (β, θ),

and we let η = (A,A0c, A1c, A2c, µ) be the nuisance parameter. We let ξ0 and

η0 = (A(0), A
(0)
0c , A

(0)
1c , A

(0)
2c , µ(0)) be the true parameter values. Without loss of

generality, we assume that the cumulative hazards of the censoring distribu-

tions are absolutely continuous with respect to (A
(0)
ic , i = 0, 1, 2) and denote the

corresponding derivatives by (αic, i = 0, 1, 2). Likewise, we assume that the dis-

tribution µ of the covariates has density m with respect to the true distribution

µ(0).

The condition 2.1 (ii) implies that for h ∈ Hc
0 we have E [Yh(u)|Z = z] =

S0(u|z)G0(u−|z), where G0(x|z) is the conditional survival function of C1 given

Z = z. Its cumulative hazard function is A
(0)
0c and we have

Qh(x1, z) = E Nh(x1)1(Z ≤ z) =

∫ x1

0
E [Yh(u)|Z = z]A

(0)
h (du|z)µ(0)(dz)

for h ∈ Hc
0. The condition 2 (iii) implies also that for h ∈ Hc

i , i = 1, 2 we

have E [Yh(u)|Z = z,X1 = x1, J = i, δ1 = 1] = Si(u|x1, z)Gi(u − |x1, z), where

Gi(u|x1, z) = P (C2 − X1 > u|Z = z, J = i,X1 = x,X1 ≤ C1) is the survival

function corresponding to A
(0)
ic . It follows that
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Qh(x2, x1, z) = E Nh(x2)N0i(x1)1(Z ≤ z) =
∫ x2

0

∫ x1

0
E Yh(u)|X1 = u1, J = i, δ1 = 1, Z = z)A

(0)
h (du|u1, z)Q0i(d(u1, z))

for h ∈ Hc
i .

We shall need the following moment identities.

Lemma S1.1 Let ϕ(W ) = {ϕh(X1, Zh), ϕh′(X2, Zh′) : h ∈ Hc
0, h

′ ∈ Hc
i , i = 1, 2}

be a vector of measurable functions. Define

Ih(ϕ) =

∫

ϕh(u,Zh)Mh(du) if h ∈ Hc.

Then Ih(ϕ) ∈ Lq(P ), q = 1, 2 if and only if

E

∫

|ϕh(u,Zh)|qNh(du) = E

∫

Yh(u)|ϕh(u,Zh)|qA(0)
h (du,Zh) < ∞

for all h ∈ Hc. In addition, E Ih(ϕ) = 0, and

E Ih(ϕ)2 = E

∫

Yh(u)ϕh(u,Zh)2A
(0)
h (du|Zh) if h ∈ H,

= E

∫

Yh(u)ϕh(u,Zh)2[1 − A
(0)
h (∆u|Zh)]A

(0)
h (du|Zh)

if h = (i, c), i = 0, 1, 2.

For any h, h′ ∈ H such that h 6= h′, we also have E Ih(ϕ)Ih′(ϕ) = 0. �

This lemma follows easily by noting that under conditions 2.1 the processes
∫ x

0
ϕh(u,Z)Mh(du), x ≥ 0, h ∈ Hc

0

form orthogonal martingales with respect to the filtration F0x = σ(Nh(u), Z, Yh(u+) :

u ≤ x, h ∈ Hc
0), and similarly, the processes

∫ x

0
ϕh(u,Z,X1)Mh(du), x ≥ 0, h ∈ Hc

i , i = 1, 2

form orthogonal martingales with respect to the filtration Fix =

σ(Nh(u), Yh(u+), Z1(δ1 = 1, J1 = i),X11(δ1 = 1, J1 = i) : u ≤ x, h ∈ Hc
i ). Using

direct calculation, it is also easy to verify that the processes are orthogonal.

As in Nan, Edmond and Wellner (2004), in the following we assume that

the censoring distributions are continuous. The condition 2.1 implies that each
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subject contributes to the complete data log-likelihood the sum

L(ξ, α) + Lc(αic, i = 0, 1, 2) + LZ(m),

where the three terms are given by

L(ξ, α) =
∑

h∈H

∫

[log qh(Zh, u, θ) + r(Z, u, β)]Nh(du) +

+
∑

h∈H

∫

log α(u)Nh(du)

−
∑

h∈H

∫

Yh(u)qh(Zh, u, θ)er(Z,u,β)α(u)du,

Lc(αic, i = 0, 1, 2) =

2
∑

i=0

∫

log(αic(du|Zic))Nic(du)

−
2
∑

i=0

∫

Yic(u)αic(u|Zic)A
(0)
ic (du|Zic),

LZ(m) = m(Z).

The score function for the parameter of interest ξ and the nuisance parameter η

are

ℓ̇0
1[ξ](W ) =

∑

h∈H

∫

ϕh(u,Zh, ξ0)Mh(du),

ℓ̇0
2[a](W ) =

∑

h∈H

∫

a(u)Mh(du), a ∈ L2(
∑

h∈H

(Qh),

ℓ̇0
3[b0c](W ) =

∫

b0c(u,Z)Mic(du), b0c ∈ L2(Q0c),

ℓ̇0
4[b1c](W ) =

∫

b1c(u,Z1c)M1c(du), b1c ∈ L2(Q1c),

ℓ̇0
5[b2c](W ) =

∫

b2c(u,Z2c)M2c(du), b2c ∈ L2(Q2c),

ℓ̇0
6[c](W ) = c(Z), c ∈ L0

2(µ
(0)).

Here ℓ̇0
1[ξ] is the derivative of the log-likelihood with respect to the Euclidean pa-

rameter ξ = (θ, β), From Section 2, ϕh(Zh, u, ξ) = [ϕ1h(Zh, u, ξ), ϕ2h(Zh, u, ξ)]T

where

ϕ1h(Zh, u, ξ) = ṙ(Z, u, β),
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ϕ2h(Zh, u, ξ) =
q̇h

qh
(Zh, u, θ), h ∈ H.

For h ∈ Hc
0, Zh = Z, and we have

ϕ2h(Zh, u, ξ) =
q̇h

qh
(Z, u, θ) for h = (0, i), i = 1, 2,

= − q̇1 + q̇2

1 − q1 − q2
(Z, u, θ) for h = (0, 3).

Further,

a(u) =
∂

∂ε
log αε(u)|ε=0,

bic(u,Zic) =
∂

∂ηi
log αic,ηi

(du|Zic)|ηi=0, i = 0, 1, 2,

c(Z) =
∂

∂κ
log mκ(Z)|κ=0

for regular parametric submodels {αε}, {αic,ηi
, i = 0, 1, 2} and {mκ} passing

through the parameters α, αic and m when ε = κ = ηi = 0, i = 0, 1, 2.

The tangent spaces are Ṗi = [ℓ̇0
i ], i = 1, . . . , 6 and [α] is the closed linear span

generated by the score α. Using Lemma S1.1, it is easy to see that the spaces

Ṗi, i = 2, . . . , 6 are mutually orthogonal, and Ṗ1 is orthogonal to Ṗi, i = 3, . . . , 6.

The following proposition generalizes Propositions 3.1 and 3.2 in Nan, Ed-

mond and Wellner (2004).

Proposition S1.2

(i) Define

Ṗ∗ = {
∑

h∈Hc

∫

gh(u,Zh)Mh(du)g0(Z) : gh ∈ L2(Qh), h ∈ Hc, g0 ∈ L2(m)}.

Then Ṗ∗ = L2(P ).

(ii) Let c(W ) = {ch(X1, Zh), ch′(X2, Zh′) : h ∈ H0, h
′ ∈ Hi, i = 1, 2} be a vector

of functions such that ch ∈ L2(Qh) for each h ∈ H. Define

B(c) =
∑

h∈H

∫

[ch − ec](u)Mh(du)

by setting ec(u) = s
(1)
c (u)/s0(u), where

s(1)
c (u) =

∑

h∈H

E Yh(u)ch(u,Zh)qh(u,Zh, θ0)e
r(Z,u,β0),
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s0(u) =
∑

h

E Yh(u)qh(u,Zh, θ0)e
r(Z,u,β0).

Then B(c) ⊥ Ṗη ∈ L0
2(P ) and Ṗ⊥

η = (
∑6

j=1 Ṗj)
⊥ = {B(c) : ch ∈ L2(Qh), h ∈

H}.

When specialized to the renewal model considered in the paper, this Propo-

sition implies that the efficient score function of estimation of the parameter

ξ = (θ, β) corresponds to the choice of c(W ) = {ϕh(Zh, u, ξ) : h ∈ H}, which

is quite similar to the standard Cox regression. Note, however, that the model

assumes that the functions r(Z, u, β) and qh(Zh, u, θ), h ∈ H have support not

depending on the unknown parameters. In the absence of covariates, this assump-

tion fails for instance in the parametric Marshall- Olkin model (1967), where
√

n

rate of convergence of the asymptotically efficient estimators applies only to the

interior of the parameter set.

Proof . Recall that Zh = Z, for h ∈ Hc
0 and Zh = (X1, Z) for h ∈ Hc

i , i = 1, 2.

Any function f(W ) ∈ L2(P ) can be represented as a sum

f(W ) = δ1δ2

2
∑

j=1

1(J1 = j)fj3(X2,X1, Z)

+ δ1(1 − δ2)
2
∑

j=1

1(J1 = j)fjc(X2,X1, Z)

+ δ11(J1 = 3)f03(X1, Z) + (1 − δ1)f0c(X1, Z).

For j = 1, 2 define

f0j(X1, Z) = E [δ2fj3(X2,X1, Z) + (1 − δ2)fjc(X2,X1, Z)|X1, Z, δ1 = 1, J = j].

Then

f(W ) = I1(W ) + I2(W ),

I1(W ) = δ1

3
∑

j=1

1(J = j)f0j(X1, Z) + (1 − δ1)f0c(X1, Z),

I2(W ) = δ1δ2

2
∑

j=1

1(J = j)fj3(X1,X2, Z) + (1 − δ2)δ1

2
∑

j=1

1(J = j)fjc(X1,X2, Z)

− δ1

2
∑

j=1

1(J = j)f0j(X1, Z).
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Set

R1[f ](x1, z) =

3
∑

j=1

E [δ1f0j(X1, Z)|X1 > x1, Z = z]

+ E [(1 − δ1)f0c(X1, Z)|X1 > x1, Z = z]

and

R2j [f ](x2, x1, z) = E [δ2fj3(X2,X1, Z)|X2 > x2,X1 = x1, Z = z, J1 = j, δ1 = 1]

+ E [(1 − δ2)fj1(X2,X1, Z)|X2 > x2,X1 = x1, Z = z, J1 = j, δ1 = 1]

for j = 1, 2. Finally, let

g0(Z) = E f(W )|Z,

gh(X1, Z) = f0j(X1, Z) − R1[f ](X1, Z), h ∈ Hc
0,

gh(X2,X1, Z) = fh(X2,X1, Z) − R2j [f ](X2,X1, Z), h ∈ Hc
j, j = 1, 2.

We have

R1[f ](x1, Z) − g0(Z) =

∑

h∈Hc
0

∫∞
x1

fh(u,Z)Qh(du,Z)

1 −∑h∈Hc
0

Qh(du,Z)
− g0(Z)

= −
∑

h∈Hc
0

∫ x1

0
[fh(u,Z) − R1[f ](u,Z)]A

(0)
h (du|Z).

Therefore

I1(W ) =
3
∑

j=1

δ11(J = j)f0j(X1, Z) + (1 − δ1)f0c(X1, Z) − R1[f ](X1, Z)

+

(

R1[f ](X1, Z) − g0(Z)

)

+ g0(Z)

=
∑

h∈Hc
0

∫

gh(u,Z)Mh(du) + g0(Z) =
∑

h∈Hc
0

∫

gh(u,Zh)Mh(du) + g0(Z)

Similarly, for j = 1, 2,

R2j[f ](x2,X1, Z) − f0j(X1, Z) =

−
∑

h∈Hc
j

∫ x2

0
[fh(u,X1, Z) − R2j[f ](u,X1, Z)]A

(0)
h (du|X1, Z)
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and

δ1δ21(J = j)fj1(X2,X1, Z) + (1 − δ2)δ1fjc(X1,X2, Z) =

= δ1δ21(J = j)fj1(X2,X1, Z) + (1 − δ2)δ1fjc(X1,X2, Z) − R2j[f ](x2,X1, Z)

+

(

R2j [f ](x2,X1, Z) − f0j(X1, Z)

)

+ f0j(X1, Z)

=
∑

h∈Hc
j

∫

gh(u,X1, Z)Mh(du) + f0j(X1, Z)δ11(J = j).

Summing over j we obtain

I2(W ) =
2
∑

j=1

∑

h∈Hc
j

∫

gh(u,X1, Z)Mh(du) =
2
∑

j=1

∑

h∈Hc
j

∫

gh(u,Zh)Mh(du).

It follows that f(W ) ∈ Ṗ∗.

To show part (ii) of the proposition, let

b(W ) =
∑

h∈H

∫

chdMh.

Then Π(b|Ṗ2) =
∑

h

∫

a∗(u)dMh(u) for a square integrable function a∗ such that

E (
∑

h∈H

∫

adMh)(
∑

h∈H

∫

[ch − a∗]dMh) = 0

for any a ∈ L2(
∑

h∈H Qh). Orthogonality implies that the left side is equal to
∫

(as(1)
c − a∗s0)A(du)

so that a∗ = s
(1)
c /s0. The proof can be completed as in Nan et al. (2004) and

using that B(c) is orthogonal to
∑6

j=3 Ṗj . �

S2. Proof of Lemma A.1

Before showing this lemma, we recall that a class of functions G defined on

some measure space (Ω,A) is Euclidean for envelope G if |g| ≤ G for all g ∈ G,

and there exist constants A and V such that N(ε‖G‖L2(P ),G, ‖·‖L2(P )) ≤ (A/ε)V

for all ε ∈ (0, 1) and all probability measures P such that ‖G‖L2(P ) < ∞. Here

‖ · ‖L2(P ) is the L2(P ) norm and N(η,G, ‖ · ‖L2(P )) is the minimal number of

L2(P )–balls of radius η covering the class G. In the case of classes Gn changing

with n, the Euclidean constants A and V are taken to be independent of n.
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It is easy to verify that the condition E G(Wm)p < ∞ implies

E Gp(Wm)1(G(Wm) ≥ nm/p) → 0,

n−m(2−p)/p
E G2(Wm)1(G(Wm) < nm/p) → 0.

Let

g1n(Wm) = g(Wm)1(G(Wm) < nm/p),

g2n(Wm) = g(Wm)1(G(Wm) ≥ nm/p).

Since g is a canonical kernel, we have

Un,m(g) = Un,m(πm[g1n]) + Un,m(πm[g2n]).

Define

G1n(Wm) =
∑

A

E AG(Wm)1(G(Wm) < nm/p),

G2n(Wm) =
∑

A

E AG(Wm)1(G(Wm) ≥ nm/p).

Then G1n(Wm) and G2n(Wm) form envelopes for the classes of truncated canon-

ical kernels G1n = {πm[g1n] : g ∈ G} and G2n = {πm[g2n] : g ∈ G}, respectively.

We have

E nm(p−1)/p) sup
g2n∈G2n

|Un,m(πm[g2n])| ≤ nm(p−1)/p
E G2n(Wm) ≤

Cnm(p−1)/p
E G(Wm)1(G(Wm) ≥ nm/p) ≤ CE Gp(Wm)1(G(Wm) ≥ nm/p)

and the right-hand side tends to 0. We also have

E nm(p−1)/p sup
g1n∈G1n

|Un,m(πm[g1n])| = E nm/2 sup
g1n∈G1n

|Un,m(πm[g1n/nm(2−p)/2p])|.

The class G1n is Euclidean for the envelope G1n(Wm). By the randomization

Theorem 3.5.3 and Corollary 5.1.8 of de la Peña and Giné (1999) or using similar

developments as on page 254-255 of their text, the right-hand side of the above

display is of order

KE

√

Un,m(G2
1n(Wm)/nm(2−p)/p) ≤ K[E [G2

1n(Wm)/nm(2−p)/p]1/2

= KC[n−m(2−p)/p
E [G2(Wm)1(G(Wm)]1/2 → 0.
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Here K is a constant depending only on m and the VC-characteristics of the

class G1n, but not n, while C is bounded by 2m. This completes the proof. �

Finally, we give some more details of the Hoeffding decomposition used in

the proofs of Lemmas A.2 and A.3. In calculations given below, we use A = A0,

the true baseline cumulative hazard function.

In Lemma A.2, we consider first the statistic Un,2(g
(2)). For i 6= j, we have

E g(2)(Wi,Wj) = 0,

E {1}g
(2)(Wi,Wj) = E [g(2)(Wi,Wj)|Wi] =

∑

h

∫ τ

0

[

ϕihs(0) − s(1)

s(0)

]

(u, ξ0)Nhi(du),

E {2}g
(2)(Wi,Wj) = E [g(2)(Wi,Wj)|Wj ] =

=
∑

h

∫ τ

0

[

(s(1)S
(0)
j ) − S

(1)
j s(0)

s(0)

]

(u, ξ0)A(du)

Thus

Un,2(g
(2)) = Un,1(E {1}g

(2)) + Un,1(E {2}g
(2)) + U2,n(π2[g

(2)])

=
1

n

∑

i

∑

h

∫ τ

0

ϕihs(0) − s(1)

s(0)
(u, ξ0)Mih(du) + U2,n(π2[g

(2)]).

Next, we consider the statistics Un,3(g
(3)). For triplets (i, j, k) of distinct indices,

we have E g(3)(Wi,Wj ,Wk) = 0. In addition,

E {13}g
(3)(Wi,Wj ,Wk) = E g(3)(Wi,Wj ,Wk)|Wi,Wk

=
∑

h

∫ τ

0

[

ϕihs(0) − s(1)

s(0)

S
(0)
k − s(0)

s(0)

]

(u, ξ0)Nih(du)

E {23}g
(3)(Wi,Wj ,Wk) = E g(3)(Wi,Wj ,Wk)|Wj ,Wk

=

∫ τ

0

[

s(1)S
(0)
j − S

(1)
j s(0)

s(0)
(
S

(0)
k − s(0)

s(0)
)

]

(u, ξ0)A(du)

and E Ag(3)(Wi,Wj,Wk) = 0 for all other proper subsets of the index set {1, 2, 3}.
Hence

Un,3(g
(3)) = Un,2(E {13}g

(3)) + Un,2(E {23}g
(3)) + Un,3(π3[g

(3)]).

Finally, for any quadruplet (i, j, k, l) of distinct indices, we have E g(4)(Wi,Wj ,Wk,Wl) =

0, and

E 134g
(4)(Wi,Wj ,Wk,Wl) = E [g(4)(Wi,Wj ,Wk,Wl)|Wi,Wk,Wl]
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=
∑

h

∫ τ

0

[|ϕh|s(0) + s(1)]

s(0)
(
S

(0)
k − s(0)

s(0)
)(

S
(0)
l − s(0)

s(0)
)Nhi(du),

E 234g
(4)(Wi,Wj ,Wk,Wl) = E [g(4)(Wi,Wj ,Wk,Wl)|Wj ,Wk,Wl]

=

∫ τ

0

[s(1)S
(0)
j + s(0)S

(1)
j ]

s(0)
(
S

(0)
k − s(0)

s(0)
)(

Sl − s

s(0)
)A(du),

E 34g
(4)(Wi,Wj ,Wk,Wl) = E [g(4)(Wi,Wj ,Wk,Wl)|Wk,Wl]

= 2

∫ τ

0
[s(1)(

S
(0)
k − s(0)

s(0)
)(

S
(0)
l − s(0)

s(0)
)A(du)

and E Ag(4) = 0 for all other proper subsets of the index set {1, 2, 3, 4}. Hence

Un,4(g
(4)) = Un,2(E {34}g

(4)) +
∑

A={134},{234}

Un,3(π3[E Ag(4)]) + Un,4(π4[g
(4)]).

In Lemma A.3, the Hoeffding decomposition of the statistics Un,p(f
(p)
ξ ), p =

2, 3, 4 is quite analogous. On the other hand the remainder term is given by

rem(ξ) =
∑3

p=1 remp(ξ), where rem1(ξ) is given by (4.3), and

rem2(ξ) =
1

n

n
∑

i=1

∫ τ

0

[

∑

j

∑

h ϕhj(u, ξ)(S
(0)
hj (u, ξ) − S

(0)
hj (u, ξ0))

S(0)(u, ξ0)

−(ξ − ξ0)
T S(2)(u, ξ0)

S(0)(u, ξ0)

]

Ni(du),

rem3(ξ) =
1

n

n
∑

i=1

∫ τ

0

[

S(1)

S(0)
(u, ξ)

(

S(0)(u, ξ)

S(0)(u, ξ0)
− 1

)

−

(ξ − ξ0)
T

(

S(1)

S(0)

)⊗2

(u, ξ0)

]

Ni(du).

These two terms are easily verified to be order op(|ξ − ξ0|).


