Random Weighting and Edgeworth Expansion for the Nonparametric Time-Dependent AUC Estimator

Chin-Tsang Chiang, Shao-Hsuan Wang, and Hung Hung

Department of Mathematics, National Taiwan University

Supplementary Material

Let $\tau<\sup \left\{u: S_{X}(u)>0\right\}$ with $S_{X}(u)=P(X>u)$ and $\tau_{0}=\inf \{u: P(T>u)<$ $\left.1, u \in\left[\tau_{0}, \tau\right]\right\}$. The second condition (A2: the cumulative hazard function $\Lambda_{C}(t)$ of C is bounded for $t \in[0, \tau])$ is further assumed throughout the rest of this paper. Some concise notations below are used to simplify the complicated mathematical expressions: $U_{n t}=$ $\sum_{i \neq j} H_{i j t} /[n(n-1)]$ with $H_{i j t}=\left(S_{C}(t)-D_{i t}^{* c}\right) D_{j t}^{* c}\left(\phi_{i j}-\theta_{t}\right)-\eta_{t} S_{C}(t) \int_{0}^{t} d M_{i}(u) / S_{X}\left(u^{-}\right)$, $\left.\nu_{t}=S_{C}^{2}(t) S_{T}(t)\right)\left(1-S_{T}(t)\right)$, and η_{t} being defined in Section 2.2.

S1. Asymptotic Normality of $\widehat{\theta}_{t}$

From (1.1), one has

$$
\begin{equation*}
n^{1 / 2}\left(\widehat{\theta}_{t}-\theta_{t}\right)=n^{1 / 2}\left(\frac{U_{n t}}{V_{n t}}+r_{1 n t}\right) \tag{S1.1}
\end{equation*}
$$

where $V_{n t}$ is defined in Section 2.2 and

$$
r_{1 n t}=\frac{\eta_{t} S_{C}(t)}{V_{n t}}\left[\int_{0}^{t} \frac{d \bar{M}_{1} \cdot(u)}{S_{X}\left(u^{-}\right)}-\left(1-\frac{\widehat{S}_{C}(t)}{S_{C}(t)}\right) \frac{\sum_{i \neq j} D_{j t}^{* c}\left(\phi_{i j}-\theta_{t}\right)}{n(n-1) \eta_{t}}\right] .
$$

By the boundedness of $D_{i t}^{* c}$'s and the consistency of $\widehat{S}_{C}(t)$ and a U-statistic, it follows that

$$
\begin{equation*}
V_{n t} \xrightarrow{p} \nu_{t} \text { as } n \rightarrow \infty . \tag{S1.2}
\end{equation*}
$$

Again, the consistency of a U-statistic and the martingale representation

$$
\begin{equation*}
n^{1 / 2}\left(\widehat{S}_{C}(t)-S_{C}(t)\right)=-n^{-1 / 2} S_{C}(t) \sum_{i=1}^{n} \int_{0}^{t} \frac{d M_{i}(u)}{S_{X}(u)}+o_{p}(1) \tag{S1.3}
\end{equation*}
$$

where $M_{i}(t)=I\left(X_{i} \leq t\right)\left(1-\delta_{i}\right)-\int_{0}^{t} I\left(X_{i} \geq u\right) d \Lambda_{C}(u)$, entail that

$$
\begin{equation*}
n^{1 / 2}\left|r_{1 n t}\right| \xrightarrow{p} 0 \tag{S1.4}
\end{equation*}
$$

From (S1.2) and (S1.4), we get

$$
\begin{equation*}
n^{1 / 2}\left(\widehat{\theta}_{t}-\theta_{t}\right)=\frac{n^{1 / 2} U_{n t}}{\nu_{t}}+o_{p}(1) \tag{S1.5}
\end{equation*}
$$

It follows immediately from Hoeffding (1948) that

$$
\begin{equation*}
n^{1 / 2} U_{n t}=n^{-1 / 2} \sum_{i=1}^{n} \Psi_{i t}+o_{p}(1) \text { with } \Psi_{i t}=E\left(H_{i j t}+H_{j i t} \mid X_{i}, Y_{i}, \delta_{i}\right) \tag{S1.6}
\end{equation*}
$$

Together with (S1.5), $n^{1 / 2}\left(\widehat{\theta}_{t}-\theta_{t}\right)$ is shown to converge weakly to a normal distribution with mean zero and variance $\sigma_{t}^{2}=\nu_{t}^{-2} E\left(\Psi_{i t}^{2}\right)$.

S2. Normality Approximated Confidence Interval for θ_{t}

The asymptotic normality of $\widehat{\theta}_{t}$ and the consistent estimator $\widehat{\sigma}_{t}^{2}$ of σ_{t}^{2} enable us to construct an approximated $(1-\alpha), 0<\alpha<1$, confidence interval for θ_{t} via

$$
\begin{equation*}
\left(\widehat{\theta}_{t}-n^{-1 / 2} \widehat{\sigma}_{t} z_{\alpha / 2}, \widehat{\theta}_{t}+n^{-1 / 2} \widehat{\sigma}_{t} z_{\alpha / 2}\right), \tag{S2.1}
\end{equation*}
$$

where z_{p} is the $100 p$ percentile point of a standard normal distribution. It is naturally to estimate the asymptotic variance by

$$
\begin{equation*}
\widehat{\sigma}_{t}^{2}=\frac{\sum_{i=1}^{n} \widehat{\Psi}_{i t}^{2}}{n \widehat{\nu}_{t}^{2}} \tag{S2.2}
\end{equation*}
$$

where $\widehat{\nu}_{t}=\widehat{S}_{C}^{2}(t) \widehat{S}_{T}(t)\left(1-\widehat{S}_{T}(t)\right)$ and $\widehat{\Psi}_{i t}=n^{-1} \sum_{j \neq i}\left(\widehat{H}_{i j t}+\widehat{H}_{j i t}\right)$ with

$$
\begin{equation*}
\widehat{H}_{i j t}=\left(\widehat{S}_{C}(t)-D_{i t}^{* c}\right) D_{j t}^{* c}\left(\phi_{i j}-\widehat{\theta}_{t}\right)-\widehat{\eta}_{t} \widehat{S}_{C}(t) \int_{0}^{t} \frac{d \widehat{M}_{i}(u)}{\widehat{S}_{X}(u)} \tag{S2.3}
\end{equation*}
$$

$\widehat{M}_{i}(t)=I\left(X_{i} \leq t\right)\left(1-\delta_{i}\right)-\int_{0}^{t} I\left(X_{i} \geq u\right) d \widehat{\Lambda}_{C}(u), \widehat{\Lambda}_{C}(t)=\widehat{S}_{X \delta}(t) \widehat{S}_{X}^{-1}(t), \widehat{S}_{X}(t)=n^{-1} \sum_{i=1}^{n} I$ $\left(X_{i}>t\right)$, and $\widehat{S}_{X \delta}(t)=n^{-1} \sum_{i=1}^{n} I\left(X_{i}>t\right)\left(1-\delta_{i}\right)$. By the consistency of $\widehat{S}_{C}(t), \widehat{S}_{T}(t), \widehat{\theta}_{t}$, and $\widehat{\eta}_{t}$, and the uniform convergence of $\widehat{S}_{X}(t)$ and $\widehat{S}_{X \delta}(t)$, we have

$$
\begin{equation*}
\widehat{\sigma}_{t}^{2}=\frac{\sum_{i, j, k}\left(H_{i j t}+H_{j i t}\right)\left(H_{i k t}+H_{k i t}\right)}{n^{3} \nu_{t}^{2}}+o_{p}(1) \tag{S2.4}
\end{equation*}
$$

Finally, the consistency of a U-statistic ensures that the dominating term in (S2.4) converges to $\nu_{t}^{-2} E\left(\left(H_{i j t}+H_{j i t}\right)\left(H_{i k t}+H_{k i t}\right)\right)=\sigma_{t}^{2}$.

S3. Proof of Main Results

Proof of Theorem 2.1. Let the corresponding random weighting analogues of $U_{n t}$ and $V_{n t}$ be separately denoted by $U_{n t}^{w}$ and $V_{n t}^{w}$. Thus, $\left(\widehat{\theta_{t}^{w}}-\widehat{\theta}_{t}\right)$ can be expressed as $\left(U_{n t}^{w}-U_{n t}\right) / V_{n t}^{w}-$ $r_{1 n t}+r_{2 n t}+r_{3 n t}$ with
$r_{2 n t}=U_{n t}\left(\frac{1}{V_{n t}^{w}}-\frac{1}{V_{n t}}\right), r_{3 n t}=\frac{\eta_{t} S_{C}(t)}{V_{n t}^{w}}\left[\int_{0}^{t} \frac{d M_{.}^{w}(u)}{S_{X}\left(u^{-}\right)}-\left(1-\frac{\widehat{S}_{C}^{w}(t)}{S_{C}(t)}\right) \frac{\sum_{i \neq j} w_{i} w_{j} D_{j t}^{* c}\left(\phi_{i j}-\theta_{t}\right)}{\eta_{t}}\right]$.
It is implied from $P\left(n^{1 / 2}\left|r_{1 n t}\right|>\varepsilon \mid D_{n}\right)=I\left(n^{1 / 2}\left|r_{1 n t}\right|>\varepsilon\right)$ and (S1.4) that

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{1 n t}\right|>\varepsilon \mid D_{n}\right) \xrightarrow{p} 0 . \tag{S3.1}
\end{equation*}
$$

As for the convergence of $V_{n t}^{w}$ to $V_{n t}$ in $r_{2 n t}$ and $r_{3 n t}$, a direct calculation first shows that

$$
\begin{equation*}
V_{n t}^{w}-V_{n t}=\sum_{i \neq j}\left(w_{i} w_{j}-\frac{1}{n(n-1)}\right)\left(\widehat{S}_{C}(t)-D_{i t}^{* c}\right) D_{j t}^{* c}+\left(\widehat{S}_{c}^{w}(t)-\widehat{S}_{c}(t)\right)\left(\sum_{i} w_{i} D_{i t}^{* c}\right) . \tag{S3.2}
\end{equation*}
$$

The convergence property of Hoeffding (1961) yields that

$$
\begin{equation*}
n(n-1) \sum_{i \neq j}\left(w_{i} w_{j}-\frac{1}{n(n-1)}\right)^{2} \xrightarrow{p} \rho^{-2}\left(\rho^{-2}+2\right) . \tag{S3.3}
\end{equation*}
$$

Using the boundedness of $\left(\widehat{S}_{C}(t)-D_{i t}^{* c}\right) D_{j t}^{* c}$ and (S3.3), one has

$$
\begin{equation*}
\left|\sum_{i \neq j}\left(w_{i} w_{j}-\frac{1}{n(n-1)}\right)\left(\widehat{S}_{C}(t)-D_{i t}^{* c}\right) D_{j t}^{* c}\right| \xrightarrow{p} 0 . \tag{S3.4}
\end{equation*}
$$

Thus, the properties of $\widehat{S}_{C}^{w}(t) \xrightarrow{p} S_{C}(t), \sum_{i=1}^{n} w_{i} D_{i t}^{* c} \xrightarrow{p} S_{X}(t)$, and (S3.4) imply that

$$
\begin{equation*}
V_{n t}^{w}-V_{n t} \xrightarrow{p} 0 \text { as } n \rightarrow \infty . \tag{S3.5}
\end{equation*}
$$

It is entailed by the convergence of a U-statistic, (S3.5), and the Slutsky's theorem that

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{2 n t}\right|>\varepsilon \mid D_{n}\right) \xrightarrow{p} 0 \text { as } n \rightarrow \infty . \tag{S3.6}
\end{equation*}
$$

By Lemma S3.1, (S3.5), and $\sum_{i \neq j} w_{i} w_{j} D_{j t}^{* c}\left(\phi_{i j}-\theta_{t}\right) \xrightarrow{p} \eta_{t}$, we further derive that

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{3 n t}\right|>\varepsilon \mid D_{n}\right) \xrightarrow{p} 0 . \tag{S3.7}
\end{equation*}
$$

It is shown from (S3.1) and (S3.6)-(S3.7) that (2.2) is ascertained if

$$
\begin{equation*}
\sup _{x \in R}\left|P\left(\left.\frac{n^{1 / 2} \rho\left(U_{n t}^{w}-U_{n t}\right)}{V_{n t}^{w}} \leq x \right\rvert\, D_{n}\right)-P\left(\frac{n^{1 / 2} U_{n t}}{V_{n t}} \leq x\right)\right| \xrightarrow{p} 0 \text { as } n \rightarrow \infty . \tag{S3.8}
\end{equation*}
$$

From the result of Janssen (1994), one can ensure that

$$
\begin{equation*}
\sup _{x \in R}\left|P\left(n^{1 / 2} \rho\left(U_{n t}^{w}-U_{n t}\right) \leq x \mid D_{n}\right)-P\left(n^{1 / 2} U_{n t} \leq x\right)\right| \xrightarrow{p} 0 \text { as } n \rightarrow \infty . \tag{S3.9}
\end{equation*}
$$

Together with (S1.2) and (S3.5), (S3.8) is derived by applying the Slutsky's theorem.

Lemma S3.1. Suppose that assumptions (A1)-(A2) are satisfied. Then, for any $\varepsilon>0$,

$$
\begin{equation*}
P\left(\left.n^{1 / 2}\left|1-\frac{\widehat{S}_{C}^{w}(t)}{S_{C}(t)}-\int_{0}^{t} \frac{d M_{\cdot}^{w}(u)}{S_{X}\left(u^{-}\right)}\right|>\varepsilon \right\rvert\, D_{n}\right) \xrightarrow{p} 0 \text { as } n \rightarrow \infty . \tag{S3.10}
\end{equation*}
$$

Proof. By the integration by parts and the right-continuity of $\widehat{S}_{C}^{w}(t)$, one has

$$
\begin{equation*}
1-\frac{\widehat{S}_{C}^{w}(t)}{S_{C}(t)}=\int_{0}^{t} \frac{\widehat{S}_{C}^{w}\left(u^{-}\right) I\left(R_{\cdot}^{w}(u)>0\right)}{S_{C}(u) R_{\cdot}^{w}(u)} d M_{\cdot}^{w}(u)-B^{w}(t) \tag{S3.11}
\end{equation*}
$$

where $B^{w}(t)=\int_{0}^{t}\left(\widehat{S}_{C}^{w}\left(u^{-}\right) / S_{C}(u)\right) I\left(R_{.}^{w}(u)=0\right) d \Lambda_{C}(u)$. Thus, the conditional probability in (S3.10) is shown to satisfy the following probability inequality:

$$
\begin{align*}
P\left(n^{1 / 2} \left\lvert\, 1-\frac{\widehat{S}_{C}^{w}(t)}{S_{C}(t)}\right.\right. & \left.-\int_{0}^{t} \frac{d M_{\cdot}^{w}(u)}{S_{X}\left(u^{-}\right)}|>\varepsilon| D_{n}\right) \leq P\left(\left.\left|n^{1 / 2} B^{w}(t)\right|>\frac{\varepsilon}{2} \right\rvert\, D_{n}\right) \\
& +P\left(\left.\left|n^{1 / 2} \int_{0}^{t}\left[\frac{\widehat{S}_{C}^{w}\left(u^{-}\right) I\left(R_{\cdot}^{w}(u)>0\right)}{S_{C}(u) R_{\cdot}^{w}(u)}-\frac{1}{S_{X}\left(u^{-}\right)}\right] d M_{\cdot}^{w}(u)\right|>\frac{\varepsilon}{2} \right\rvert\, D_{n}\right) . \tag{S3.12}
\end{align*}
$$

Paralleling the argument of Fleming and Harrington (1991), we can derive that

$$
\begin{equation*}
\sup _{0 \leq u \leq t}\left|n^{1 / 2} B^{w}(u)\right| \leq n^{1 / 2}\left(1-S_{C}(t)\right) I\left(R \cdot{ }^{w}(t)=0\right) \tag{S3.13}
\end{equation*}
$$

It is further implied that

$$
\begin{equation*}
E\left(P\left(\left|n^{1 / 2} I\left(R_{.}^{w}(t)=0\right)\right|>\varepsilon \mid D_{n}\right)\right)=\left(P\left(\xi_{1}=0\right) S_{X}(t)\right)^{n} . \tag{S3.14}
\end{equation*}
$$

Combining (S3.13)-(S3.14), we have

$$
\begin{equation*}
P\left(\left.\left|n^{1 / 2} B^{w}(t)\right|>\frac{\varepsilon}{2} \right\rvert\, D_{n}\right) \xrightarrow{p} 0 \text { as } n \rightarrow \infty . \tag{S3.15}
\end{equation*}
$$

The Lenglart's inequality yields that for any $\varepsilon_{1}, \varepsilon_{2}>0$,

$$
\begin{align*}
& E\left(P\left(\left.n^{1 / 2} \sup _{0 \leq s \leq \tau}\left|\int_{0}^{s}\left[\frac{\widehat{S}_{C}^{w}\left(u^{-}\right) I\left(R_{\cdot}^{w}(u)>0\right)}{S_{C}(u) R_{\cdot}^{w}(u)}-\frac{1}{S_{X}\left(u^{-}\right)}\right] d M_{\cdot}^{w}(u)\right|>\varepsilon_{1} \right\rvert\, D_{n}\right)\right) \\
& <\frac{\varepsilon_{2}}{\varepsilon_{1}^{2}}+P\left(\Delta_{n} \int_{0}^{\tau}\left[\frac{\widehat{S}_{C}^{w}\left(u^{-}\right) I\left(R_{.}^{w}(u)>0\right)}{S_{C}(u) R_{\cdot}^{w}(u)}-\frac{1}{S_{X}\left(u^{-}\right)}\right]^{2} d \Lambda_{C}(u)>\varepsilon_{2}\right) \tag{S3.16}
\end{align*}
$$

where $\Delta_{n}=n \sum_{i=1}^{n} w_{i}^{2}$. By applying the uniform convergence of $\widehat{S}_{C}(t)$ (Shorack and Wellner (1986)) and the uniform strong law of large numbers for $R .(t)$ (Pollard (1990)) with respect to t to $\widehat{S}_{C}^{w}(t)$ and $R_{\text {. }}^{w}(t)$, we derive that

$$
\begin{equation*}
\Delta_{n} \int_{0}^{\tau}\left[\frac{\widehat{S}_{C}^{w}\left(u^{-}\right) I\left(R_{\cdot}^{w}(u)>0\right)}{S_{C}(u) R_{\cdot}^{w}(u)}-\frac{1}{S_{X}\left(u^{-}\right)}\right]^{2} d \Lambda_{C}(u) \xrightarrow{p} 0 \text { as } n \rightarrow \infty . \tag{S3.17}
\end{equation*}
$$

From (S3.16)-(S3.17), it follows that

$$
\begin{equation*}
P\left(\left.\left|n^{1 / 2} \int_{0}^{t}\left[\frac{\widehat{S}_{C}^{w}\left(u^{-}\right) I\left(R_{\cdot}^{w}(u)>0\right)}{S_{C}(u) R_{\cdot}^{w}(u)}-\frac{1}{S_{X}\left(u^{-}\right)}\right] d M_{\cdot}^{w}(u)\right|>\frac{\varepsilon}{2} \right\rvert\, D_{n}\right) \xrightarrow{p} 0 \text { as } n \rightarrow \infty . \tag{S3.18}
\end{equation*}
$$

Together with (S3.12) and (S3.15), the proof of (S3.10) is completed .

Proof of Theorem 2.2. From (2.6), an alternative expression of $\hat{\theta}_{t}^{(s)}$ is derived to be

$$
\begin{equation*}
\widehat{\theta}_{t}^{(s)}=\frac{n^{1 / 2}\left(U_{n t}^{(s)}+4 n^{-1} S_{C}(t) E\left(h_{1 t}^{(0)} h_{1 t}^{(\eta)}\right)+\sum_{j=0}^{3} r_{j n t}^{(s)}\right)}{\widehat{\sigma}_{n t}} \tag{S3.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& r_{0 n t}^{(s)}=\frac{\sum_{i \neq j}\left[2\left(H_{i j t}^{(k m)} h_{i t}^{(\eta)}+H_{i j t}^{(k m)} h_{j t}^{(\eta)}\right)-4 S_{C}(t) E\left(h_{1 t}^{(0)} h_{1 t}^{(\eta)}\right)\right]}{n^{2}(n-1)}, r_{1 n t}^{(s)}=r_{n t}^{(k m)} U_{n t}^{(2)}, \\
& r_{2 n t}^{(s)}=\frac{2 \sum_{i \neq j \neq l} H_{i j t}^{(k m)} h_{l t}^{(\eta)}}{n^{2}(n-1)}, r_{3 n t}^{(s)}=U_{n t}^{(k m)} \Psi_{n t}^{(\eta)} \text { with } \Psi_{n t}^{(\eta)}=U_{n t}^{(2)}-2 \bar{h}_{\cdot t}^{(\eta)} \text { and } \bar{h}_{\cdot t}^{(\eta)}=\frac{\sum_{l=1}^{n} h_{l t}^{\eta}}{n} .
\end{aligned}
$$

It is entailed from $E\left(r_{0 n t}^{(s) 2}\right)=O\left(n^{-3}\right)$ that

$$
\begin{equation*}
\left.P\left(n^{1 / 2}\left|r_{0 n t}^{(s)}\right| \geq n^{-1 / 2}(\ln n)^{-1}\right)=O\left(n^{-2} \ln n\right)^{2}\right) . \tag{S3.20}
\end{equation*}
$$

Lemma S3.2 below and the boundedness of $D_{1 t}^{* c}, \phi_{12}$, and θ_{t} ensure that

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{1 n t}^{(s)}\right|>n^{-1 / 2}(\ln n)^{-1}\right)=o\left(n^{-1 / 2}\right) . \tag{S3.21}
\end{equation*}
$$

Since the projection of a U-statistic $r_{2 n t}^{(s)}$ is 0 and $E\left(r_{2 n t}^{(s) 2}\right)=O\left(n^{-2}\right)$ (Hoeffding (1948)), we have

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{2 n t}^{(s)}\right|>n^{-1 / 2}(\ln n)^{-1}\right)=o\left(n^{-1 / 2}\right) . \tag{S3.22}
\end{equation*}
$$

The probability inequality and $P\left(n^{1 / 2}\left|U_{n t}^{(k m)}\right|>(\ln n)^{1 / 2}\right)=o\left(n^{-1 / 2}\right)$ (Malevich and Abdalimov (1979)) yield

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{3 n t}^{(s)}\right|>(n \ln n)^{-1 / 2}\right) \leq P\left(\left|\Psi_{n t}^{(\eta)}\right|>n^{-1 / 2}(\ln n)^{-1}\right)+o\left(n^{-1 / 2}\right) . \tag{S3.23}
\end{equation*}
$$

The Chebyshev's inequality and $E\left(\Psi_{n t}^{(\eta) 2}\right)=O\left(n^{-2}\right)$ imply that $P\left(\left|\Psi_{n t}^{(\eta)}\right|>n^{-1 / 2}(\ln n)^{-1}\right)$ $=o\left(n^{-1 / 2}\right)$ and, hence,

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{3 n t}^{(s)}\right|>(n \ln n)^{-1 / 2}\right)=o\left(n^{-1 / 2}\right) . \tag{S3.24}
\end{equation*}
$$

From (S3.20)-(S3.22) and (S3.24), it follows that

$$
\begin{equation*}
P\left(\left|\widehat{\theta}_{t}^{(s)}-\frac{n^{1 / 2}\left(U_{n t}^{(s)}+4 n^{-1} S_{C}(t) E\left(h_{1 t}^{(0)} h_{1 t}^{(\eta)}\right)\right)}{\widehat{\sigma}_{n t}}\right|>(n \ln n)^{-1 / 2}\right)=o\left(n^{-1 / 2}\right) . \tag{S3.25}
\end{equation*}
$$

Similar to the proof steps for the approximation of the numerator term of $\widehat{\theta}_{t}^{(s)}, \widehat{\sigma}_{n t}$ can be substituted via the square root of $\sigma_{n t}^{2}=4(n-1)(n-2)^{-2} \sum_{i=1}^{n}\left[\sum_{j=1}^{n} H_{i j t}^{(s)} /(n-1)-U_{n t}^{(s)}\right]^{2}$ in (S3.25). A further application of Lemma 2 in Chang and Rao (1989) entails that

$$
\begin{equation*}
\sup _{x}\left|F_{n}^{(s)}(x)-\widehat{F}_{n}^{(s)}(x)\right|=\sup _{x}\left|P\left(\frac{n^{1 / 2} U_{n t}^{(s)}+4 n^{-1 / 2} S_{C}(t) E\left(h_{1 t}^{(0)} h_{1 t}^{(\eta)}\right)}{\sigma_{n t}} \leq x\right)-\widehat{F}_{n}^{(s)}(x)\right|+o\left(n^{-1 / 2}\right) . \tag{S3.26}
\end{equation*}
$$

It can be shown as Helmers (1991) that

$$
\frac{2 \sigma_{t}^{(s)}}{\sigma_{n t}}=1-\frac{\bar{f}_{t}}{8 \sigma_{t}^{(s) 2}}+R_{n t}^{*}
$$

where \bar{f}_{t} is the mean of $f_{i t}=8 E\left(h_{j t}^{(s)}\left(H_{i j t}^{(s)}-h_{i t}^{(s)}-h_{j t}^{(s)}\right) \mid X_{i}, \delta_{i}, Y_{i}\right)+4\left(h_{i t}^{(s)}-\sigma_{t}^{(s) 2}\right), i=1, \cdots, n$, and $R_{n t}^{*}$ satisfies $P\left(\left|R_{n t}^{*}\right| \geq n^{-1 / 2}(\ln n)^{-1}\right)=o\left(n^{-1 / 2}\right)$. Thus,

$$
\begin{equation*}
\frac{n^{1 / 2} U_{n t}^{(s)}+4 n^{-1 / 2} S_{C}(t) E\left(h_{1 t}^{(0)} h_{1 t}^{(\eta)}\right)}{\sigma_{n t}}=\frac{n^{1 / 2} U_{n t}^{(s)}}{2 \sigma_{t}^{(s)}}\left(1-\frac{\bar{f}_{\cdot t}}{8 \sigma_{t}^{(s) 2}}\right)+\frac{2 n^{-1 / 2} S_{C}(t) E\left(h_{1 t}^{(0)} h_{1 t}^{(\eta)}\right)}{\sigma_{t}^{(s)}}+R_{n t}^{* *} \tag{S3.27}
\end{equation*}
$$

with $R_{n t}^{* *}=-S_{C}(t) E\left(h_{1 t}^{(0)} h_{1 t}^{(\eta)}\right) \bar{f}_{\cdot t} /\left(4 n^{1 / 2} \sigma_{t}^{(s) 3}\right)+n^{1 / 2} R_{n t}^{*} U_{n t}^{(s)} /\left(2 \sigma_{t}^{(s)}\right)$ such that $P\left(\left|R_{n t}^{* *}\right|>\right.$ $\left.(n \ln n)^{-1 / 2}\right)=o\left(n^{-1 / 2}\right)$. Similar to the proofs of Theorem 1 in Helmers (1991), one derives that

$$
\begin{equation*}
\sup _{x}\left|P\left(\frac{n^{1 / 2} U_{n t}^{(s)}}{2 \sigma_{t}^{(s)}}\left(1-\frac{\bar{f}_{\cdot t}}{8 \sigma_{t}^{(s) 2}}\right)+\frac{2 n^{-1 / 2} S_{C}(t) E\left(h_{1 t}^{(0)} h_{1 t}^{(\eta)}\right)}{\sigma_{t}^{(s)}} \leq x\right)-\widehat{F}_{n}^{(s)}(x)\right|=o\left(n^{-1 / 2}\right) \tag{S3.28}
\end{equation*}
$$

as $n \rightarrow \infty$. Together with (S3.26), (2.7) is obtained.

Lemma S3.2. Suppose that assumptions (A1)-(A2) are satisfied. Then,

$$
\begin{equation*}
P\left(\left|n^{1 / 2} r_{n t}^{(k m)}\right|>n^{-1 / 2}(\ln n)^{-1}\right)=o\left(n^{-1 / 2}\right) \text { as } n \rightarrow \infty . \tag{S3.29}
\end{equation*}
$$

Proof. It was shown by Chang (1991) that

$$
\begin{equation*}
P\left(\left|c n^{1 / 2} r_{n t}^{(0)}\right|>n^{-1 / 2}(\ln n)^{-1}\right)=o\left(n^{-1 / 2}\right) \text { for any constant } c, \tag{S3.30}
\end{equation*}
$$

where $r_{n t}^{(0)}=\left(\widehat{\Lambda}_{C}(t)-\Lambda_{C}(t)\right)-\left(U_{n t}^{(0)}+2 n^{-1} \sigma_{0 t}^{2}\right)$. The consistency of a U-statistic and (S3.30) imply that $U_{n t}^{(0)} \xrightarrow{p} 0$ and $r_{n t}^{(0)} \xrightarrow{p} 0$. Taking the Taylor expansion with respect to $\Lambda_{C}(t)$, one has $r_{n t}^{(k m)}=O_{p}\left(\sum_{j=0}^{4} r_{n t}^{(j)}\right)$, where $r_{n t}^{(1)}=\Psi_{n t}^{(0)}\left(\Psi_{n t}^{(0)}+4 \bar{h}_{t}^{(0)}\right), r_{n t}^{(2)}=U_{n t}^{(0)}\left(\sum_{i \neq j} h_{i t}^{(0)} h_{j t}^{(0)}\right) /[n(n-$ 1)], $r_{n t}^{(3)}=\left(\sum_{i=1}^{n} h_{i t}^{(0) 2} / n-\sigma_{0 t}^{2}\right) / n$, and $r_{n t}^{(4)}=\left(\Psi_{n t}^{(0)}+2 \bar{h}_{\cdot t}^{(0)}\right) / n$ with $\Psi_{n t}^{(0)}=U_{n t}^{(0)}-2 \bar{h}_{. t}^{(0)}$ and $\bar{h}_{\cdot t}^{(0)}$ being the sample mean of $h_{i t}^{(0)}$'s. From the result of Malevich and Abdalimov (1979), it follows that

$$
\begin{equation*}
P\left(n^{1 / 2}\left|U_{n t}^{(0)}\right|>\sqrt{\ln n}\right)=o\left(n^{-1 / 2}\right) \text { and } P\left(n^{1 / 2}\left|\Psi_{n t}^{(0)}+4 \bar{h}^{(0)}\right|>(\ln n)^{1 / 2}\right)=o\left(n^{-1 / 2}\right) . \tag{S3.31}
\end{equation*}
$$

Using the probability inequality, $E\left(\Psi_{n t}^{(0) 2}\right)=O\left(n^{-2}\right)$ (Hoeffding (1948)), and (S3.31), one has

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{n t}^{(1)}\right|>n^{-1 / 2}(\ln n)^{-1}\right) \leq P\left(\left|\Psi_{n t}^{(0)}\right|>n^{-1 / 2}(\ln n)^{-3 / 2}\right)+o\left(n^{-1 / 2}\right)=o\left(n^{-1 / 2}\right) . \tag{S3.32}
\end{equation*}
$$

Since the conditional expectation of $\sum_{i \neq j} h_{i t}^{(0)} h_{j t}^{(0)} /[n(n-1)]$ is zero, it can be derived in the same way as (S3.32) that

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{n t}^{(1)}\right|>n^{-1 / 2}(\ln n)^{-1}\right)=o\left(n^{-1 / 2}\right) . \tag{S3.33}
\end{equation*}
$$

By the Chebyshev's inequality, it is further implied that

$$
\begin{equation*}
P\left(n^{1 / 2}\left|r_{n t}^{(k)}\right|>n^{-1 / 2}(\ln n)^{-1}\right)=o\left(n^{-1 / 2}\right), k=3,4 . \tag{S3.34}
\end{equation*}
$$

Finally, from (S3.30), (S3.31)-(S3.34), (S3.29) is obtained.

Figure 1: The biases of $\widehat{\theta}_{t}$ (dashed-dotted curve) and $\widehat{\theta}_{c d t}$ (dotted curve), and the standard errors of $\widehat{\theta}_{t}$ (solid curve) and $\widehat{\theta}_{c d t}$ (dashed curve) for the sample sizes (n) of 250, 500, and 1000 , and the censoring rates (c.r.) of $0 \%, 30 \%$, and 50%.

