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Let τ < sup{u : SX(u) > 0} with SX(u) = P (X > u) and τ0 = inf{u : P (T > u) <

1, u ∈ [τ0, τ ]}. The second condition (A2: the cumulative hazard function ΛC(t) of C is

bounded for t ∈ [0, τ ]) is further assumed throughout the rest of this paper. Some concise

notations below are used to simplify the complicated mathematical expressions: Unt =

∑
i6=j Hijt/[n(n − 1)] with Hijt = (SC(t) − D∗c

it )D∗c
jt (φij − θt) − ηtSC(t)

∫ t

0
dMi(u)/SX(u−),

νt = S2
C(t)ST (t))(1− ST (t)), and ηt being defined in Section 2.2.

S1. Asymptotic Normality of θ̂t

From (1.1), one has

n1/2(θ̂t − θt) = n1/2(
Unt

Vnt

+ r1nt), (S1.1)

where Vnt is defined in Section 2.2 and

r1nt =
ηtSC(t)

Vnt

[

∫ t

0

dM̄·(u)

SX(u−)
− (1− ŜC(t)

SC(t)
)

∑
i6=j D∗c

jt (φij − θt)

n(n− 1)ηt

].

By the boundedness of D∗c
it ’s and the consistency of ŜC(t) and a U-statistic, it follows that

Vnt
p→ νt as n →∞. (S1.2)
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Again, the consistency of a U-statistic and the martingale representation

n1/2(ŜC(t)− SC(t)) = −n−1/2SC(t)
n∑

i=1

∫ t

0

dMi(u)

SX(u)
+ op(1), (S1.3)

where Mi(t) = I(Xi ≤ t)(1− δi)−
∫ t

0
I(Xi ≥ u)dΛC(u), entail that

n1/2|r1nt| p→ 0. (S1.4)

From (S1.2) and (S1.4), we get

n1/2(θ̂t − θt) =
n1/2Unt

νt

+ op(1). (S1.5)

It follows immediately from Hoeffding (1948) that

n1/2Unt = n−1/2

n∑
i=1

Ψit + op(1) with Ψit = E(Hijt + Hjit|Xi, Yi, δi). (S1.6)

Together with (S1.5), n1/2(θ̂t − θt) is shown to converge weakly to a normal distribution

with mean zero and variance σ2
t = ν−2

t E(Ψ2
it).

S2. Normality Approximated Confidence Interval for θt

The asymptotic normality of θ̂t and the consistent estimator σ̂2
t of σ2

t enable us to

construct an approximated (1− α) , 0 < α < 1, confidence interval for θt via

(θ̂t − n−1/2σ̂tzα/2, θ̂t + n−1/2σ̂tzα/2), (S2.1)

where zp is the 100p percentile point of a standard normal distribution. It is naturally to

estimate the asymptotic variance by

σ̂2
t =

∑n
i=1 Ψ̂2

it

nν̂2
t

(S2.2)

where ν̂t = Ŝ2
C(t)ŜT (t)(1− ŜT (t)) and Ψ̂it = n−1

∑
j 6=i(Ĥijt + Ĥjit) with

Ĥijt = (ŜC(t)−D∗c
it )D∗c

jt (φij − θ̂t)− η̂tŜC(t)

∫ t

0

dM̂i(u)

ŜX(u)
, (S2.3)
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M̂i(t) = I(Xi ≤ t)(1−δi)−
∫ t

0
I(Xi ≥ u)dΛ̂C(u), Λ̂C(t) = ŜXδ(t)Ŝ

−1
X (t), ŜX(t) = n−1

∑n
i=1 I

(Xi > t), and ŜXδ(t) = n−1
∑n

i=1 I(Xi > t)(1 − δi). By the consistency of ŜC(t), ŜT (t), θ̂t,

and η̂t, and the uniform convergence of ŜX(t) and ŜXδ(t), we have

σ̂2
t =

∑
i,j,k(Hijt + Hjit)(Hikt + Hkit)

n3ν2
t

+ op(1). (S2.4)

Finally, the consistency of a U-statistic ensures that the dominating term in (S2.4) converges

to ν−2
t E((Hijt + Hjit)(Hikt + Hkit)) = σ2

t .

S3. Proof of Main Results

Proof of Theorem 2.1. Let the corresponding random weighting analogues of Unt and Vnt

be separately denoted by Uw
nt and V w

nt . Thus, (θ̂w
t − θ̂t) can be expressed as (Uw

nt−Unt)/V
w
nt−

r1nt + r2nt + r3nt with

r2nt = Unt(
1

V w
nt

− 1

Vnt

), r3nt =
ηtSC(t)

V w
nt

[

∫ t

0

dMw
· (u)

SX(u−)
− (1− Ŝw

C (t)

SC(t)
)

∑
i6=j wiwjD

∗c
jt (φij − θt)

ηt

].

It is implied from P (n1/2|r1nt| > ε|Dn) = I(n1/2|r1nt| > ε) and (S1.4) that

P (n1/2|r1nt| > ε|Dn)
p→ 0. (S3.1)

As for the convergence of V w
nt to Vnt in r2nt and r3nt, a direct calculation first shows that

V w
nt − Vnt =

∑

i6=j

(wiwj − 1

n(n− 1)
)(ŜC(t)−D∗c

it )D∗c
jt + (Ŝw

c (t)− Ŝc(t))(
∑

i

wiD
∗c
it ). (S3.2)

The convergence property of Hoeffding (1961) yields that

n(n− 1)
∑

i 6=j

(wiwj − 1

n(n− 1)
)2 p→ ρ−2(ρ−2 + 2). (S3.3)

Using the boundedness of (ŜC(t)−D∗c
it )D∗c

jt and (S3.3), one has

|
∑

i6=j

(wiwj − 1

n(n− 1)
)(ŜC(t)−D∗c

it )D∗c
jt |

p→ 0. (S3.4)
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Thus, the properties of Ŝw
C (t)

p→ SC(t),
∑n

i=1 wiD
∗c
it

p→ SX(t), and (S3.4) imply that

V w
nt − Vnt

p→ 0 as n →∞. (S3.5)

It is entailed by the convergence of a U-statistic, (S3.5), and the Slutsky’s theorem that

P (n1/2|r2nt| > ε|Dn)
p→ 0 as n →∞. (S3.6)

By Lemma S3.1, (S3.5), and
∑

i6=j wiwjD
∗c
jt (φij − θt)

p→ ηt, we further derive that

P (n1/2|r3nt| > ε|Dn)
p→ 0. (S3.7)

It is shown from (S3.1) and (S3.6)-(S3.7) that (2.2) is ascertained if

sup
x∈R

|P (
n1/2ρ(Uw

nt − Unt)

V w
nt

≤ x|Dn)− P (
n1/2Unt

Vnt

≤ x)| p→ 0 as n →∞. (S3.8)

From the result of Janssen (1994), one can ensure that

sup
x∈R

|P (n1/2ρ(Uw
nt − Unt) ≤ x|Dn)− P (n1/2Unt ≤ x)| p→ 0 as n →∞. (S3.9)

Together with (S1.2) and (S3.5), (S3.8) is derived by applying the Slutsky’s theorem.

Lemma S3.1. Suppose that assumptions (A1)-(A2) are satisfied. Then, for any ε > 0,

P (n1/2|1− Ŝw
C (t)

SC(t)
−

∫ t

0

dMw
· (u)

SX(u−)
| > ε|Dn)

p→ 0 as n →∞. (S3.10)

Proof. By the integration by parts and the right-continuity of Ŝw
C (t), one has

1− Ŝw
C (t)

SC(t)
=

∫ t

0

Ŝw
C (u−)I(Rw

· (u) > 0)

SC(u)Rw· (u)
dMw

· (u)−Bw(t), (S3.11)

where Bw(t) =
∫ t

0
(Ŝw

C (u−)/SC(u))I(Rw
· (u) = 0)dΛC(u). Thus, the conditional probability

in (S3.10) is shown to satisfy the following probability inequality:

P (n1/2|1− Ŝw
C (t)

SC(t)
−

∫ t

0

dMw
· (u)

SX(u−)
| > ε|Dn) ≤ P (|n1/2Bw(t)| > ε

2
|Dn)

+P (|n1/2

∫ t

0

[
Ŝw

C (u−)I(Rw
· (u) > 0)

SC(u)Rw· (u)
− 1

SX(u−)
]dMw

· (u)| > ε

2
|Dn).(S3.12)
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Paralleling the argument of Fleming and Harrington (1991), we can derive that

sup
0≤u≤t

|n1/2Bw(u)| ≤ n1/2(1− SC(t))I(R.w(t) = 0). (S3.13)

It is further implied that

E(P (|n1/2I(Rw
· (t) = 0)| > ε|Dn)) = (P (ξ1 = 0)SX(t))n. (S3.14)

Combining (S3.13)-(S3.14), we have

P (|n1/2Bw(t)| > ε

2
|Dn)

p→ 0 as n →∞. (S3.15)

The Lenglart’s inequality yields that for any ε1, ε2 > 0,

E(P (n1/2 sup
0≤s≤τ

|
∫ s

0

[
Ŝw

C (u−)I(Rw
· (u) > 0)

SC(u)Rw· (u)
− 1

SX(u−)
]dMw

· (u)| > ε1|Dn))

<
ε2

ε2
1

+ P (∆n

∫ τ

0

[
Ŝw

C (u−)I(Rw
· (u) > 0)

SC(u)Rw· (u)
− 1

SX(u−)
]2dΛC(u) > ε2), (S3.16)

where ∆n = n
∑n

i=1 w2
i . By applying the uniform convergence of ŜC(t) (Shorack and Wellner

(1986)) and the uniform strong law of large numbers for R·(t) (Pollard (1990)) with respect

to t to Ŝw
C (t) and Rw

· (t), we derive that

∆n

∫ τ

0

[
Ŝw

C (u−)I(Rw
· (u) > 0)

SC(u)Rw· (u)
− 1

SX(u−)
]2dΛC(u)

p→ 0 as n →∞. (S3.17)

From (S3.16)-(S3.17), it follows that

P (|n1/2

∫ t

0

[
Ŝw

C (u−)I(Rw
· (u) > 0)

SC(u)Rw· (u)
− 1

SX(u−)
]dMw

· (u)| > ε

2
|Dn)

p→ 0 as n →∞. (S3.18)

Together with (S3.12) and (S3.15), the proof of (S3.10) is completed .

Proof of Theorem 2.2. From (2.6), an alternative expression of θ̂
(s)
t is derived to be

θ̂
(s)
t =

n1/2(U
(s)
nt + 4n−1SC(t)E(h

(0)
1t h

(η)
1t ) +

∑3
j=0 r

(s)
jnt)

σ̂nt

, (S3.19)
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where

r
(s)
0nt =

∑
i6=j[2(H

(km)
ijt h

(η)
it + H

(km)
ijt h

(η)
jt )− 4SC(t)E(h

(0)
1t h

(η)
1t )]

n2(n− 1)
, r

(s)
1nt = r

(km)
nt U

(2)
nt ,

r
(s)
2nt =

2
∑

i 6=j 6=l H
(km)
ijt h

(η)
lt

n2(n− 1)
, r

(s)
3nt = U

(km)
nt Ψ

(η)
nt with Ψ

(η)
nt = U

(2)
nt − 2h̄

(η)
·t and h̄

(η)
·t =

∑n
l=1 hη

lt

n
.

It is entailed from E(r
(s)2
0nt ) = O(n−3) that

P (n1/2|r(s)
0nt| ≥ n−1/2(ln n)−1) = O(n−2 ln n)2). (S3.20)

Lemma S3.2 below and the boundedness of D∗c
1t , φ12, and θt ensure that

P (n1/2|r(s)
1nt| > n−1/2(ln n)−1) = o(n−1/2). (S3.21)

Since the projection of a U-statistic r
(s)
2nt is 0 and E(r

(s)2
2nt ) = O(n−2) (Hoeffding (1948)), we

have

P (n1/2|r(s)
2nt| > n−1/2(ln n)−1) = o(n−1/2). (S3.22)

The probability inequality and P (n1/2|U (km)
nt | > (ln n)1/2) = o(n−1/2) (Malevich and Abdal-

imov (1979)) yield

P (n1/2|r(s)
3nt| > (n ln n)−1/2) ≤ P (|Ψ(η)

nt | > n−1/2(ln n)−1) + o(n−1/2). (S3.23)

The Chebyshev’s inequality and E(Ψ
(η)2
nt ) = O(n−2) imply that P (|Ψ(η)

nt | > n−1/2(ln n)−1)

= o(n−1/2) and, hence,

P (n1/2|r(s)
3nt| > (n ln n)−1/2) = o(n−1/2). (S3.24)

From (S3.20)-(S3.22) and (S3.24), it follows that

P (|θ̂(s)
t − n1/2(U

(s)
nt + 4n−1SC(t)E(h

(0)
1t h

(η)
1t ))

σ̂nt

| > (n ln n)−1/2) = o(n−1/2). (S3.25)
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Similar to the proof steps for the approximation of the numerator term of θ̂
(s)
t , σ̂nt can be

substituted via the square root of σ2
nt = 4(n− 1)(n− 2)−2

∑n
i=1[

∑n
j=1 H

(s)
ijt /(n− 1)− U

(s)
nt ]2

in (S3.25). A further application of Lemma 2 in Chang and Rao (1989) entails that

sup
x
|F (s)

n (x)−F̂ (s)
n (x)| = sup

x
|P (

n1/2U
(s)
nt + 4n−1/2SC(t)E(h

(0)
1t h

(η)
1t )

σnt

≤ x)−F̂ (s)
n (x)|+o(n−1/2).

(S3.26)

It can be shown as Helmers (1991) that

2σ
(s)
t

σnt

= 1− f̄·t

8σ
(s)2
t

+ R∗
nt,

where f̄·t is the mean of fit = 8E(h
(s)
jt (H

(s)
ijt−h

(s)
it −h

(s)
jt )|Xi, δi, Yi)+4(h

(s)
it −σ

(s)2
t ), i = 1, · · · , n,

and R∗
nt satisfies P (|R∗

nt| ≥ n−1/2(ln n)−1) = o(n−1/2). Thus,

n1/2U
(s)
nt + 4n−1/2SC(t)E(h

(0)
1t h

(η)
1t )

σnt

=
n1/2U

(s)
nt

2σ
(s)
t

(1− f̄·t

8σ
(s)2
t

) +
2n−1/2SC(t)E(h

(0)
1t h

(η)
1t )

σ
(s)
t

+ R∗∗
nt

(S3.27)

with R∗∗
nt = −SC(t)E(h

(0)
1t h

(η)
1t )f̄·t/(4n1/2σ

(s)3
t ) + n1/2R∗

ntU
(s)
nt /(2σ

(s)
t ) such that P (|R∗∗

nt| >

(n ln n)−1/2) = o(n−1/2). Similar to the proofs of Theorem 1 in Helmers (1991), one derives

that

sup
x
|P (

n1/2U
(s)
nt

2σ
(s)
t

(1− f̄·t

8σ
(s)2
t

) +
2n−1/2SC(t)E(h

(0)
1t h

(η)
1t )

σ
(s)
t

≤ x)− F̂ (s)
n (x)| = o(n−1/2) (S3.28)

as n →∞. Together with (S3.26), (2.7) is obtained.

Lemma S3.2. Suppose that assumptions (A1)-(A2) are satisfied. Then,

P (|n1/2r
(km)
nt | > n−1/2(ln n)−1) = o(n−1/2) as n →∞. (S3.29)

Proof. It was shown by Chang (1991) that

P (|cn1/2r
(0)
nt | > n−1/2(ln n)−1) = o(n−1/2) for any constant c, (S3.30)
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where r
(0)
nt = (Λ̂C(t)−ΛC(t))−(U

(0)
nt +2n−1σ2

0t). The consistency of a U -statistic and (S3.30)

imply that U
(0)
nt

p→ 0 and r
(0)
nt

p→ 0. Taking the Taylor expansion with respect to ΛC(t), one

has r
(km)
nt = Op(

∑4
j=0 r

(j)
nt ), where r

(1)
nt = Ψ

(0)
nt (Ψ

(0)
nt + 4h̄

(0)
·t ), r

(2)
nt = U

(0)
nt (

∑
i6=j h

(0)
it h

(0)
jt )/[n(n−

1)], r
(3)
nt = (

∑n
i=1 h

(0)2
it /n − σ2

0t)/n, and r
(4)
nt = (Ψ

(0)
nt + 2h̄

(0)
·t )/n with Ψ

(0)
nt = U

(0)
nt − 2h̄

(0)
·t and

h̄
(0)
·t being the sample mean of h

(0)
it ’s. From the result of Malevich and Abdalimov (1979), it

follows that

P (n1/2|U (0)
nt | >

√
ln n) = o(n−1/2) and P (n1/2|Ψ(0)

nt + 4h̄(0)| > (ln n)1/2) = o(n−1/2). (S3.31)

Using the probability inequality, E(Ψ
(0)2
nt ) = O(n−2) (Hoeffding (1948)), and (S3.31), one

has

P (n1/2|r(1)
nt | > n−1/2(ln n)−1) ≤ P (|Ψ(0)

nt | > n−1/2(ln n)−3/2) + o(n−1/2) = o(n−1/2). (S3.32)

Since the conditional expectation of
∑

i6=j h
(0)
it h

(0)
jt /[n(n− 1)] is zero, it can be derived in the

same way as (S3.32) that

P (n1/2|r(1)
nt | > n−1/2(ln n)−1) = o(n−1/2). (S3.33)

By the Chebyshev’s inequality, it is further implied that

P (n1/2|r(k)
nt | > n−1/2(ln n)−1) = o(n−1/2), k = 3, 4. (S3.34)

Finally, from (S3.30), (S3.31)-(S3.34), (S3.29) is obtained.
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Figure 1: The biases of θ̂t (dashed-dotted curve) and θ̂cdt (dotted curve), and the standard

errors of θ̂t (solid curve) and θ̂cdt (dashed curve) for the sample sizes (n) of 250, 500, and
1000, and the censoring rates (c.r.) of 0%, 30%, and 50%.
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