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Supplementary Material

Let 7 < sup{u : Sx(u) > 0} with Sx(u) = P(X > u) and 79 = inf{u : P(T > u) <
1,u € [r0,7]}. The second condition (A2: the cumulative hazard function Ax(t) of C' is
bounded for ¢ € [0, 7]) is further assumed throughout the rest of this paper. Some concise
notations below are used to simplify the complicated mathematical expressions: U,; =
>y Hise/[n(n — 1)) with Hyjy = (So(t) — D) Dy (¢i; — 61) — meSe(t) fy dMi(w)/Sx (u™),

v, = S&(t)S7(t))(1 — Sr(t)), and 7, being defined in Section 2.2.
S1. Asymptotic Normality of (Z

From (1.1), one has
1/2(n _.1/2 Un
n (Gt — 6t> =N <V_ -+ Tlnt); (Sll)
nt

where V,,; is defined in Section 2.2 and

_ n:Sc(t). [T dM. (u) . §c(t) Zi# D (di; — 0;)

Ve Jo Sx(u™) St n(n — 1)n,
By the boundedness of D}f’s and the consistency of S (t) and a U-statistic, it follows that

Int

Vi 2 v as n— oo. (51.2)
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Again, the consistency of a U-statistic and the martingale representation

n2(Se(t) — Set)) = —n~2Se(t) > /0 % +o,(1), (S1.3)

where M;(t) = I(X; < t)(1 — &) — [ I(X; > u)dAc(u), entail that

n1/2|r1m\ 20. (S1.4)
From (S1.2) and (S1.4), we get
n'/2(0, — 6,) = nl/thnt + 0,(1). (S1.5)
It follows immediately from Hoeffding (1948) that
n'?U,; = n~1/? zn: Wy + 0,(1) with Wy, = B(Hyj + Hjil Xy, Vi, 6). (S1.6)

i=1
Together with (S1.5), n'/2(6, — 6,) is shown to converge weakly to a normal distribution

with mean zero and variance o? = v; 2E(V2).

S2. Normality Approximated Confidence Interval for 6,

The asymptotic normality of 6, and the consistent estimator o2 of o? enable us to

construct an approximated (1 — «) , 0 < o < 1, confidence interval for 6, via

~

0, — n"%G,20 /9, gt + 17 Y25,2000), S2.1
/ /

where z, is the 100p percentile point of a standard normal distribution. It is naturally to

estimate the asymptotic variance by

noy2
~2 — ZZZl [ (822)

7 nv}
where 7, = S2()Sp(t)(1 — Sr(t)) and Uy = n~' Y, (Hyje + Hyie) with

" dM;(u)
Sy(u)’

~

Fye = (Se(t) — DD (by — B) — 1S (t) /
0

(52.3)



—

Mi(t) = I(X; < 0)(1=6;) = Jy I(Xs = wydAc(u), Ao (t) = Sxs (1S5 (1), Sx () = n ' S0, 1
(X; > t), and Sys(t) = n~! Yo I(X; > t)(1 —0;). By the consistency of Sc(t), Sr(t), by,
and 7;, and the uniform convergence of Sx (¢) and Sxs(t), we have

ik (Hige + Hyi ) (Hige + Hyi
> igw(Hije ]t2)( Kt kt)+op(1). (52.4)

3
n’vy;

~2
Oy =

Finally, the consistency of a U-statistic ensures that the dominating term in (S2.4) converges

to v, *E((Hiji + Hjit)(Hipe + Hyr)) = 07
S3. Proof of Main Results

Proof of Theorem 2.1. Let the corresponding random weighting analogues of U,,; and V,,;
be separately denoted by U, and V4. Thus, (0 - Gt) can be expressed as (U, —Upn) / V.Y
Tint + Tont + T3nt with

—_ 11 _mSe(t), [ dMP(u) o §8(t) D iz wiw; D3 (95 — 64)
2nt — Unt( /0 SX (U7> (1 Sc(t)) N

VT
It is implied from P(n'/2|ri,| > e|D,) = I(n'/?|ry,| > €) and (S1.4) that

.

P(n?|rm| > €|Dn) 2 0. (S3.1)

As for the convergence of V% to V,,; in 79,y and rs,, a direct calculation first shows that

1

m)(s()(t) — D) Dy + (S (t) szfo (S3.2)

Vnut] - Vnt = Z(wlw] —
i#]
The convergence property of Hoeffding (1961) yields that

= 1) (= e B (4 2). (533
i#]

Using the boundedness of (Sc(t) — D;*f)D;ff and (S3.3), one has

| _(wiw; = oo 1>)(§c(t) — Di)D| % 0. (S3.4)
i#j



Thus, the properties of §g(t) L Se(t), SSr wiDie B Sx(t), and (S3.4) imply that
VY — Vi 20 asn — oo. (S3.5)
It is entailed by the convergence of a U-statistic, (S3.5), and the Slutsky’s theorem that
P(n?|rym| > €|Dy) 2 0 as n — oo. (S3.6)
By Lemma S3.1, (S3.5), and >, ; wyw; Dif (i — 0;) 25 n,, we further derive that
P(n*?|rsn| > e|Dy,) 2 0. (S3.7)

It is shown from (S3.1) and (S3.6)-(S3.7) that (2.2) is ascertained if

nl/2

1/2
p(Unt Unt) S $|Dn> . P(n VUnt
nt

sup [P("

- <z)| % 0asn— oco. (S3.8)
z€ER Vnt

From the result of Janssen (1994), one can ensure that
sup |P(n*2p(U% — Uy) < x|Dy) — P(n'/?U,, < z)| 2 0 as n — oo. (S3.9)

zER

Together with (S1.2) and (S3.5), (S3.8) is derived by applying the Slutsky’s theorem.

Lemma S3.1. Suppose that assumptions (A1)-(A2) are satisfied. Then, for any € > 0,

§w(z€) b AM® (u)
P(n'?n - = —/ > ¢|D,) 2 0asn — oo. S3.10
( | Sc(t) 0 Sx(uf) | | ) ( )

Proof. By the integration by parts and the right-continuity of §g (t), one has

_SE) [P SEO)I(RE () > 0) -, u) — B
1 o) —/0 S () R (1) dM™ (u) — B(t), (S3.11)
where B*(t fo SC )/Sc(u)I(R*(u) = 0)dAc(u). Thus, the conditional probability

in (S3.10) is shown to satisfy the following probability inequality:
Sa(t) [t dM(w)

PO )y Sy > 1P S PURPE0) > 51D
P(|n1/2/0 [55"(52( ()];(7(“2; 0) Sx(lu_)]dM,w(un > §|Dn).(83.12)
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Paralleling the argument of Fleming and Harrington (1991), we can derive that
sup In/2B% (u)| < n*?(1 — Se(t))I(R.“(t) = 0). (S3.13)
It is further implied that
E(P(In'*I(R*(t) = 0)] > &[Dy)) = (P(& = 0)Sx (t))". (S3.14)
Combining (53.13)-(S3.14), we have

P(In?Bv ()] > §|Dn) 20 as n — oo ($3.15)

The Lenglart’s inequality yields that for any &1, €5 > 0,

E(P(n”QoilslgT! 03[55”( )(ﬁ"ﬁ@) Do )] > &)
SC (R¥(u) > 0) | B
P(A, / SC T g ) > =), ($3.16)

where A, =n Y1, w?. By applying the uniform convergence of Sc(t) (Shorack and Wellner
(1986)) and the uniform strong law of large numbers for R.(t) (Pollard (1990)) with respect

to t to :S’\g(t) and R™(t), we derive that

CSEEOIR W S0 1
A, /0 e s e 20 | (83.17)

From (53.16)-(S3.17), it follows that

b S (u)I(R®(u) > 0) 1 5
P nl/Q/ ¢ ' — dM™(u)| > =|D,)) 2 0asn — oo. (S3.18
(2 [ PRIt — M )] > 51D, ($3.18)
Together with (S3.12) and (S3.15), the proof of (S3.10) is completed . O

Proof of Theorem 2.2. From (2.6), an alternative expression of @t(s) is derived to be

nl/2 U,Ss) +4An" S~ (1) E h(o)h(ﬂ) + 3_ T(-s)
/Q‘t(s) _ (Uni ol )A( 1 i) Z]—O ]nt)’ ($3.19)

Ont
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where

o D 2HERY + HEVRD) — 4Sc(t) BB RY)]

it iyt km
Tont = ’ nzj(n —1) ?Tgn)t ( )Unt ’
2% (km)h(n) B B Zn B
{9 = —=i il s = US™ 0 with W' = U — 25 and A = &=170,
n?(n—1) n

It is entailed from E(r$)?) = O(n~3) that
P(n 1/2|7" | >n" Y2 (Inn)™Y) = O(n~2Inn)?). (53.20)
Lemma S3.2 below and the boundedness of Djy, ¢12, and 6, ensure that
P(n 1/2]rlm\ >n"Y2(Inn)™) = o(n"Y?). (S3.21)

Since the projection of a U-statistic réfl)t is 0 and E(rgi)f) = O(n™?) (Hoeffding (1948)), we
have

Pn'2)r) > n 2 (lnn) ") = o(n~ V). (S3.22)
The probability inequality and P(n'/2|[U%™| > (Inn)1/2) = o(n=1/2) (Malevich and Abdal-
imov (1979)) yield

P(2r$)| > (nlnn)~Y2) < P10 > 02 (Inn) ) + o(n1/?). (53.23)

The Chebyshev’s inequality and E(\Ifg?g) = O(n~?) imply that P(|\I/7($)| > n~Y2(Inn)7)
= o(n~'/?) and, hence,
P(n 1/2|7“3 | > (nlnn)~Y?) = o(n~Y?). (S3.24)
From (53.20)-(53.22) and (S3.24), it follows that
nM (U + 4n” S B REY))

P60 — ~ | > (nlnn) ) = o(n1?). (S3.25)

Ont




Similar to the proof steps for the approximation of the numerator term of @\t(s), Ont can be

substituted via the square root of o7, = 4(n —1)(n —2)72 321 [0, Hi(;t) (n—1)— UWP

in (S3.25). A further application of Lemma 2 in Chang and Rao (1989) entails that

1/2U(5) An~128 (D E h(o)h(ﬁ) N
n nt T 4n C() ( 1t 1t> S:L’)—F,gs)(l‘”—f—O(?’L_l/Q)

sup | F*) (z) — F¥) (x)] = sup | P(

Ont
(S3.26)
It can be shown as Helmers (1991) that
s) r
20, S
=1-—=+R,,
Ont 80'155)2 K

where f is the mean of f;; = 8E(h§i)(H(s)—th)—h§§))|X¢, 5, V) +4hY =6y i=1,--- n,

ijt

and R, satisfies P(|R:,| > n~'/?(Inn)~!) = o(n~%/2). Thus,

U + AT PSe(E(YRY) _ 0t PU  fa ) 20T PSe @B Y

= — ) + Ry

Ont ZU,SS) 80t5)2 UIES) '

(93.27)

with R = —Sc(O)EMRY R/ (4n26?) + nl2R:, U /(200)) such that P(|R%| >

(n1Inn)~Y2) = o(n=Y/2). Similar to the proofs of Theorem 1 in Helmers (1991), one derives

that
1/2U(S) f o128 (t\E JACNC)
sup | P(" o~ Ty 25 OBII < 4y - FOw) = on ) (5329
x 20, 8o, lop

as n — oo. Together with (S3.26), (2.7) is obtained.

Lemma S3.2. Suppose that assumptions (A1)-(A2) are satisfied. Then,

P(In'?rE ™| > 0= 2(Inn) ") = o(n"V?) as n — oco. (S3.29)

Proof. Tt was shown by Chang (1991) that

P(\cnl/zr,(fm >n~Y2(Inn)™) = o(n~'/?) for any constant c, (S3.30)
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where 7“ (Ac( )—Ac(t))— (U(O) +2n~'02,). The consistency of a U-statistic and (53.30)
imply that U, © 2,0 and 7 t 2, 0. Taking the Taylor expansion with respect to Ac(t), one

has 5™ — OP(Z4 ) ), where r — \IJ(O)(\II(O) +4h ) 2 _ U(O)(Z#j hl(?)hg-(t)))/[n(n —

nt 7=0 Tt nt T » Tnt = Ung
D = (S0 bt fn = ofi) /ny and 1) = (W) 4+ 2R) [ with Wi = U — 285 and
ﬁ(? ) being the sample mean of hi? ’s. From the result of Malevich and Abdalimov (1979), it

follows that
P(n1/2|U7(L2)| > VInn) = o(n""?) and P(n1/2|\1153) +4h9| > (Inn)Y?) = o(n~Y?). (S3.31)

Using the probability inequality, £(¥0?) = O(n~2) (Hoeffding (1948)), and (S3.31), one

has
P2 > n 2 (lnn) 1) < PWY| > n™ Y2 (nn) ™) + o(n™1?) = o(n"/?). (S3.32)

Since the conditional expectation of }_, hﬁf )h§§’) /[n(n —1)] is zero, it can be derived in the

same way as (53.32) that
P2 > n~ 2 (Inn) ™) = o(n~1/?). (S3.33)
By the Chebyshev’s inequality, it is further implied that
P(n 1/2|7’ | > n"Y2(Inn)™Y) = o(n~V?), k = 3,4. (S3.34)

Finally, from (S3.30), (S3.31)-(S3.34), (S3.29) is obtained. O
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Figure 1: The biases of 6; (dashed-dotted curve) and 6,4 (dotted curve), and the standard

errors of 0, (solid curve) and O (dashed curve) for the sample sizes (n) of 250, 500, and
1000, and the censoring rates (c.r.) of 0%, 30%, and 50%.



