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Abstract: A confidence region for the time-dependent area under the receiver op-

erating characteristic curve (AUC) can be constructed based on the asymptotic

normality of a non-parametric estimator. In numerical studies, it was found that

the performance of the normal approximated confidence interval is dramatically

affected by small sample size and high censoring rate. To improve the accuracy of

coverage probabilities as well as interval estimators, the random weighted bootstrap

distribution and the Edgeworth expansion with remainder term o(n−1/2) are pro-

posed to approximate the sampling distribution of the estimator. The asymptotic

properties of random weighted bootstrap analogue and the one-term Edgeworth

expansion are developed in this article. The usefulness of the proposed procedures

are confirmed by a class of simulations with different sample sizes and censoring

rates. Moreover, our methods are demonstrated using the ACTG 175 data.
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1. Introduction

In the ACTG study 175, the research objective is to evaluate the predictive
ability of CD4 biomarker on patient’s survival time from the entry date to the
date of AIDS diagnosis or death measured in weeks. For the ith individual,
let Yi and Ti denote the diagnostic test and the time of disease or death, i =
1, · · · , n. One of the most popular scalar measures to evaluate the performance
of Y to the disease or vital status {T ≤ t} is the time-dependent AUC θt =
P (Yi > Yj |Ti ≤ t, Tj > t) for i 6= j. Note that the definition of θt is a natural
extension of traditional AUC with the cases and controls being defined over
time. Since patients might be lost to follow-up or drop-out during the study
period, we present the statistical inferences on θt based on the censored survival
data {(Xi, δi, Yi)}n

i=1, where Xi = min{Ti, Ci} is the last observed time, with
Ci being the censoring time and δi = I(Xi = Ti) the censoring status. Let
D∗c

it = I(Xi > t), φij = I(Yi > Yj), and SC(t) be the survival distribution of the
censoring time C. By assumption (A1: C and (Y, T ) are independent) and the
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property E(D∗c
it /SC(t)) = E(I(Ti > t)), we propose a simple and easily computed

estimator

θ̂t =

∑
i6=j(ŜC(t) − D∗c

it )D∗c
jt φij∑

i 6=j(ŜC(t) − D∗c
it )D∗c

jt

(1.1)

for θt, where ŜC(t) is the non-parametric Kaplan-Meier estimator of SC(t). An
alternative estimation approach can refer to the recursive estimation procedure
of Chambless and Diao (2006) at the observed failure times. It was detected in
Web Figure 1 that both estimators have very similar performance under complete
failure time data or type I censoring data. The recursive estimator was further
found to have substantially large bias and variance in regions of sparse failure
times, although its variance was relatively small in regions where failure times
are dense.

The asymptotic normality of θ̂t and the consistency of a variance estima-
tor enable us to construct an approximate confidence interval for θt (See the
Web Appendix A). To improve the performance of the interval for θt under
small sample size and high censoring rate, we construct two alternative confi-
dence intervals based on the random weighted bootstrap approximation and the
one-term Edgeworth expansion. Tu and Zheng (1991) found that the random
weighted bootstrap confidence interval has better coverage probability than the
naive bootstrap one, especially when the sample size is small and the sampling
distribution of estimator is non-normal. Chiang, James and Wang (2005) found
that the weighted bootstrap and the naive bootstrap yielded very similar re-
sults in the recurrent event data setting, but the computational speed of the
weighted bootstrap procedure is better than that of naive bootstrap one. In
this article, the random weighted bootstrap distribution is used to estimate the
sampling distribution of θ̂t. Since the estimator θ̂t and the corresponding boot-
strap analogue are U-statistics with dependent random quantities caused by the
estimator ŜC(t) in the kernel function, the consistency of the weighted bootstrap
approximation to the sampling distribution of θ̂t is derived via first using an
appropriate U-statistic approximation based on independent random quantities.
For the sampling distribution of a U -statistic with independent random quanti-
ties in the kernel function, Callaert, Janssen and Veraverbeke (1980) and Bickel,
Götze and Van Zwet (1986) established the corresponding Edgeworth expansion.
Callaert and Veraverbeke (1981) studied the order of normal approximation for
a studentized U -statistic. Based on a studentized U -statistic, Helmers (1991)
provided the one-term Edgeworth expansion to improve the coverage probability
of confidence interval. By extending this approach to the studentized statistic of
θ̂t, the one-term Edgeworth expansion is established.
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The rest of this paper is organized as follows. The random weighted boot-
strap approximation and the one-term Edgeworth expansion of the sampling
distribution of θ̂t are separately established in Section 2. In Section 3, the per-
formance and the comparison of different procedures are investigated through
a class of simulations with different settings on the sample size and the cen-
soring rate. Our proposed methods are further applied to the ACTG 175 data
in Section 4. Finally, a brief discussion is provided in Section 5. Web Appen-
dices and Figure referenced in Sections 1-2 are available at the website http:
//www.stat.sinica.edu.tw/statistica.

2. Random Weighting and Edgeworth Expansion

In this section, a generalized bootstrap procedure is used to construct an
approximate confidence interval for θt. The Edgeworth expansion procedure is
further proposed to improve the coverage probability of the normal approximate
confidence interval under small sample size and high censoring rate.

2.1. Weighted bootstrap procedure

Let Dn = {(Xi, δi, Yi)}n
i=1 represent the censored survival data. Indepen-

dent of Dn, the random variables ξ1, · · · , ξn are independently generated from a
common distribution with mean µ = E(ξ1), variance σ2 = V ar(ξ1), satisfying
P (ξ1 = 0) < 1. The weighted bootstrap analogue of θ̂t is defined as

θ̂w
t =

∑
i 6=j wiwj(Ŝw

C (t) − D∗c
it )D∗c

jt φij∑
i6=j wiwj(Ŝw

C (t) − D∗c
it )D∗c

jt

, (2.1)

where wi = ξi/(
∑n

j=1 ξj) and Ŝw
C (t) =

∫ t
0 Ŝw

C (u−)dNw
· (u)/Rw

· (u), with Nw
· (t) =∑n

i=1 wiI(Xi ≤ t, δi = 0) and Rw
· (t) =

∑n
i=1 wiI(Xi ≥ t). In the next theo-

rem, we show that the conditional distribution of ρn1/2(θ̂w
t − θ̂t) is a consistent

estimator of the distribution of n1/2(θ̂t − θt).

Theorem 2.1. Suppose that assumptions (A1)−(A2) are satisfied. Then

sup
x∈R

|P (ρn1/2(θ̂w
t − θ̂t) ≤ x|Dn) − P (n1/2(θ̂t − θt) ≤ x)| p→ 0 as n → ∞, (2.2)

where ρ = µ/σ is a scale factor modification for the variability in the weights.

Proof. See the proof in the Web Appendix B.

Theorem 2.1 forms the basis of the random weighted bootstrap procedure
and an approximate (1 − α), confidence interval for θt is constructed via

(θ̂t − ρq∗1−α/2(θ̂
w
t − θ̂t), θ̂t − ρq∗α/2(θ̂

w
t − θ̂t)), (2.3)

http://www.stat.sinica.edu.tw/statistica.
http://www.stat.sinica.edu.tw/statistica.
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where q∗p(·) denotes the 100pth percentile of B weighted bootstrap estimators
(θ̂w

t − θ̂t), 0 < α < 1.
Remark. The construction of naive bootstrap confidence interval is mainly
based on the B bootstrap estimators (θ̂n

t − θ̂t) with the bootstrap analogue θ̂n
t

being computed from the bootstrap sample, in which the entire measurements of
each subject are re-sampled with replacement from Dn.

2.2. Edgeworth expansion procedure

A simple decomposition shows that

(θ̂t − θt) =
U

(1)
nt + ηt(ŜC(t) − SC(t)) + U

(2)
nt (ŜC(t) − SC(t))

Vnt
, (2.4)

where U
(1)
nt =

∑
i 6=j H

(1)
ijt /[n(n − 1)] with H

(1)
ijt = [(SC(t) − D∗c

it )D∗c
jt (φij − θt) +

(SC(t) − D∗c
jt )D

∗c
it (φji − θt)]/2. Here, H

(1)
ijt has conditional mean h

(1)
it = E(H(1)

ijt |
D∗

it, Yi) such that E(h(1)
it ) = 0 and σ2

1t = E(h(1)2
it ), U

(2)
nt =

∑
i6=j(D

∗c
jt (φij − θt) −

ηt)/[n(n−1)], ηt = E(D∗c
jt (φij−θt)), and Vnt =

∑
i6=j(ŜC(t)−D∗c

it )D∗c
jt /[n(n−1)].

It was established by Chang (1991) that (− ln ŜC(t)−ΛC(t)) can be approximated
by a U-statistic U

(0)
nt with symmetric kernel function H

(0)
ijt and conditional mean

h
(0)
it = E(H(0)

ijt |Xi, δi), such that E(h(0)
it ) = 0 and σ2

0t = E(h(0)2
it ). In Lemma 2.2

(Appendix B in the Supplementary Document), the U-statistic representation of
(ŜC(t) − SC(t)) is shown to be U

(km)
nt =

∑
i6=j H

(km)
ijt /[n(n − 1)] with H

(km)
ijt =

−SC(t)(H(0)
ijt − 2h

(0)
it h

(0)
jt ). Thus, (θ̂t − θt) in (2.4) can be further expressed as

(θ̂t − θt) =
U

(s)
nt + ηtr

(km)
nt + (U (km)

nt + r
(km)
nt )U (2)

nt

Vnt
, (2.5)

where U
(s)
nt is a U -statistic with a kernel H

(s)
ijt = H

(1)
ijt + ηtH

(km)
ijt that has condi-

tional mean h
(s)
it = E(H(s)

ijt |Xi, δi, Yi) and variance σ
(s)2
t , and r

(km)
nt = (ŜC(t) −

SC(t)) − U
(km)
nt .

Let σ̂2
nt be the sample variance of pi = nÛ

(s)
nt − (n − 1)Û (s)

nt(−i), i = 1, · · · , n.

Here, Û
(s)
nt is defined as

Û
(s)
nt =

∑
i6=j(ŜC(t) − D∗c

it )D∗c
jt (φij − θ̂t)

n(n − 1)
.

Û
(s)
nt(−i) is the Jackknife estimator computed as Û

(s)
nt with the measurements of

the ith subject being deleted. In the construction of confidence region for θt,



RANDOM WEIGHTING AND EDGEWORTH EXPANSION 973

the asymptotic variance σ2
t = 4σ(s)2

t /ν2
t of θ̂t is proposed to be estimated by

a consistent estimator σ̂2
nt/V 2

nt. The studentized estimator θ̂
(s)
t = n1/2Vnt(θ̂t −

θt)/σ̂nt of θ̂t is then derived as

θ̂
(s)
t =

n1/2[U (s)
nt + ηtr

(km)
nt + (U (km)

nt + r
(km)
nt )U (2)

nt ]
σ̂nt

. (2.6)

The one-term Edgeworth expansion of the distribution F
(s)
n (x) = P (θ̂(s)

t ≤ x) in
the following theorem is established to be

F̂ (s)
n (x) = Φ(x) +

n−1/2φ(x)

σ
(s)
t

[(2x2 + 1)E(h(s)3
1t ) + 3(x2 + 1)E(h(s)

1t h
(s)
2t H

(s)
12t)

6σ
(s)2
t

−2(x2 + 1)SC(t)E[h(s)
1t h

(0)
1t ]E[h(s)

1t h
(η)
1t ]

σ
(s)2
t

− 2SC(t)E(h(0)
1t h

(η)
1t )

]
,

where Φ(·) and φ(·) are separately the cumulative distribution function and the
density function of a standard normal, and h

(η)
it = [E(D∗c

jt (φij − θt) + D∗c
it (φji −

θt)|D∗
it, Yi)]/2 − ηt.

Theorem 2.2. Suppose that assumptions (A1)−(A2) are satisfied. Then

sup
x

|F (s)
n (x) − F̂ (s)

n (x)| = o(n−1/2) as n → ∞. (2.7)

Proof. See the proof in the Web Appendix B.

Based on the one-term Edgeworth expansion for F
(s)
n (x) and a n1/2-consistent

estimator of F̂
(s)
n (x), an alternative confidence interval for θt can be constructed.

The estimator for F̂
(s)
n (x) mainly substitutes the unknown moments and pa-

rameters by the corresponding sample moments and consistent estimators. An
approximate (1 − α) confidence interval for θt is then constructed via

(θ̂t −
n−1/2σ̂nt

Vnt
u−

α/2, θ̂t +
n−1/2σ̂nt

Vnt
u+

α/2), (2.8)

where u±
α/2 is computed using the inverting formula of Cornish and Fisher (1937)

as

zα/2 ±
n−1/2Vnt

σ̂nt
[
V 2

nt(2z
2
α/2 + 1)Ê(h(s)3

1t ) + 3V 2
nt(z

2
α/2 + 1)Ê(h(s)

1t h
(s)
2t H

(s)
12t)

6σ̂2
nt

−
2(z2

α/2 + 1)ŜC(t)Ê[h(s)
1t h

(0)
1t ]Ê[h(s)

1t h
(η)
1t ]

σ̂2
nt

− 2ŜC(t)Ê(h(0)
1t h

(η)
1t )],
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where zp = Φ−1(1 − p) and Ê(·) is the sample moment of E(·). The normal
approximate confidence interval for θt is established as (2.8) with u−

α/2 and u−
α/2

being replaced with zα/2 and z1−α/2, respectively.

3. Simulation Study

The performance of the proposed procedures for the construction of con-
fidence region is investigated through a class of simulations. In our setting,
Y was generated from a standard normal distribution. Conditioning on Y =
y , the failure time T was specified from a survival distribution ST (t|y) =
exp(−0.02t exp(0.5y)). The time-dependent AUC was computed by using the
formula of Chambless and Diao (2006) as

θt =
E((1 − S(t|Yi))S(t|Yj)I(Yj < Yi))

E(1 − S(t|Yj))E(S(t|Yj))
, i 6= j. (3.1)

Independent of (Y, T ), the censoring time C was set to follow an exponential
distribution with different scale parameters which lead to different censoring
rates.

Based on the above design, the censored data {(Xi, δi, Yi)}n
i=1 were repeat-

edly generated 1,000 times with the sample sizes of 250 and 500, and the censoring
rates of 30%, and 50%. The constructed confidence regions based on the nor-
mal approximation (NA), random weighted bootstrap (RWB), and Edgeworth
expansion (EE) methods were evaluated at selected time points from 5 to 145.
In our simulation process, the naive bootstrap (NB) method for the construction
of confidence region was also provided. For the random weighted bootstrap con-
fidence regions, the exchangeable random weights were investigated based on the
independent and identically distributed Uniform (0,1) and Gamma(4, 1) random
variables. The corresponding random weighting methods are denoted here by
RWBU and RWBG.

As can be seen from Table 3.1, the NA method produces a confidence interval
in which the lower bound is generally larger than the 0.25 quantile of 1,000
estimates θ̂t, especially for the small sample size. Although the lower confidence
limit of EE was closer to the 0.25 qunatile of estimates, the constructed upper
limit was relatively lower than the 0.975 quantile of the estimates. This can be
explained by the fact that the length of confidence interval computed based on
the one-term EE is same as that of the NA confidence interval. Table 3.1 further
reveals that the bootstrap confidence intervals were very close to the 0.95 quantile
intervals of 1,000 estimates at the selected time points. Table 3.2 summarizes the
empirical coverage probabilities of the 0.95 confidence intervals of the NA, EE,
NB, RWBU, and RWBG procedures. The probabilities are generally around
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Table 3.1. The 0.95 quantile intervals (Q.I.) of estimates, the averages of
0.95 NA, EE, NB, RWB1, and RWB2 confidence intervals with two sample
sizes (n) and two censoring rates (c.r.).

method Q.I. NA EE NB RWB1 RWB2

time n = 250 c.r. = 30%

5 (0.512,0.778) (0.510,0.780) (0.504,0.774) (0.503,0.783) (0.506,0.781) (0.508,0.776)

15 (0.566,0.751) (0.565,0.752) (0.562,0.749) (0.563,0.751) (0.564,0.751) (0.564,0.749)

25 (0.588,0.753) (0.585,0.757) (0.582,0.754) (0.584,0.756) (0.584,0.756) (0.584,0.754)

65 (0.611,0.812) (0.622,0.814) (0.615,0.807) (0.620,0.812) (0.619,0.811) (0.619,0.809)

125 (0.613,0.913) (0.637,0.910) (0.612,0.886) (0.623,0.910) (0.626,0.908) (0.632,0.897)

135 (0.613,0.936) (0.643,0.926) (0.614,0.897) (0.623,0.926) (0.629,0.924) (0.638,0.911)

145 (0.599,0.942) (0.646,0.940) (0.615,0.908) (0.624,0.939) (0.628,0.938) (0.641,0.923)

n = 250 c.r. = 50%

5 (0.486,0.814) (0.476,0.807) (0.472,0.803) (0.468,0.809) (0.471,0.806) (0.473,0.803)

15 (0.536,0.777) (0.537,0.773) (0.535,0.771) (0.537,0.775) (0.536,0.771) (0.536,0.769)

25 (0.551,0.781) (0.555,0.781) (0.553,0.779) (0.557,0.783) (0.554,0.779) (0.555,0.777)

65 (0.548,0.859) (0.561,0.862) (0.549,0.850) (0.562,0.863) (0.556,0.857) (0.559,0.851)

125 (0.347,0.980) (0.594,0.929) (0.570,0.905) (0.602,0.915) (0.574,0.916) (0.601,0.898)

135 (0.325,0.986) (0.614,0.908) (0.595,0.889) (0.628,0.901) (0.599,0.896) (0.623,0.881)

145 (0.325,0.992) (0.641,0.883) (0.626,0.869) (0.659,0.885) (0.630,0.871) (0.649,0.860)

n = 500 c.r. = 30%

5 (0.552,0.746) (0.551,0.740) (0.548,0.737) (0.548,0.739) (0.549,0.739) (0.549,0.737)

15 (0.593,0.720) (0.592,0.723) (0.590,0.721) (0.591,0.722) (0.591,0.722) (0.590,0.721)

25 (0.613,0.728) (0.611,0.732) (0.610,0.730) (0.610,0.731) (0.610,0.730) (0.610,0.730)

65 (0.649,0.787) (0.651,0.787) (0.648,0.784) (0.650,0.786) (0.650,0.785) (0.649,0.785)

125 (0.669,0.873) (0.680,0.878) (0.665,0.863) (0.673,0.875) (0.675,0.876) (0.675,0.871)

135 (0.670,0.891) (0.682,0.892) (0.665,0.875) (0.674,0.890) (0.677,0.890) (0.677,0.884)

145 (0.664,0.908) (0.686,0.908) (0.665,0.886) (0.675,0.905) (0.678,0.906) (0.680,0.898)

n = 500 c.r. = 50%

5 (0.526,0.761) (0.531,0.762) (0.529,0.760) (0.529,0.765) (0.531,0.762) (0.531,0.761)

15 (0.573,0.737) (0.574,0.740) (0.573,0.739) (0.575,0.742) (0.574,0.740) (0.574,0.739)

25 (0.593,0.748) (0.591,0.750) (0.590,0.749) (0.592,0.751) (0.591,0.749) (0.591,0.749)

65 (0.609,0.823) (0.612,0.824) (0.605,0.818) (0.613,0.826) (0.610,0.822) (0.610,0.819)

125 (0.506,0.957) (0.595,0.942) (0.563,0.910) (0.580,0.930) (0.573,0.936) (0.598,0.917)

135 (0.451,0.978) (0.620,0.933) (0.596,0.909) (0.613,0.922) (0.600,0.927) (0.625,0.909)

145 (0.447,0.987) (0.643,0.925) (0.624,0.906) (0.644,0.915) (0.625,0.919) (0.650,0.902)

the nominal level of 0.95 when the sample size is moderate and the censoring
rate is low. It is indicated from this table that EE, NB, and RWBU intervals had
better coverage than NA in regions of sparse failure times, especially when the
sample size was small and the censoring rate was high. For the random weighted
bootstrap intervals, an appropriate specification of random weights becomes a
key factor in the improvement of coverage probability for the NA interval. The
computation times for constructing the EE, RW, and NB confidence intervals in
each simulated data were 0.89, 7.22, and 55.29 seconds with the sample size of
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Table 3.2. The empirical coverage probabilities of 0.95 NA, EE, NB, RWB1,
and RWB2 confidence intervals with two sample sizes (n) and two censoring
rates (c.r.).

method NA EE NB RWB1 RWB2
n 250 500 250 500 250 500 250 500 250 500

c.r. time
30% 5 0.943 0.933 0.947 0.938 0.945 0.934 0.943 0.927 0.938 0.935

15 0.953 0.956 0.955 0.957 0.956 0.949 0.950 0.949 0.949 0.953
25 0.956 0.961 0.959 0.963 0.956 0.954 0.957 0.961 0.951 0.954
65 0.934 0.941 0.939 0.946 0.937 0.942 0.934 0.946 0.931 0.939

125 0.896 0.920 0.904 0.937 0.909 0.929 0.903 0.920 0.894 0.920
135 0.866 0.916 0.882 0.930 0.886 0.924 0.882 0.922 0.867 0.919
145 0.837 0.906 0.841 0.929 0.862 0.928 0.859 0.918 0.838 0.916

50% 5 0.953 0.940 0.948 0.941 0.948 0.933 0.943 0.933 0.944 0.934
15 0.950 0.953 0.947 0.952 0.943 0.946 0.941 0.944 0.940 0.943
25 0.946 0.956 0.943 0.955 0.941 0.951 0.940 0.953 0.938 0.958
65 0.942 0.942 0.946 0.944 0.942 0.940 0.938 0.931 0.944 0.939

125 0.631 0.788 0.655 0.802 0.654 0.818 0.654 0.818 0.621 0.783
135 0.545 0.675 0.560 0.689 0.565 0.702 0.567 0.696 0.533 0.666
145 0.445 0.591 0.456 0.594 0.450 0.621 0.452 0.625 0.427 0.580

250, and 3.21, 26.81, and 136.40 seconds with the sample size of 500 on a Pentium
IV with 3.4 GHz of CPU and 1.0GB of RAM. Note that the random weighted
bootstrap procedures were more computationally efficient than the naive boot-
strap procedure.

4. Application to ACTG 175 Data

The data analyzed are from the ACTG study 175. A total of 2467 HIV-
1-infected patients, whose CD4 cell counts range from 200 to 500 cells cu/mm
during December 1991 and October 1992, was recruited. Patients with lower CD4
counts usually have a higher risk of AIDS or death. In the data analysis, let Y
be a strictly decreasing transformation of CD4 counts, so that θt can reasonably
be expected to fall within the range of 0.5 to 1. Details of the analyzed data can
be found in Hammer et al. (1996).

We can see from Table 4.1 that the estimated AUCs increased from week
60 and stayed around 0.8, which indicates a high accuracy of classification, af-
ter week 70. The approximate 0.95 confidence intervals based on the NA, EE,
NB, RWBU, and RWBG methods are also provided at the selected weeks. It
is further indicated from this table that the RWBG confidence intervals have
shorter interval lengths than other confidence intervals though expected length
might not be a good criterion for the accuracy of confidence intervals. The EE
confidence intervals are very similar to the NB and RWBU ones. For the sake of
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Table 4.1. The 0.95 NA, EE, NB, RWBU, and RWBG confidence intervals
at the selected weeks.

week θ̂t NA EE NB RWBU RWBG
70 0.829 (0.648,1.000) (0.658,1.000) (0.640,1.000) (0.634,1.000) (0.656,1.000)
80 0.861 (0.699,1.000) (0.710,1.000) (0.692,1.000) (0.699,1.000) (0.700,1.000)
90 0.863 (0.716,1.000) (0.726,1.000) (0.712,1.000) (0.710,1.000) (0.718,1.000)

100 0.802 (0.682,0.921) (0.689,0.927) (0.692,0.916) (0.679,0.911) (0.681,0.908)
110 0.796 (0.691,0.900) (0.697,0.906) (0.705,0.908) (0.701,0.919) (0.715,0.915)
120 0.797 (0.702,0.891) (0.707,0.897) (0.707,0.882) (0.691,0.900) (0.704,0.881)
130 0.798 (0.712,0.883) (0.717,0.888) (0.712,0.875) (0.709,0.873) (0.710,0.857)
140 0.800 (0.717,0.882) (0.722,0.882) (0.715,0.876) (0.714,0.874) (0.716,0.868)
150 0.781 (0.706,0.856) (0.710,0.861) (0.705,0.851) (0.692,0.852) (0.702,0.847)
160 0.810 (0.718,0.901) (0.726,0.909) (0.731,0.886) (0.722,0.901) (0.734,0.892)

computational cost, the EE and RWBU methods are recommended for practical
implementation.

5. Concluding Remarks

Based on survival data, an approximate confidence interval for θt can be
constructed via the asymptotic normality of θ̂t and a consistent estimator of
the asymptotic variance of θ̂t. Our numerical studies suggest that the empirical
coverage probabilities are not close to the nominal level, and the constructed
confidence intervals are not accurate enough for data with small sample size and
high censoring rate. We establish alternative confidence regions for θt based
on the random weighted bootstrap distribution and the one-term Edgeworth
expansion.

In our simulations, we find that the adequacy of random weighted boot-
strap confidence intervals relies on the specification of random weights. This
was investigated by James (1997) for the Kaplan-Meier and cumulative hazard
estimators, and by Chiang, James and Wang (2005) for the occurrence rate func-
tion with censored data using random weights (w1, · · · , wn) having a Dirichlet
distribution with parameters (4, · · · , 4) for better approximations. However, the
weights generated from uniform ξi’s did relatively well in our numerical studies.
Currently, there is no standard criterion for selecting random weights in the data
setting. We found that the one-term Edgeworth expansion procedure improved
the coverage probability but not the accuracy of interval estimators. A higher-
order Edgeworth expansion should be used in the construction of more accurate
confidence intervals.
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