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Abstract: This paper considers identification and estimation of a nonparametric

regression model with an unobserved discrete covariate. The sample consists of a

dependent variable and a set of covariates, one of which is discrete and arbitrarily

correlates with the unobserved covariate. The observed discrete covariate has the

same support as the unobserved covariate, and can be interpreted as a proxy or

mismeasure of the unobserved one, but with a nonclassical measurement error that

has an unknown distribution. We obtain nonparametric identification of the model

given monotonicity of the regression function and a rank condition that is directly

testable given the data. Our identification strategy does not require additional

sample information, such as instrumental variables or a secondary sample. We

then estimate the model via the method of sieve maximum likelihood, and provide

root-n asymptotic normality and semiparametric efficiency of smooth functionals

of interest. Two small simulations are presented to illustrate the identification and

estimation results.
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1. Introduction

We consider identification and estimation of the nonparametric regression
model

Y = m (X∗) + η, E[η|X∗] = 0 (1.1)

where Y and X∗ are scalars and X∗ is not observed. We assume X∗ is discrete,
so for example X∗ could be categorical, qualitative, or count data. We observe
a random sample of Y and a scalar X, where X could be arbitrarily correlated
with the unobserved X∗, and η is independent of X and X∗. We assume X has
the same support as X∗. The extension to Y = m (X∗,W ) + η, E[η|X∗,W ] = 0,
where W is an additional vector of observed error-free covariates is immediate
(and is included in the estimation section) because our assumptions and iden-
tification results for model (1.1) can be all restated as conditional upon W .
Discreteness of X and X∗ (with the same support) means that the measurement
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error X −X∗ will be nonclassical, in particular, the error will depend on X∗ and
generally has nonzero mean. See, e.g., Bound, Brown and Mathiowetz (2001) for
a review of nonclassical measurement errors.

This type of discrete measurement error is common in many data sets, in
particular, it arises in contexts where X∗ indexes or classifies the group that an
individual belongs to, which is sometimes misreported, yielding classification er-
rors. For example, Kane and Rouse (1995) find that school transcript reports of
years of schooling often contain errors, so X∗ could indicate one’s actual years of
schooling and X the transcript report. Finney (1964) discusses misclassification
in biological assay. Gustman and Steinmeier (2004) report that many individuals
that actually have a defined benefit retirement plan claimed to have a defined
contribution plan, and vice versa, so here X∗ and X are binary indicators of
actual versus reported pension type. Hirsch and Macpherson (2003) document
misclassification in surveys of union status. Balke and Pearl (1997) model imper-
fect compliance, where X is some assigned experimental treatment that differs
from the actual treatment received, X∗, because of compliance difficulties. More
generally X∗ and X could be the actual and reported values in any count data
or multiple choice survey question, with differences between X∗ and X arising
from either imperfect knowledge, or recording and transcription errors.

Many estimators and empirical analyses have been proposed to deal with mis-
classified discrete variables. See, e.g., Chua and Fuller (1987), Bollinger (1996),
Lewbel (2007), Hu (2006), and Mahajan (2006). However, to the best of our
knowledge, there is no published work that allows for nonparametric point iden-
tification and estimation of nonparametric regression models with nonclassically
mismeasured discrete regressors, without parametric restrictions or additional
sample information such as instrumental variables, repeated measurements, or
validation data, which our paper provides. In short, we nonparametrically re-
cover, and hence identify, the conditional density fY |X∗ (equivalently, the re-
gression function m and the distribution of the regression error η) just from the
observed joint distribution fY,X , while imposing minimal restrictions on the joint
distribution of X∗ and X. We also recover fX|X∗ and fX∗which, respectively,
imply identifying the conditional distribution of the measurement error and the
marginal distribution of the unobserved regressor fX∗ , and also imply identifica-
tion of the joint distributions fY,X∗ and fX,X∗ .

Although we interpret X as a measure of X∗ that is contaminated by mea-
surement or misclassification error, more generally X∗ could represent some la-
tent, unobserved quantifiable discrete variable, a health status or life expectancy
quantile for example, and X could be some observed proxy, say a body mass
index quantile or the response to a health related categorical survey question.
Equation (1.1) could then be interpreted as a latent factor model Y = m∗ + η
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featuring unobserved independent factors m∗ and η, with identification based on
observing the proxy X and on existence of a measurable function m(·) such that
m∗ = m(X∗).

The relationship between the latent model fY |X∗ and the observed density
fY,X is

fY,X(y, x) =
∫

fY |X∗(y|x∗)fX,X∗ (x, x∗) dx∗. (1.2)

Existing papers identifying the latent model fY |X∗ make one of three assump-
tions: the measurement error structure fX|X∗ belongs to a parametric family;
there exists an additional exogenous variable Z in the sample (such as an instru-
ment or a repeated measure) that does not enter the latent model fY |X∗ , and
exploiting assumed restrictions on fY |X∗,Z and fX,X∗,Z to identify fY |X∗ given
the joint distribution of {y, x, z}; a secondary sample exists to provide infor-
mation on fX,X∗ and permit recovery of fY |X∗ from the observed fY,X in the
primary sample. See Carroll, Puppert, Stefanski and Crainiceanu (2006) and
the references therein for detailed reviews on existing approaches and results.

In this paper, we obtain identification by exploiting nonparametric features
of the latent model fY |X∗ , such as independence of the regression error term η

and discreteness of X∗. Our results are useful because many applications specify
the latent model of interest fY |X∗ , while little is known about fX,X∗ , that is,
about the nature of the measurement error or the exact relationship between the
unobserved latent X∗ and a proxy X. In addition, our key “rank” condition for
identification is directly testable from the data.

We utilize characteristic functions. Suppose X and X∗ have support X =
{1, . . . , J}. Then by (1.1), exp (itY ) = exp (itη)

∑J
j=1 1(X∗ = j) exp [im (j) t] for

any given constant t, where 1() is the indicator function. This equation, and
independence of η, yield moments

E [exp (itY ) fX(x) | X = x] = E [exp (itη)]
J∑

x∗=1

fX,X∗ (x, x∗) exp [im (x∗) t]

(1.3)
Evaluating (1.3) for t ∈ {t1, . . . , tK} and x ∈ {1, . . . , J} provides KJ equations
in J2 + J + K unknown constants. These unknown constants are the values of
fX,X∗ (x, x∗), m (x∗), and E [exp (itη)] for t ∈ {t1, . . . , tK}, x ∈ {1, . . . , J}, and
x∗ ∈ {1, . . . , J}. Given a large enough value of K, these moments provide more
equations than unknowns. We provide sufficient regularity assumptions to ensure
existence of some set of constants {t1, . . . , tK} such that these equations do not
have multiple solutions, and the resulting unique solution to these equations
provides identification of m(·), fη and fX,X∗ , and hence of fY |X∗ .
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Estimation could be based directly on (1.3) using, for example, Hansen’s
(1982) Generalized Method of Moments (GMM). However, this would require
knowing or choosing constants t1, . . . , tK . Moreover, under the independence
assumption of η and X∗, we have potentially infinitely many constants t that
solve (1.3); hence GMM estimation using finitely many such t’s is not efficient
in general. Here we apply instead the method of sieve Maximum Likelihood
(ML) of Grenander (1981), which does not require knowing or choosing con-
stants t1, . . . , tK , and easily allows for an additional vector of error-free covariates
W . The sieve ML estimator essentially replaces the unknown functions fη, m,
and fX∗|X,W with polynomials, Fourier series, splines, wavelets, or other sieve ap-
proximators, and estimates the parameters of these approximations by maximum
likelihood. By simple applications of the general theory on sieve MLE developed
in Wong and Shen (1995), Shen (1997), Van de Geer (2000), and others, we get
consistency and find the convergence rate of the sieve MLE, along with root-n
asymptotic normality and semiparametric efficiency of such smooth functionals
as the weighted averaged derivatives of the latent nonparametric regression func-
tion m(X∗,W ), or the finite-dimensional parameters (β) in a semiparametric
specification of m(X∗,W ;β).

The rest of this paper is organized as follows. Section 2 provides the iden-
tification results. Section 3 describes the sieve ML estimator and presents its
large sample properties. Section 4 provides two small simulation studies. Sec-
tion 5 briefly concludes. All proofs are in the Supplement appendix, available at
http://www.stat.sinica.edu.tw/statistica.

2. Nonparametric Identification

Our basic nonparametric regression model is equation (1.1) with scalar Y

and X∗ ∈ X = {1, . . . , J}. We observe a random sample of (X,Y ) ∈ X × Y,
where X is a proxy for X∗. The goal is to consider restrictions on the latent
model fY |X∗ that suffice to nonparametrically identify fY |X∗ and fX|X∗ from
fY |X .

Assumption 2.1. X ⊥ η|X∗.

This assumption implies that the measurement error X −X∗ is independent
of the dependent variable Y conditional on the true value X∗. In other words,
we have fY |X∗,X(y|x∗, x) = fY |X∗(y|x∗) for all (x, x∗, y) ∈ X × X × Y. This
is equivalent to the classical measurement error property that the outcome Y ,
conditional on both the true X∗ and on the measurement error in X, does not
depend upon the measurement error.

Assumption 2.2. X∗ ⊥ η.

http://www.stat.sinica.edu.tw/statistica.
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This assumption implies that the regression error η is independent of the
regressor X∗ so fY |X∗ (y|x∗) = fη (y − m(x∗)). The relationship between the
observed density and the latent ones is then

fY,X(y, x) =
J∑

x∗=1

fη (y − m(x∗)) fX,X∗ (x, x∗) . (2.1)

Assumption 2.2 rules out heteroskedasticity or other heterogeneity of the regres-
sion error η, but allows its density fη to be completely unknown and nonpara-
metric. The regression error η is not required to be continuously distributed, but
the rank condition discussed below does place a lower bound on the number of
points in the support of η. We later show that this assumption can be relaxed in
a couple of different ways, e.g., as noted in the introduction, it can be replaced by
E [exp (itη) |X∗, X] = E [exp (itη)] for a certain finite set of values of t. For di-
chotomous (binary) X∗, we show Assumption 2.2 can alternatively be weakened
to just requiring E

(
ηk|X∗) = E

(
ηk

)
for k = 2, 3.

Let φ denote a characteristic function (ch.f.). Equation (2.1) is equivalent to

φY,X=x (t) = φη (t)
J∑

x∗=1

exp (itm(x∗)) fX,X∗ (x, x∗) (2.2)

for all real-valued t, where φY,X=x (t) =
∫

exp(ity)fY,X(y, x)dy and x ∈ X . Since
η may not be symmetric, φη (t) =

∫
exp(itη)fη(η)dη need not be real-valued. We

let φη (t) ≡ |φη (t)| exp (ia (t)), where

|φη (t)| ≡
√

[Re{φη (t)}]2 + [Im{φη (t)}]2, a (t) ≡ arccos
Re{φη (t)}
|φη (t)|

.

We then have for any real-valued scalar t,

φY,X=x (t) = |φη (t)|
J∑

x∗=1

exp (itm(x∗) + ia (t)) fX,X∗ (x, x∗) . (2.3)

Define

FX,X∗ =


fX,X∗ (1, 1) fX,X∗ (1, 2) · · · fX,X∗ (1, J)
fX,X∗ (2, 1) fX,X∗ (2, 2) · · · fX,X∗ (2, J)

...
...

. . .
...

fX,X∗ (J, 1) fX,X∗ (J, 2) · · · fX,X∗ (J, J)

 .

For a real-valued vector t = (0, t2, . . . , tJ), let D|φ|(t) = Diag{1, |φη(t2)| , . . .,
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|φη(tJ)|},

ΦY,X(t) =


fX(1) φY,X=1(t2) · · · φY,X=1(tJ)
fX(2) φY,X=2(t2) · · · φY,X=2(tJ)

...
...

. . .
...

fX(J) φY,X=J(t2) · · · φY,X=J(tJ)

 ,

and take mj = m(j) for j = 1, . . . , J, with

Φm,a(t) =


1 exp (it2m1 + ia (t2)) · · · exp (itJm1 + ia (tJ))
1 exp (it2m2 + ia (t2)) · · · exp (itJm2 + ia (tJ))
...

...
. . .

...
1 exp (it2mJ + ia (t2)) · · · exp (itJmJ + ia (tJ))

 .

With these matrix notations, for any real-valued vector t, (2.3) is equivalent to

ΦY,X(t) = FX,X∗ × Φm,a(t) × D|φ|(t). (2.4)

Equation (2.4) relates the known parameters ΦY,X(t) (which may be inter-
preted as reduced form parameters of the model) to the unknown structural
parameters FX,X∗ , Φm,a(t), and D|φ|(t). Equation (2.4) provides a sufficient
number of equality constraints to identify the structural parameters given the
reduced form parameters, so what is required are sufficient invertibility or rank
restrictions to rule out multiple solutions of these equations.

To provide these conditions, consider both the real and imaginary parts of
ΦY,X(t). Since D|φ|(t) is real by definition, we have

Re{ΦY,X(t)} = FX,X∗ × Re{Φm,a(t)} × D|φ|(t), (2.5)

Im{ΦY,X(t)} = FX,X∗ × Im{Φm,a(t)} × D|φ|(t). (2.6)

Since the matrices Im{ΦY,X(t)} and Im{Φm,a(t)} are not invertible because
their first columns are zeros, we replace (2.6) with

(Im{ΦY,X(t)} + ΥX) = FX,X∗ × (Im{Φm,a(t)} + Υ) × D|φ|(t), (2.7)

where

ΥX =


fX(1) 0 · · · 0
fX(2) 0 · · · 0

...
...

. . .
...

fX(J) 0 · · · 0

 and Υ =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 .

Equation (2.7) holds because FX,X∗ × Υ = ΥX and Υ × D|φ|(t) = Υ. Let
Ct ≡ (Re{ΦY,X(t)})−1 × (Im{ΦY,X(t)} + ΥX).
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Assumption 2.3. (rank). There is a real-valued vector t = (0, t2, . . . , tJ) such
that (i) Re{ΦY,X(t)} and (Im{ΦY,X(t)} + ΥX) are invertible, and (ii) For any
real-valued J × J−diagonal matrices Dk = Diag (0, dk,2, . . . , dk,J), if D1 + Ct ×
D1 × Ct + D2 × Ct − Ct × D2 = 0, then Dk = 0 for k = 1, 2.

We call Assumption 2.3 the rank condition, because it is analogous to the
rank condition for identification in linear models and, in particular, implies iden-
tification of the two diagonal matrices

D∂ ln|φ|(t) = Diag

(
0,

∂

∂t
ln |φη(t2)| , . . . ,

∂

∂t
ln |φη(tJ)|

)
,

D∂a(t) = Diag

(
0,

∂

∂t
a(t2), . . . ,

∂

∂t
a(tJ)

)
.

Assumption 2.3 (ii) is rather complicated, but can be replaced by some simpler
sufficient alternatives, which we describe later. Given a candidate value of t, we
can test if Assumption 2.3 holds for that value, since the assumption is expressed
entirely in terms of fX and the matrix ΦY,X(t) which, given a vector t, can be
directly estimated from data. It would also be possible to set up a numerical
search for sensible candidate values of t that one might check. For example,
letting Q(t) be an estimate of the product of the squared determinants of the
matrices in Assumption 2.3 (i), one could search for values of t that numerically
maximize Q(t). Assumption 2.3 (i) is then satisfied with high probability if the
maximized Q(t) differs significantly from zero. Similarly, one could let Q(t) be
the product of the squared differences between the left and right hand sides of
each inequality in Assumption 2.8, and maximize that to find values of t that
satisfy this binary rank condition. Note also that estimation does not actually
require finding an example value of t.

In the Appendix, we show that

ReΦY,X(t) × At × (ReΦY,X(t))−1 = FX|X∗ × Dm ×
(
FX|X∗

)−1
, (2.8)

where At on the left-hand side is identified when D∂ ln|φ|(t) and D∂a(t) are iden-
tified, Dm = Diag (m(1), . . . ,m(J)), and

FX|X∗ =


fX|X∗ (1|1) fX|X∗ (1|2) · · · fX|X∗ (1|J)
fX|X∗ (2|1) fX|X∗ (2|2) · · · fX|X∗ (2|J)

...
...

. . .
...

fX|X∗ (J |1) fX|X∗ (J |2) · · · fX|X∗ (J |J)

 .

Equation (2.8) implies that fX|X∗(·|x∗) and m(x∗) are eigenfunctions and eigen-
values of an identified J×J matrix on the left. We may then identify fX|X∗(·|x∗)
and m(x∗) under the following.
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Assumption 2.4. (i) m(x∗) < ∞ and m(x∗) 6= 0 for all x∗ ∈ X ; (ii) m(x∗) is
strictly increasing in x∗ ∈ X .

Assumption 2.4(i) implies that each possible value of X∗ is relevant for Y ,
and 2.4(ii) allows us to assign each eigenvalue m(x∗) to its corresponding value
x∗. If we only wish to identify the support of the latent factor m∗ = m(X∗) and
not the regression function m(·) itself, then this monotonicity assumption can be
dropped.

Given identification and invertibility of FX|X∗ , identification of fX∗ (the
marginal distribution of X∗) immediately follows because fX∗ can solved from
fX =

∑
X∗ fX|X∗fX∗ given the invertibility of FX|X∗ .

Assumption 2.4 could be replaced by restrictions on fX|X∗ (e.g., by exploiting
knowledge about the eigenfunctions rather than eigenvalues to properly assign
each m(x∗) to its corresponding value x∗), but Assumption 2.4 is more in line
with our other assumptions, which assume that we have information about our
regression model but know very little about the relationship of the unobserved
X∗ to the proxy X.

Theorem 2.1. Under Assumptions 2.1, 2.2, 2.3 and 2.4 in (1.1), the density
fY,X uniquely determines fY |X∗, fX|X∗, and fX∗.

Given our model, defined by Assumptions 2.1 and 2.2, Theorem 2.1 shows
that Assumptions 2.3 and 2.4 guarantee that the sample of (Y,X) is informative
enough to nonparametrically identify φη, m(x∗) and fX,X∗ , which correspond
respectively to the regression error distribution, the regression function, and the
joint distribution of the unobserved regressor X∗ and the measurement error.
This identification is obtained without additional sample information such as an
instrumental variable or a secondary sample. Of course, if we have additional
covariates such as instruments or repeated measures, they could be exploited
along with Theorem 2.1. Our results can also be immediately applied if we
observe an additional covariate vector W that appears in the regression function,
so Y = m (X∗,W ) + η, since our assumptions and results can all be restated as
conditioned upon W .

Now consider some simpler sufficient conditions for Assumption 2.3(ii) in
Theorem 2.1. Let CT

t be the transpose of Ct, and ”◦” stand for the Hadamard
product, i.e., the element-wise product of two matrices.

Assumption 2.5. The real-valued vector t = (0, t2, . . . , tJ) satisfying Assump-
tion 2.3 (i) also has Ct ◦CT

t + I invertible, and all entries in the first row of the
matrix Ct nonzero.

Assumption 2.5 implies Assumption 2.3 (ii), and is in fact stronger than
Assumption 2.3(ii), since if it holds then we may explicitly solve for D∂ ln|φ|(t)
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and D∂a(t) in simple closed form. Another alternative to Assumption 2.3(ii) is
the following

Assumption 2.6. (symmetric rank) a (t) = 0 for all t and, for any real-valued
J × J diagonal matrix D1 = Diag (0, d1,2, . . . , d1,J), if D1 + Ct × D1 × Ct = 0
then D1 = 0.

The condition in Assumption 2.6 that a (t) = 0 for all t is the same as assum-
ing that the distribution of the error term η is symmetric. We call Assumption
2.6 the symmetric rank condition because it implies our previous rank condition
when η is symmetrically distributed.

Finally, the assumption that the measurement error is independent of the
regression error, Assumption 2.2, is stronger than necessary. All independence
is used for is to obtain (1.3) for some given values of t. More formally, all that
is required is that (2.4), and hence (2.6) and (2.7), hold for the vector t in
Assumption 2.3.When there are covariates W in the regression model, which we
use in the estimation, the requirement becomes that (2.4) hold for the vector t
in Assumption 2.3 conditional on W . Therefore, Theorem 2.1 holds replacing
Assumption 2.2 with the following, strictly weaker assumption.

Assumption 2.7. For the known t = 0, t2, . . . , tJ that satisfies Assumption
2.3, φη|X∗=x∗ (t) = φη|X∗=1 (t) and (∂/∂t)φη|X∗=x∗ (t) = (∂/∂t)φη|X∗=1 (t) for all
x∗ ∈ X .

This condition permits some correlation of the proxy X with the regression
error η, and allows some moments of η to correlate with X∗.

2.1. The dichotomous case

We now show how the assumptions for Theorem 2.1 can be simplified in
the special case that X∗ is a 0-1 dichotomous variable, i.e., X = {0, 1}. Define
mj = m(j) for j = 0, 1. Given Assumptions 2.1 and 2.2, the relationship between
the observed density and the latent ones becomes

fY |X(y|j) = fX∗|X (0|j) fη(y −m0) + fX∗|X (1|j) fη(y −m1) for j = 0, 1, (2.9)

which says that the observed density fY |X(y|j) is a mixture of two distributions
that only differ in their means. Studies on mixture models focus on parametric
or nonparametric restrictions on fη for a single value of j that suffice to identify
all the unknowns in this equation. For example, Bordes, Mottelet and Vandek-
erkhove (2006) show that all the unknowns in (2.9) are identified for each j when
the distribution of η is symmetric. In contrast, errors-in-variables models typ-
ically impose restrictions on fX∗|X (or exploit additional information regarding
fX∗|X such as instruments or validation data) along with (2.9) to obtain identi-
fication with few restrictions on the distribution fη.
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Now consider Assumptions 2.3 or 2.5 in the dichotomous case. We have for
any real-valued 2 × 1−vector t = (0, t),

ΦY,X(t) =
(

fX(0) φY |X=0(t)fX(0)
fX(1) φY |X=1(t)fX(1)

)
,

Re{ΦY,X(t)} =
(

fX(0) ReφY |X=0(t)fX(0)
fX(1) ReφY |X=1(t)fX(1)

)
,

det (Re{ΦY,X(t)}) = fX(0)fX(1)
[
ReφY |X=1(t) − ReφY |X=0(t)

]
,

Im{ΦY,X(t)} + ΥX =
(

fX(0) ImφY |X=0(t)fX(0)
fX(1) ImφY |X=1(t)fX(1)

)
,

det (Im{ΦY,X(t)} + ΥX) = fX(0)fX(1)
[
ImφY |X=1(t) − ImφY |X=0(t)

]
.

Also

Ct =

1
fX(0)fX(1)[ImφY |X=0(t)ReφY |X=1(t)−ReφY |X=0(t)ImφY |X=1(t)]

det(Re{ΦY,X(t)})

0
det(Im{ΦY,X(t)}+ΥX)

det(Re{ΦY,X(t)})

 ,

thus (
Ct ◦ CT

t

)
+ I = Diag

(
2,

(
det (Im{ΦY,X(t)} + ΥX)

det (Re{ΦY,X(t)})

)2

+ 1

)
is always invertible. Therefore, in the dichotomous case, Assumptions 2.3 and
2.5 are the same, and can be expressed as the following

Assumption 2.8. (binary rank) (i) fX(0)fX(1) > 0; (ii) there exist a real-valued
scalar t such that ReφY |X=0(t) 6= ReφY |X=1(t), ImφY |X=0(t) 6= ImφY |X=1(t),
ImφY |X=0(t)ReφY |X=1(t) 6= ReφY |X=0(t)ImφY |X=1(t).

It is easy to find a real-valued scalar t that satisfies this binary rank condition.
In the dichotomous case, instead of imposing Assumption 2.4, we may obtain

the ordering of mj from that of observed µj ≡ E(Y |X = j) under the following.

Assumption 2.9. (i) µ1 > µ0; (ii) fX∗|X (1|0) + fX∗|X (0|1) < 1.

Assumption 2.9(i) is not restrictive because one can always redefine X as
1 − X if needed. Assumption 2.9(ii) reveals the ordering of m1 and m0 by
making it the same as that of µ1 and µ0, because

1 − fX∗|X (1|0) − fX∗|X (0|1) =
µ1 − µ0

m1 − m0
,

so m1 ≥ µ1 > µ0 ≥ m0. Assumption 2.9(ii) says that the sum of misclassification
probabilities is less than one, meaning that, on average, the observations X are
more accurate predictions of X∗ than pure guesses. The following Corollary is a
direct application of Theorem 2.1; hence we omit its proof.
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Corollary 1. If X = {0, 1}, (1.1) and (2.9) hold with Assumptions 2.8 and 2.9,
then the density fY,X uniquely determines fY |X∗, fX|X∗, and fX∗.

3. Sieve Maximum Likelihood Estimation

This section considers the estimation of a nonparametric regression model
Y = m0 (X∗,W ) + η, where the function m0() is unknown, W is a vector of
error-free covariates, and η is independent of (X∗, W ). Let {Zt ≡ (Yt, Xt, Wt)}n

t=1

denote a random sample of Z ≡ (Y,X,W ). We have shown that fY |X∗,W and

fX∗|X,W are identified from fY |X,W . Let α0 ≡ (f01, f02, f03)T ≡
(
fη, fX∗|X,W ,m0

)T

be the true parameters of interest. Before we present a sieve ML estimator α̂ for
α0, we need to impose some mild smoothness restrictions on the unknown func-
tions α0. The sieve method allows for unknown functions belonging to function
spaces such as Sobolev, Besov and others; see e.g., Shen and Wong (1994), Wong
and Shen (1995), Shen (1997), and Van de Geer (2000). But, for the sake of con-
creteness and simplicity, we consider the widely used Hölder space of functions.
Let ξ = (ξ1, . . . , ξd)T ∈ Rd, a = (a1, . . . , ad)T be a vector of non-negative integers,
and ∇ah(ξ) ≡ ∂|a|h(ξ1, . . . , ξd)/∂ξa1

1 · · · ∂ξad
d denote the |a| = a1 + · · · + ad -th

derivative. Let ‖·‖E denote the Euclidean norm. Let V ⊆ Rd and γ be the largest
integer satisfying γ > γ. The Hölder space Λγ(V) of order γ > 0 is a space of
functions h : V 7→ R such that the first γ derivatives are continuous and bounded,
and the γ-th derivative is Hölder continuous with exponent γ − γ ∈ (0, 1]. Take
the Hölder norm as

‖h‖Λγ = max
|a|≤γ

sup
ξ

|∇ah(ξ)| + max
|a|=γ

sup
ξ 6=ξ′

|∇ah(ξ) −∇ah(ξ′)|
(‖ξ − ξ′‖E)γ−γ < ∞,

and write Λγ
c (V) ≡ {h ∈ Λγ(V) : ‖h‖Λγ ≤ c < ∞} as a Hölder ball. Let η ∈ R

and W ∈ W with W a compact convex subset in Rdw . Let

F1 =
{√

f1(·) ∈ Λγ1
c (R) : f1(·) > 0,

∫
R

f1(η)dη = 1
}

,

F2 =
{√

f2 (x∗|x, ·) ∈ Λγ2
c (W) : f2 (·|·, ·) > 0,

∫
X

f2 (x∗|x,w) dx∗ = 1

for x ∈ X , w ∈ W
}

,

F3 =
{

f3 (x∗, ·) ∈ Λγ3
c (W) : f3 (i, w) > f3 (j, w) for all i > j, i, j ∈ X , w ∈ W

}
.

We impose the following smoothness restrictions on the densities

Assumption 3.1. (i) The assumptions of Theorem 2.1 hold; (ii) fη(·) ∈ F1

with γ1 > 1/2; (iii) fX∗|X,W (x∗|x, ·) ∈ F2 with γ2 > dw/2 for all x∗, x ∈ X ≡
{1, . . . , J}; (iv) m0(x∗, ·) ∈ F3 with γ3 > dw/2 for all x∗ ∈ X .
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Write A = F1×F2×F3 and α = (f1, f2, f3)
T . Let E[·] denote the expectation

with respect to the underlying true data generating process for Zt. Then α0 ≡
(f01, f02, f03)T = arg maxα∈A E[`(Zt; α)], where

`(Zt; α) ≡ ln
{ ∑

x∗∈X
f1 (Yt − f3(x∗,Wt)) f2 (x∗|Xt,Wt)

}
. (3.1)

Let An = Fn
1 × Fn

2 × Fn
3 be a sieve space for A: a sequence of approximating

spaces that are dense in A under some pseudo-metric. The sieve MLE α̂n =(
f̂1, f̂2, f̂3

)T
∈ An for α0 ∈ A: α̂n = arg maxα∈An

∑n
t=1 `(Zt;α). For simplicity

we present a finite-dimensional sieve An = Fn
1 × Fn

2 × Fn
3 . For j = 1, 2, 3, let

p
kj,n

j (·) be a kj,n×1−vector of known basis functions, such as power series, splines,
Fourier series, etc. The sieve spaces for Fj , j = 1, 2, 3, are

Fn
1 =

{√
f1(·) = p

k1,n

1 (·)T β1 ∈ F1

}
,

Fn
2 =

{√
f2 (x∗|x, ·) =

J∑
k=1

J∑
j=1

I (x∗ = k) I (x = j) p
k2,n

2 (·)T β2,kj ∈ F2

}
,

Fn
3 =

{
f3 (x∗, ·) =

J∑
k=1

I (x∗ = k) p
k2,n

3 (·)T β3,k ∈ F3

}
.

The method of sieve MLE is very flexible and we can easily impose prior
information on the parameter space (A) and the sieve space (An). For exam-
ple, if the functional form of the true regression function m0(x∗, w) is known
to up some finite-dimensional parameters β0 ∈ B, where B is a compact sub-
set of Rdβ , then we can take A = F1 × F2 × FB and An = Fn

1 × Fn
2 × FB

with FB = {f3 (x∗, w) = m0(x∗, w; β) : β ∈ B}. The sieve MLE becomes α̂n =
arg maxα∈An

∑n
t=1 `(Zt; α), with

`(Zt; α) = ln
{ ∑

x∗∈X
f1 (Yt − m0(x∗,Wt; β)) f2 (x∗|Xt,Wt)

}
. (3.2)

We could let f3 (x∗, w) = f3 (x∗, w;β) be any flexible semi-nonparametric form;
see, e.g., Liang and Wang (2005), Liang, Hardle and Carroll (1999), and Wang
(2000).

3.1. Consistency and convergence rate

First we define a norm on A as

‖α‖s = sup
η

∣∣∣f1(η)
(
1 + η2

)−ζ/2
∣∣∣ + sup

x∗,x,w
|f2 (x∗|x,w)| + sup

x∗,w
|f3 (x∗, w)|
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for some ζ > 0.

Assumption 3.2. (i) −∞ < E [`(Zt; α0)] < ∞ and E [`(Zt; α)] is upper semi-
continuous on A under the metric ‖·‖s; (ii) there is a finite κ > 0 and a ran-
dom variable U(Zt) with E{U(Zt)} < ∞, such that supα∈An:‖α−α0‖s≤δ |`(Zt; α)−
`(Zt;α0)| ≤ δκU(Zt).

Assumption 3.3. (i) p
k1,n

1 (·) is a k1,n×1−vector of spline wavelet basis functions
on R, and for j = 2, 3, p

kj,n

j (·) is a kj,n × 1−vector of tensor product of spline
basis functions on W; (ii) kj,n → ∞ and kj,n/n → 0 for j = 1, 2, 3.

The following consistency lemma is a direct application of Theorem 3.1 (or
Remark 3.3) of Chen (2007); we omit its proof.

Lemma 3.1. Let α̂n be the sieve MLE. Under Assumptions 3.1−3.3, we have
‖α̂n − α0‖s = op(1).

Given Lemma 3.1, we can now restrict our attention to a shrinking || ·
||s−neighborhood around α0. Let A0s ≡ {α ∈ A : ||α−α0||s = o(1), ||α||s ≤ c0 <

c} and A0sn ≡ {α ∈ An : ||α − α0||s = o(1), ||α||s ≤ c0 < c}. For simplicity we
assume that both A0s and A0sn are convex parameter spaces. Suppose that for
any α, α + v ∈ A0s, {α + τv : τ ∈ [0, 1]} is a continuous path in A0s, and that
`(Zt;α + τv) is twice continuously differentiable at τ = 0 for almost all Zt and
any direction v ∈ A0s. Define the pathwise first derivative as

d`(Zt; α)
dα

[v] ≡ d`(Zt; α + τv)
dτ

∣∣∣∣∣
τ=0

a.s. Zt,

and the pathwise second derivative as

d2`(Zt; α)
dαdαT

[v, v] ≡ d2`(Zt; α + τv)
dτ2

∣∣∣∣∣
τ=0

a.s. Zt.

Define the Fisher metric ‖·‖ on A0s as follows: for any α1, α2 ∈ A0s,

‖α1 − α2‖2 ≡ E

{(
d`(Zt; α0)

dα
[α1 − α2]

)2
}

.

Assumption 3.4. (i) ζ > γ1; (ii) γ ≡ min{γ1, γ2/dw, γ3/dw} > 1/2.

Assumption 3.5. (i) A0s is convex at α0; (ii) `(Zt; α) is twice continuously
pathwise differentiable with respect to α ∈ A0s.

Assumption 3.6. sup
eα∈A0s

supα∈A0sn
|(d`(Zt; α̃)/dα) [α − α0/‖α − α0‖s]| ≤ U(Zt)

for a random variable U(Zt) with E{[U(Zt)]2} < ∞.
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Assumption 3.7. (i) supv∈A0s:||v||s=1 E

{(
d`(Zt;α0)

dα [v]
)2

}
≤ c < ∞; (ii) uni-

formly over α̃ ∈ A0s and α ∈ A0sn, we have

−E

(
d2`(Zt; α̃)
dαdαT

[α − α0, α − α0]
)

= ‖α − α0‖2 × {1 + o(1)}.

Assumption 3.4 guarantees that the sieve approximation error under the
strong norm || · ||s goes to zero at the rate of max{(k1,n)−γ1 , (k2,n)−γ2/dw ,
(k3,n)−γ3/dw} = O ((k1,n + k2,n + k3,n)−γ); Assumption 3.5 makes sure that the
pseudo metric ‖α − α0‖ is well defined on A0s; Assumption 3.6 imposes an en-
velope condition; Assumption 3.7(i) implies that ‖α − α0‖ ≤

√
c ‖α − α0‖s for

all α ∈ A0s; Assumption 3.7(ii) implies that there are positive finite constants
c1 and c2 such that for all α ∈ A0sn, c1 ‖α − α0‖2 ≤ E[`(Zt; α0) − `(Zt;α)] ≤
c2 ‖α − α0‖2, that is, ‖α − α0‖2 is equivalent to the Kullback-Leibler discrepancy
on the local sieve space A0sn. The following convergence rate theorem is a di-
rect application of Theorem 3.2 of Shen and Wong (1994) to the local parameter
space A0s and the local sieve space A0sn; we omit its proof.

Theorem 3.1. Under Assumptions 3.1−3.7, k1,n = O
(
nγ/[γ1(2γ+1)]

)
and kj,n =

O
(
nγdw/[γj(2γ+1)]

)
for j = 2, 3, we have ‖α̂n − α0‖ = OP

(
n−γ/(2γ+1)

)
.

3.2. Asymptotic normality and semiparametric efficiency

Let V denote the closure of the linear span of A0s−{α0} under the Fisher
metric ‖·‖. Then

(
V, ‖·‖

)
is a Hilbert space with the inner product

〈v1, v2〉 ≡ E

{(
d`(Zt; α0)

dα
[v1]

)(
d`(Zt; α0)

dα
[v2]

)}
.

We are interested in estimation of a functional ρ(α0), where ρ : A → R. It is
known that the asymptotic properties of ρ(α̂n) depend on the smoothness of the
functional ρ and the rate of convergence of the sieve MLE α̂n. For any v ∈ V,
we write

dρ(α0)
dα

[v] ≡ lim
τ→0

[
ρ(α0 + τv) − ρ(α0)

τ
]

whenever the right hand-side limit is well defined.

Assumption 3.8. (i) for any v ∈ V, ρ(α0 + τv) is continuously differentiable
in τ ∈ [0, 1] near τ = 0, and∥∥∥dρ(α0)

dα

∥∥∥ ≡ sup
v∈V:||v||>0

|(dρ(α0)/dα)[v]|
||v||

< ∞;
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(ii) there exist constants c > 0, ω > 0, and an ε > 0 such that, for any v ∈ V
with ||v|| ≤ ε, we have∣∣∣∣ρ(α0 + v) − ρ(α0) −

dρ(α0)
dα

[v]
∣∣∣∣ ≤ c||v||ω.

Under Assumption 3.8(i), by the Riesz Representation Theorem, there ex-
ists υ∗ ∈ V such that 〈υ∗, v〉 = (dρ(α0)/dα)[v] for all v ∈ V, and ||υ∗||2 ≡
‖(dρ(α0)/dα)‖2.

Under Theorem 3.1, we have ||α̂n − α0|| = OP (δn) with δn = n−γ/(2γ+1).
Write N0 = {α ∈ A0s : ‖α − α0‖ = O(δn)} and N0n = {α ∈ A0sn : ‖α − α0‖ =
O(δn)}.

Assumption 3.9. (i) (δn)ω = o(n−1/2); (ii) there is a υ∗
n ∈ An−{α0} such that

||υ∗
n − υ∗|| = o(1) and δn × ‖υ∗

n − υ∗‖ = o(n−1/2).

Assumption 3.10. There is a U(Zt) with E{[U(Zt)]2} < ∞ and a non-negative
measurable function η with limδ→0 η(δ) = 0 such that, for all α ∈ N0n,

sup
α∈N0

∣∣∣∣d2`(Zt; α)
dαdαT

[α − α0, υ
∗
n]

∣∣∣∣ ≤ U(Zt) × η(||α − α0||s).

Assumption 3.11. Uniformly over α ∈ N0 and α ∈ N0n,

E

(
d2`(Zt; α)
dαdαT

[α − α0, υ
∗
n] − d2`(Zt; α0)

dαdαT
[α − α0, υ

∗
n]

)
= o

(
n−1/2

)
.

Assumption 3.8(i) is necessary for obtaining the
√

n convergence of plug-in
sieve MLE ρ(α̂n) to ρ(α0) and its asymptotic normality; Assumption 3.9 implies
that the asymptotic bias of the Riesz representer is negligible; Assumptions 3.10
and 3.11 control the remainder term. Applying Theorems 1 and 4 of Shen (1997),
we obtain the following

Theorem 3.2. Suppose that Assumptions 3.1−3.11 hold. Then the plug-in
sieve MLE ρ(α̂n) is semiparametrically efficient, and

√
n (ρ(α̂n) − ρ(α0))

d→
N(0, ||υ∗||2).

Following Ai and Chen (2003), the asymptotic efficient variance, ||υ∗||2, of
the plug-in sieve MLE ρ(α̂n) can be consistently estimated by

σ̂2
n = max

v∈An

|(dρ(α̂n)/dα)[v]|2

(1/n)
∑n

t=1 ((d`(Zt; α̂n)/dα)[v])2
.

We conclude the section by mentioning that, instead of the sieve MLE method,
we could also apply the random sieve MLE or more generalized sieve empirical
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Table 1. Simulation results, Example 1
Value of x∗: 1 2 3 4
m(x∗): true value 1.3500 2.8000 5.9500 11.400
m(x∗): mean estimate 1.2984 2.9146 6.0138 11.433
m(x∗): standard error 0.2947 0.3488 0.2999 0.2957
Pr (x∗): true value 0.2 0.3 0.3 0.2
Pr (x∗): mean estimate 0.2159 0.2818 0.3040 0.1983
Pr (x∗): standard error 0.1007 0.2367 0.1741 0.0153
fx|x∗ (·|x∗): true value 0.6 0.2 0.1 0.1

0.2 0.6 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

fx|x∗ (·|x∗): mean estimate 0.5825 0.2008 0.0991 0.0986
0.2181 0.5888 0.1012 0.0974
0.0994 0.1137 0.6958 0.0993
0.1001 0.0967 0.1039 0.7047

fx|x∗ (·|x∗): standard error 0.0788 0.0546 0.0201 0.0140
0.0780 0.0788 0.0336 0.0206
0.0387 0.0574 0.0515 0.0281
0.0201 0.0192 0.0293 0.0321

likelihood as proposed in Shen, Shi and Wong (1999) and Zhang and Gijbels
(2003). This alternative method has the advantage of allowing for non-continuous
densities.

4. Simulation

4.1. Moment-based estimation

This subsection applies the identification procedure to a simple nonlinear
regression model with simulated data. The latent regression model is y = 1 +
0.25 (x∗)2 + 0.1 (x∗)3 + η, where η ∼ N(0, 1) is independent of x∗. The marginal
distribution Pr(x∗) is Pr(x∗) = 0.2[1(x∗ = 1)+1(x∗ = 4)]+0.3[1(x∗ = 2)+1(x∗ =
3)]. We present two examples of the misclassification probability matrix Fx|x∗ in
Tables 1−2. Example 1 considers a strictly diagonally dominant matrix Fx|x∗ ;
see the true value fx|x∗(·|x∗) in Table 1. Example 2 has Fx|x∗ = 0.7Fu + 0.3I,
where I is the identify matrix and Fu = [uij/

∑
k ukj ]ij with uij independently

drawn from a uniform distribution on [0, 1]; see the true value fx|x∗(·|x∗) in Table
2.

In each repetition, we directly follow the identification procedure shown
in the proof of Theorem 2.1. The matrix ΦY,X is estimated by replacing the
function φY,X=x (t) with its corresponding empirical counterpart as φ̂Y,X=x (t) =∑n

j=1 exp(ityj)×1(xj = x). Since it is directly testable, Assumption 2.3 was ver-
ified with tj in the vector t = (0, t2, t3, t4) independently drawn from a uniform
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Table 2. Simulation results, Example 2

Value of x∗: 1 2 3 4
m(x∗): true value 1.3500 2.8000 5.9500 11.400
m(x∗): mean estimate 1.2320 3.1627 6.1642 11.514
m(x∗): standard error 0.4648 0.7580 0.7194 0.6940
Pr (x∗): true value 0.2 0.3 0.3 0.2
Pr (x∗): mean estimate 0.2244 0.3094 0.2657 0.2005
Pr (x∗): standard error 0.1498 0.1992 0.1778 0.0957
fx|x∗ (·|x∗): true value 0.5220 0.1262 0.2180 0.2994

0.1881 0.4968 0.1719 0.2489
0.1829 0.1699 0.4126 0.0381
0.1070 0.2071 0.1976 0.4137

fx|x∗ (·|x∗): mean estimate 0.4761 0.1545 0.2214 0.2969
0.2298 0.4502 0.1668 0.2455
0.1744 0.1980 0.4063 0.0437
0.1197 0.1973 0.2056 0.4140

fx|x∗ (·|x∗): standard error 0.1053 0.0696 0.0343 0.0215
0.0806 0.0771 0.0459 0.0262
0.0369 0.0528 0.0573 0.0313
0.0327 0.0221 0.0327 0.0238

distribution on [−1, 1] until a desirable t was found. The sample size was 5,000
and there are 1,000 repetitions. The simulation results in Tables 1−2 include the
estimates of regression function m(x∗), the marginal distribution Pr(x∗), and
the estimated misclassification probability matrix Fx|x∗ , together with standard
errors of each element. As shown in Tables 1−2, the estimator following the
identification procedure performed well with the simulated data.

4.2. Sieve MLE

This subsection applies the sieve ML procedure to the semiparametric model
Y = β1W + β2 (1 − X∗) W 2 + β3 + η, where η is independent of X∗ ∈ {0, 1} and
W . The unknowns include the parameter of interest β = (β1, β2, β3) and the
nuisance functions fη and fX∗|X,W .

We simulated the model from η ∼ N(0, 1) and X∗ ∈ {0, 1} according to the
marginal distribution fX∗(x∗) = 0.4× 1(x∗ = 0)+0.6× 1(x∗ = 1). We generated
the covariate W as W = (1 − 0.5X∗) × ν, where ν ∼ N(0, 1) was independent
of X∗. The observed mismeasured X was generated according to: X = 0 if
Φ (ν) ≤ p(X∗) and X = 1 otherwise, where p(0) = 0.5 and p(1) = 0.3.

The Monte Carlo simulation consisted of 400 repetitions. In each repeti-
tion, we randomly drew 3,000 observations of (Y,X,W ), and then applied three
ML estimators to compute the parameter of interest β. All three estimators as-
sumed that the true density fη of the regression error was unknown. The first
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Table 3. Simulation results (n = 3, 000, reps = 400)
true value of β: β1 = 1 β2 = 1 β3 = 1
ignoring error: mean 2.280 1.636 0.9474
ignoring error: standard error 0.1209 0.1145 0.07547
ignoring error: root mse 1.286 0.6461 0.09197
infeasible ML: mean 0.9950 1.012 0.9900
infeasible ML: standard error 0.05930 0.08263 0.07048
infeasible ML: root mse 0.05950 0.08346 0.07118
sieve ML: mean 0.9760 0.9627 0.9834
sieve ML: standard error 0.1366 0.06092 0.1261
sieve ML: root mse 0.1387 0.07145 0.1272

estimator used the contaminated sample {Yi, Xi,Wi}n
i=1 as if it were accurate;

this estimator is inconsistent and its bias should dominate the squared root of
mean square error (root MSE). The second estimator was the sieve MLE using
uncontaminated data {Yi, X

∗
i ,Wi}n

i=1; this estimator is consistent and most ef-
ficient. However, we call it the “infeasible MLE” since X∗

i is not observed in
practice. The third estimator was the sieve MLE (3.2) presented in Section 3,
using the sample {Yi, Xi,Wi}n

i=1 and allowing for arbitrary measurement error
by assuming fX|X∗,W unknown. In this simulation study, all three estimators
were computed by approximating the unknown

√
fη using the same Hermite

polynomial sieve with k1,n = 3; for the third estimator (the sieve MLE) we also
approximated

√
fX|X∗,W by another Hermite polynomial sieve with k2,n = 3 for

each x and x∗ value. In applications, the sieve MLE method needs to specify
the order of the sieve terms. Our experience is that the estimation of the finite
dimensional parameters is not very sensitive to the order of sieves. Of course if
one cares about estimation of the nonparametric density function itself, then one
could apply the covariance penalty methods suggested in Efron (2004) and Shen
and Huang (2006), among others. The Monte Carlo results in Table 3 show that
the sieve MLE had a much smaller bias than the first estimator ignoring mea-
surement error. Since the sieve MLE has to estimate the additional unknown
function fX|X∗,W , its β̂j , j = 1, 2, 3, estimate may have larger standard error
compared to the other two estimators. In summary, our sieve MLE performed
well in this Monte Carlo simulation.

5. Discussion

We have provided nonparametric identification and estimation of a regres-
sion model in the presence of a mismeasured discrete regressor without the use
of additional sample information, such as instruments, repeated measurements
or validation data, and without parameterizing the distributions of the mea-
surement error or of the regression error. It may be possible to extend the
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identification result to continuously distributed nonclassically mismeasured re-
gressors, by replacing many of our matrix-related assumptions and calculations
with corresponding linear operators.
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