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Abstract: In many applications, quality of a process is best characterized by a

functional relationship between a response variable and one or more explanatory

variables. Profile monitoring is used for checking the stability of this relationship

over time. Control charts based on nonparametric regression are particularly useful

when the in-control (IC) or out-of-control (OC) relationship is too complicated to

be specified parametrically. This paper proposes a novel nonparametric control

chart, using a sequential change-point formulation with generalized likelihood ratio

tests. Its control limits are determined by a bootstrap procedure. This chart can

be implemented without any knowledge about the error distributions, as long as a

few IC profiles are available beforehand. Moreover, benefiting from certain good

properties of the dynamic change-point approach and of the proposed charting

statistic, the proposed control chart not only offers a balanced protection against

shifts of different magnitudes, but also adapts to the smoothness of the difference

between IC and OC regression functions. Consequently, it has a nearly optimal

performance for various OC conditions.
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1. Introduction

Because of recent progress in sensing and information technologies, auto-
matic data acquisition is commonly used in industry. Consequently, a large
amount of quality related data of certain processes become available. Statistical
process control (SPC) of such data-rich processes is an important component
for monitoring their performance. In many applications, quality of a process is
characterized by the relationship between a response variable and one or more
explanatory variables. At each sampling stage, one observes a collection of data
points of these variables that can be represented by a curve (or, profile). In
some calibration applications, the profile can be described adequately by a linear
regression model. In some other applications, more flexible models are necessary
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for describing profiles properly. This paper focuses on monitoring nonparametric
profiles over time.

Most existing references on profile monitoring focus on cases in which pro-
files can be adequately described by a linear regression model. See, for instance,
Kang and Albin (2000), Kim, Mahmoud and Woodall (2003), Mahmoud and
Woodall (2004), Zou, Zhang and Wang (2006), and Mahmoud, Parker, Woodall
and Hawkins (2007), among several others. Multiple and polynomial regression
profile models are considered by Zou, Tsung and Wang (2007) and Kazemzadeh,
Noorossana and Amiri (2008). Recently, nonlinear regression profile models have
attracted much attention from statisticians. For instance, Williams, Woodall
and Birch (2007) suggest three general approaches to nonlinear profile moni-
toring in Phase I analysis. Colosimo and Pacella (2007) propose methods for
monitoring roundness profiles of manufactured items. Williams, Birch, Woodall
and Ferry (2007) apply the nonlinear regression approach by Williams, Woodall
and Birch (2007) to monitoring nonlinear dose-response profiles. Lada, Lu and
Wilson (2002) and Ding, Zeng and Zhou (2006) investigate a general category
of nonlinear profiles, using dimension-reduction techniques, wavelet transforma-
tions, and independent component analysis. See Woodall, Spitzner, Montgomery
and Gupta (2004) for an overview on this topic.

Recently, Zou, Tsung and Wang (2008) considered the nonparametric profile
model

yij = g (xij) + εij , i = 1, . . . , nj , j = 1, 2, . . . , (1.1)

where {xij , yij}
nj

i=1 is the jth random sample, xij is the ith design point in the
jth sample, g is a smooth nonparametric profile, and εij are i.i.d. random errors
with mean 0 and variance σ2. Zou, Tsung and Wang propose a control chart
that integrates the classical multivariate exponentially weighted moving average
procedure with the generalized likelihood ratio testing procedure that is based
on nonparametric regression. This chart can monitor shifts in both g and σ2.
It has been shown that this approach overcomes the fundamental limitation of
parametric profile monitoring techniques that they cannot detect certain shifts
due to misspecified out-of-control (OC) models.

Zou et al.’s (2008) control chart, which is called the nonparametric exponen-
tially weighted moving averaging (NEWMA) chart hereafter, has a number of
model assumptions. In certain applications, these assumptions may not all hold
and performance may be unsatisfactory. This is briefly discussed below. First,
the NEWMA chart makes explicit use of the IC true regression function g and the
error variance σ2 in model (1.1). In practice, both g and σ2 are often unknown
and need to be estimated from IC data. If such data are of small to moderate



NONPARAMETRIC PROFILE MONITORING 1339

size, then there would be considerable uncertainty in the parameter estimates,
which in turn would distort the IC run length distribution of the control chart.
Even if the control limit of the chart is adjusted properly to attain a desired
IC run length behavior, its OC run length would still be severely compromised
(cf., Jones (2002)). Second, the NEWMA chart assumes that the error distri-
bution, say F , is Normal, while in practice F is often unknown. In such cases,
it remains challenging to design the NEWMA chart properly (see Remark 2 in
Zou et al. (2008) for related discussion). Third, numerical examples in Zou et
al. (2008) demonstrate that the NEWMA chart depends heavily on the choice of
a bandwidth used in smoothing profile data. However, the proper choice of this
parameter is not discussed thoroughly. Fourth, the NEWMA chart has another
challenge that its best performance can be achieved only after it is “tuned” to
the shift magnitude that is again often unknown in practice.

In this article, we propose a new control chart that addresses the issues
raised above. The new control chart adopts the on-line change-point detection
approach (cf., Hawkins, Qiu and Kang (2003)). It handles sequential profile
readings by simultaneously updating parameter estimates and checking for OC
conditions. An adaptive procedure for selecting the bandwidth parameter is in-
corporated into the construction of the control chart so that it can adapt to the
unknown smoothness of the difference between the IC and OC regression func-
tions which, remarkably, improves its robustness to various OC profile conditions.
Furthermore, a bootstrap procedure is used to determine the control limits of the
proposed chart without any knowledge of F , as long as a few, say m0, IC profiles
are available beforehand. These m0 IC profiles are mainly used for estimating
the error distribution. Thus, m0 does not need to be large.

The proposed control chart is described in detail in Section 2. Its numeri-
cal performance is investigated in Section 3. In Section 4, we demonstrate the
method using an example from the semiconductor manufacturing industry. Sev-
eral remarks conclude the article in Section 5. Some technical details are provided
in the Appendix.

2. Methodology

We describe the proposed control chart in four parts. In Subsection 2.1,
the change-point formulation and the associated generalized likelihood ratio test
are introduced. A Phase II control chart based on these techniques is described
in Subsection 2.2. A bootstrap procedure for determining the control limits is
presented in Subsection 2.3. Finally, some practical guidelines regarding design
and implementation of the proposed control chart are provided in Subsection 2.4.
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2.1. Change-point model and generalized likelihood ratio test

To ease presentation, we assume that model (1.1) has an unknown but sta-
ble error variance over time, the nj ’s all have the same value n, and design
points {x1j , . . . , xnj} are fixed for different j, denoted as X = {x1, . . . , xn}. The
assumption of stable error variance is often approximately valid in calibration
applications of manufacturing industry, and is also consistent with the existing
literature on profile monitoring. Possible extensions of the proposed control chart
to cases in which both the regression function and the error variance have shifts,
or the design points are random, are briefly discussed in Section 5.

The change-point model can be expressed as

yij =

{
g(xi) + εij , i = 1, . . . , n, if 1 ≤ j ≤ τ

g1(xi) + εij , i = 1, . . . , n, if τ < j ≤ t,
(2.1)

where τ is the unknown change point, g 6= g1 are the unknown IC and OC
regression functions, and εij are i.i.d. errors with an unknown distribution F of
mean 0 and unknown variance σ2.

To check whether a possible change point occurs at τ = k, a two-sample
generalized likelihood ratio (GLR) test for testing the null hypothesis that g and
g1 are the same can be derived in a way similar to that in Fan, Zhang and Zhang
(2001). For ease of exposition, we can think of F as normal, although this is
not necessary in either asymptotic theory or practical use of the proposed chart.
The major idea in deriving the GLR test is to replace the unknown functions g

and g1 by their nonparametric estimators constructed from profile data when we
define the GLR statistic. To be specific, the generalized log-likelihood functions
under the IC and OC conditions are, respectively,

l0 = −nt ln
(√

2πσ
)
−

t∑
j=1

[ 1
2σ2

n∑
i=1

(
yij − ĝ(0)(xij)

)2 ]

l1 = −nt ln
(√

2πσ
)
−

k∑
j=1

[ 1
2σ2

n∑
i=1

(
yij − ĝ(1)(xij)

)2 ]

−
t∑

j=k+1

[ 1
2σ2

n∑
i=1

(yij − ĝ1(xij))
2
]
,

where ĝ(0)(·) denotes the local linear kernel estimator (LLKE) of g based on the
pooled t profiles, and ĝ(1)(·) and ĝ1(·) denote the LLKEs of g and g1 based on the
first k and the remaining t − k profiles, respectively. After some mathematical
manipulations, the GLR statistic up to time point t is defined by

Th,k,t = −2(l0 − l1) =
k(t − k)

tσ2

(
Ȳ0,k − Ȳk,t

)T Vh

(
Ȳ0,k − Ȳk,t

)
, (2.2)
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where

Ȳi,m =
1

m − i

m∑
j=i+1

Yj , Yj = (y1j , . . . , ynj)T ,

Vh = WT
h + Wh − W⊗

h , Wh = (Wn(x1), . . . , Wn(xn))T ,

Wn(xi) = (Wn1(xi), . . . ,Wnn(xi))T , Wnj(x) =
Unj(x)∑n
i=1 Uni(x)

,

Unj(x) = Kh(xj − x) [mn2(x) − (xj − x)mn1(x)] ,

mnl(x) =
1
n

n∑
j=1

(xj − x)lKh(xj − x), l = 1, 2,

Kh(·) = K(·/h)/h, K is a symmetric density kernel function, h is a bandwidth,
and A⊗ = AT A. Obviously, the test statistic (2.2) is a two-sample counterpart
of the one-sample GLR test statistic in Fan, Zhang and Zhang (2001). Since σ2 is
assumed unknown here, we replace it by the consistent nonparametric estimator
originally suggested by Hall and Marron (1990),

σ̂2
t =

1
t(n − df)

t∑
j=1

(Yj − WhYj)⊗, (2.3)

where df = tr(Vh).

Remark 1. The above testing problem is analogous to nonparametric covari-
ance analysis or comparisons of multiple curves in the context of nonparametric
regression testing. Many references in this area can be found in the literature un-
der various settings and assumptions, including Hall and Hart (1990), Young and
Bowman (1995), Kulasekera and Wang (1997), and Dette and Neumeyer (2001).
A recent review on this topic is given by Neumeyer and Dette (2003). From an
asymptotic viewpoint, Th,k,t in (2.2) is similar to the test statistic based on the
difference of two variance estimators constructed from the data that are before
and after the change-point, respectively. Dette and Neumeyer (2001) show that
the latter statistic has good finite sample properties and is often more power-
ful than several alternative test statistics found in the literature, partly because
certain good properties of the classical likelihood ratio test are inherited by the
GLR method, as demonstrated in Fan, Zhang and Zhang (2001).

Like many other smoothing-based tests, performance of the test (2.2) de-
pends upon the smoothing bandwidth h. Selection of h such that the testing
power is optimal remains an open problem in this area. It is widely recognized
that the optimal h for nonparametric curve estimation is generally not optimal for
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testing (see e.g., Hart (1997)). A uniformly most powerful test usually does not
exist due to the fact that nonparametric regression functions have infinite dimen-
sions. For the lack-of-fit testing problem, Horowitz and Spokoiny (2001) suggest
choosing a single h based on the maximum of a studentized conditional moment
test statistic over a sequence of smoothing parameters, and prove that the re-
sulting test would have certain optimality properties. Based on these results,
Guerre and Lavergne (2005) suggest choosing h from a sequence of pre-specified
values, and demonstrate that their method has a number of favorable properties.
Because this method is easy to use and has good performance in various cases, we
use it here for choosing h. Let Hn be a set of admissible smoothing parameters
defined as

Hn = {hj = hmaxa
−j : hj ≥ hmin, j = 0, . . . , Jn}, (2.4)

where 0 < hmin < hmax are the lower and upper bounds, and a > 1 is a parameter.
Clearly, the number of values in Hn is Jn ≤ loga(hmax/hmin). Following Guerre
and Lavergne (2005), we select h to be

h̃ = arg max
h∈Hn

{(Th,k,t − µh) − (Th0,k,t − µh0) − γnvh,h0} ,

where γn > 0 is a chosen penalty parameter, µh is the mean of Th,k,t, and v2
h,h0

is
the variance of Th,k,t − Th0,k,t. After accommodating the chosen bandwidth, the
testing statistic becomes

T̃k,t =
Th̃,k,t − µh̃

vh0

, (2.5)

where v2
h0

is the variance of Th0,k,t, µh̃ =
∑n

i=1 V
(ii)

h̃
, and V

(ij)

h̃
denotes the (i, j)th

element of the matrix Vh̃. For given h and h0, it can be shown that consistent
estimators of v2

h and v2
h,h0

are, respectively,

v̂2
h = 2

n∑
i=1

n∑
j=1

[
V

(ij)
h

]2
, v̂2

h,h0
= 2

n∑
i=1

n∑
j=1

[
V

(ij)
h − V

(ij)
h0

]2
.

Some statistical properties of the adaptive GLR test statistic T̃k,t, including
asymptotic null distribution and consistency under contiguous alternatives, are
given in the Appendix.

Remark 2. Compared to the method of Horowitz and Spokoiny (2001), the pa-
rameter selection method of Guerre and Lavergne (2005) has a number of good
properties. First, their selection criterion favors a baseline statistic under H0,
which guarantees that the asymptotic distribution of T̃k,t is the same as that
of (Th0,k,t − µh0)/vh0 . Hence, asymptotically speaking, the selected smoothing
parameter based on data would not inflate the type-I error probability (i.e., test
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size); see Proposition 1 in the Appendix for more discussion. Second, this selec-
tion procedure allows us to use vh0 in T̃k,t, instead of vh̃, which would asymptot-
ically increase the test power. See Guerre and Lavergne (2005) for more detailed
discussions about these issues.

In practice, the true change-point τ is often unknown. To test whether there
is a shift in the regression function g for profiles up to time point t, we consider
the adaptive GLR test statistic

T̃
bτ = max

1≤k<t
T̃k,t, (2.6)

which is the maximum over all possible split points (i.e., binary segmentations).
The maximizer τ̂ is used as an estimator of τ . Consistency of this change-point
estimator can be established as in Proposition 2 in Zou et al. (2008).

2.2. Phase II SPC

The change point detection procedure (2.2)−(2.6) is developed for a collec-
tion of profiles with fixed sample size (cf., (2.1)). In this part, we adapt it for
on-line Phase II SPC. In traditional cases when observations are univariate and
normally distributed, Phase II applications of change-point detection with some
parameters specified beforehand have been discussed by Pollak and Siegmund
(1991), Siegmund and Venkatraman (1995), Gombay (2000), Lai (2001), and
Pignatiello and Simpson (2002). For the setting in which none of the parameters
are assumed known, Hawkins et al. (2003), and Hawkins and Zamba (2005a,b)
discuss Phase II SPC for detecting possible shifts in the mean, the variance, and
both the mean and variance. Zamba and Hawkins (2006) discuss multivariate
SPC in which the measurement mean can change but the measurement covari-
ance remains constant. Phase II linear profile monitoring by the change-point
approach has been discussed by Zou, Zhang and Wang (2006). In this paper,
we discuss nonparametric profile monitoring using the change point detection
procedure introduced in the previous subsection.

Assume that there are m0 IC profiles available. In many applications, one
could collect a larger number of observations for each profile in Phase I analy-
sis than in Phase II monitoring, because of the additional care commonly taken
in Phase I analysis, while the OC condition could usually be effectively cap-
tured by using relatively small n. To make a distinction, hereafter we use
n0 to denote the number of observations in each of the m0 IC profiles and n

(n ≤ n0) to denote the number of observations in each future profile. Moreover,
let XIC = {x1, . . . , xn, xn+1, . . . , xn0} be the set of design points in the m0 IC
profiles with the corresponding response variables {y1j , . . . , ynj , y(n+1)j , . . . , yn0j},
for j = 1, . . . ,m0. Our proposed Phase II SPC procedure is described as follows.
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• After the (t−m0)th Phase II profile has been obtained, where t > m0, calculate

lrm0,t = max
m0≤k<t

T̃k,t. (2.7)

• If lrm0,t > hm0,t,α, where hm0,t,α is some suitable control limit (see next subsec-
tion for discussion about its selection), then an out-of-control signal is trigged.
After the signal, the systematic diagnostic procedure described in Zou et al.
(2008) can be used for locating the mean profile change.

• If lrm0,t ≤ hm0,t,α, then the monitoring process continues by obtaining the
(t + 1)th Phase II profile and by repeating the previous two steps.

This sequential scheme differs from the NEWMA chart in an obvious way
in that the IC regression function and the error variance in each observed profile
can be both unknown in the former scheme, while they are assumed known in the
latter one. Furthermore, in the NEWMA chart, we need to choose the procedure
parameter λ, besides the smoothing bandwidth, which is not necessary in the
change-point approach (cf., Hawkins et al. (2003) and Han and Tsung (2004)).

It should be noted that computing (2.7) involves estimation of the error
variance σ2 for each t. When t is given, (2.3) gives a consistent estimator of σ2.
From the tth to the (t + 1)-st profile, this estimator can be easily updated as

σ̂2
t+1 = [(t + m0)(n − df)σ̂2

t + (Yt − Whb
Yt)⊗]/[(t + 1 + m0)(n − df)], (2.8)

where hb is a pre-specified bandwidth. Zou et al. (2008) provide some practical
guidelines about the selection of hb. This parameter can also be selected before
Phase II monitoring from the m0 IC profiles by certain data-driven procedures,
such as CV and GCV.

Remark 3. The statistic lrm0,t is a little different from its counterpart used
in Hawkins et al. (2003). Here, lrm0,t is the maximum of T̃k,t on a constrained
interval m0 ≤ k < t, instead of across all possible values of k. Since the first m0

profiles are IC, this modification should be reasonable.

In practice, it might be more convenient to plot the normalized statistic
lrm0,t/hm0,t,α over t in a control chart. In such cases, the normalized control
limit is a constant 1. Besides hm0,t,α, our proposed control chart has a number
of other parameters. Selection of all these parameters is discussed in the next
two subsections.

2.3. A bootstrap procedure for determining control limits

From the construction of lrm0,t, it is easy to check that it does not depend on
the IC regression function g. Therefore, hm0,t,α should not depend on g either.
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In this part, we propose a bootstrap procedure for determining hm0,t,α based on
the m0 IC profiles.

First the m0 IC profiles are averaged, and then the averaged data are smoothed
by local linear kernel smoothing. The resulting m0 × n0 residuals are

êij := yij − Wn0(xi)Ȳ0,m0 , j = 1, . . . ,m0, i = 1, . . . , n0,

where Wn0(xi) is the smoothing operator defined immediately below (2.2), using
XIC (instead of X) and hb (which is mentioned below (2.8)). Second, generate
a bootstrap profile {(xi, y

∗
i ), i = 1, . . . , n} by defining y∗i = e∗i , for i = 1, . . . , n,

where e∗i is drawn from {êij , i = 1, . . . , n0, j = 1, . . . ,m0} with replacement.
Third, for each given t value, by this resampling procedure, simulate the whole
monitoring process, including generating the first m0 IC profiles (at design points
X) and all future profiles, and then computing the corresponding lr∗m0,t value.
Fourth, repeat step three B times. Then, for a given false alarm probability α

that corresponds to the IC average run lengths (ARL) 1/α, the control limits
hm0,t,α can be approximated by values satisfying

Pr
(
lr∗m0,t > hm0,t,α

∣∣∣lr∗m0,i ≤ hm0,i,α, 1 ≤ i < t
)

= α, for t > 1,

Pr
(
lr∗m0,1 > hm,1,α

)
= α.

Of course, the above probabilities should be interpreted as frequencies in B boot-
strap replications.

Based on our numerical experience and the empirical results in Hawkins et al.
(2003), which discusses similar simulation-based control limits, hm0,t,α gradually
converges to a constant as t increases. Therefore, we suggest computing the first
(about) 1/(2α) control limits and then using the last one of this sequence to ap-
proximate the remaining control limits. In addition, for computing each hm0,t,α,
about 10,000 bootstrap replications should be good enough to obtain reliable
approximations. For instance, if IC ARL is 200, then we need to compute the
first 100 control limits, and this requires about 16,500 bootstrap sequences such
that there are about 10,000 sequences left for computing the 100th control limit
hm0,100,α. Numerical accuracy of this bootstrap procedure is further investigated
in Section 3.

2.4. Practical guidelines

On choosing m0, n0 and n: From the description of the proposed SPC
procedure, we can see that its control limits are computed from the m0 IC profiles
(each with n0 observations) by the bootstrap procedure. Therefore, both m0 and
n0 should not be too small. If the IC error distribution F is known, then the
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control limits can be computed directly from F using the method in Hawkins et al.
(2003). In practice, F is often unknown and most practitioners would accumulate
a few IC profiles before starting monitoring, which is a major motivation for us
to propose the current SPC procedure. Based on our numerical experience, to
describe the error distribution reasonably well in various cases, use n0 > 50
and m0 ≥ 8. Note that the recommended m0 here is much smaller than the
recommended m0 in Zou et al. (2008), where m0 ≥ 40 is suggested. That is
mainly because the m0 IC profiles are used for estimating both the IC regression
function g and the error variance σ2 in the latter case, while g does not need to
be estimated in the former case. Regarding the choice of n and design points
positions, one may refer to Zou et al. (2008) for a detailed discussion.
On choosing γn, a, hmax and hmin in (2.5): Theoretically speaking, these
quantities should satisfy certain conditions to obtain the corresponding asymp-
totic results. See the Appendix for detailed discussion. In our simulations, we
found that performance of the proposed control chart was hardly affected by
these parameters, consistent with the findings in Guerre and Lavergne (2005).
By both theoretical arguments and numerical studies, we recommend the choices
a = 1.4, γn = 2.5

√
ln(Jn + 1), Jn could be 4, 5 or 6, hmax = n−1/7, and

hj = hmaxa
−j , j = 1, . . . , Jn. Note that hmax = n−1/7 is recommended partially

due to Condition (C5) that nh8 → 0.
On computation: To implement the proposed method efficiently, we suggest
recording a recursive array of the running total sums St = St−1+Yt. Then, com-
putation in (2.2) can be simplified by using Ȳ0,k−Ȳk,t = Sk/k−(St−Sk)/(t−k).
Considering that Vh can be calculated before monitoring and the estimators of
the error variance are also calculated in a recursive way (cf., (2.8)), the compu-
tational task involved in our proposed procedure is actually quite simple. For
instance, when IC ARL=200 and n = 35, it spends about five minutes in search-
ing for the control limits based on 20,000 simulations, using a Pentium 2.4MHz
CPU. Computer codes in Fortran are available from the authors upon request.

3. Simulation Study

We present some simulation results in this section regarding the numerical
performance of the proposed SPC procedure, called the adaptive change point
(ACP) procedure hereafter. In the procedure, parameters were chosen according
to the practical guidelines discussed in Subsection 2.4. More specifically, we chose
m0 = 8, n0 = 50, n = 25, Jn = 5, a = 1.4, γn = 2.5

√
ln(Jn + 1), hmax = n−1/7,

and hj = hmaxa
−j , for j = 1, . . . , Jn. The kernel function used in (2.2) was the

Epanechnikov kernel function K(x) = 0.75(1 − x2)I(−1 ≤ x ≤ 1), which has
certain optimality properties (cf., Fan and Gijbels (1996)). The IC ARL was
fixed at 200.
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Table 1. ARL and SDRL values of the ACP chart with and without boot-
strap approximations of the control limits.

with bootstrap without bootstrap
ARL SDRL ARL SDRL

(I) 203.1 205.5 200.2 199.7
(II) 205.8 203.6 275.2 269.7
(III) 207.3 218.4 77.5 78.8
(IV) 195.4 212.9 54.6 55.2

We first investigated the performance of IC run-length distribution of the
proposed procedure. As mentioned in Section 2.3, the IC distribution of our
charting statistic does not depend on the IC regression function g. Hence, we
used g = 0 in this example. Equally spaced design points xi = (i − 0.5)/n,
for i = 1, . . . , n, were used in all profiles. For the m0 IC profiles, another n

points i/n, for i = 1, . . . , n, were used as extra design points xn+1, . . . , xn0 . The
following four error distributions were considered: (I) εij ∼ N(0, 1); (II) εij ∼
U(0, 1) − 0.5; (III) εij ∼ t(5); and (IV) εij ∼ χ2(5) − 5, where U(0, 1) denotes
the Uniform distribution on [0,1], t(5) and χ2(5) denote the Student-t and chi-
squared distributions with degrees of freedom 5, respectively. For comparison
purposes, besides the proposed bootstrap procedure for determining the control
limits, we also investigated the run-length behavior of the ACP chart when its
control limits were approximated by the method used in Hawkins et al. (2003)
under the normal error distribution. The sample averages and sample standard
deviations of the run length, denoted as ARL and SDRL respectively, over 1,000
replications are summarized in Table 1.

From Table 1, it can be seen that in case (I), the ARL and SDRL of the
ACP chart without using bootstrap approximations are both close to the nomi-
nal values 200, as expected. However, in cases (II)−(IV) when F is respectively
light-tailed, heavy-tailed and right-skewed, the ACP chart without using boot-
strap approximations produced large biases in both IC ARL and SDRL. In com-
parison, the actual IC ARL and SDRL values of the ACP chart with bootstrap
approximations are close to 200 in all cases considered.

Next, we investigated the OC performance of the proposed control chart. To
compare it with alternative methods turns out to be difficult, due to lack of an
obvious comparable method. One possible alternative method is the NEWMA
chart proposed by Zou et al. (2008), although a minor modification is necessary
because the original NEWMA chart assumes that the IC regression function g

and error variance σ2 are known, and both of them are assumed unknown in the
current setting. The NEWMA charting statistic is

Ej = λZj + (1 − λ)Ej−1, j = 1, 2, . . . ,
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where Zj = (Yj −G)/σ, G = (g(x1), . . . , g(xn))T , E0 is a n-dimensional starting
vector, and λ is a smoothing parameter. The chart signals if

Qj = E′
jVhEj > L

λ

2 − λ
,

where L > 0 is a control limit chosen to achieve a specific IC ARL. A natural
modification of the NEWMA procedure is to replace g and σ2 by their sequential
estimators, referred to as the self-starting NEWMA procedure (SSN) hereafter.
To be specific, if the chart does not signal after the tth observed profile, then
replace G and σ by Ĝ = WhȲ0,t and σ̂t (cf., (2.8)), respectively. In addition, to
illustrate effectiveness of the adaptive selection of the bandwidth, we also obtain
the OC ARLs of the change-point formulation with a fixed h. That is, in this
procedure, Th,k,t in (2.2), instead of T̃k,t, is used in (2.7). This procedure is
called the fixed change point (FCP) chart hereafter. Another possible method to
compare is the “naive” multivariate EWMA approach that treats Zj as a long
multivariate vector (cf., Lowry, Woodall, Champ and Rigdon (1992)), referred
to as the MEW chart. For all the FCP, SSN and MEW charts, we followed the
recommendation of Zou et al. (2008) to choose the bandwidth h to be hE =
1.5n−1/5[

∑n
i=1(xi − x̄)2/n]1/2.

Because the SSN chart cannot be implemented without knowing the error
distribution, the standard normal error distribution was used in this example,
and was assumed known to the SSN chart. In both SSN and MEW charts,
we chose λ = 0.2. For ACP, all parameters were chosen as in the previous
example. Control limits of all the charts considered here were searched by sim-
ulations to attain the nominal IC ARL 200. The IC model used was g(xi) =
1− exp(−xi), i = 1, . . . , n, and the following four OC models were considered:
(I)g1(xi) = 1 − exp(−xi) + δxi; (II)g1(xi) = 1 − (1 + δ) exp(−xi); (III)g1(xi) =
1 − exp(−xi) + δ cos(πxi); (IV)g1(xi) = 1 − exp(−xi) + 0.75 sin(δπ(xi − 0.5)).
By changing δ, these models can cover various cases with different smoothness of
g − g1 and different shift magnitudes from g to g1. We considered the shift time
to be τ = 20, and the first m0 profiles in the sequence of observed profiles were
used as IC profiles. Table 2 presents the OC ARLs over 10,000 replications of the
ACP, FCP, SSN and MEW charts. In addition, the OC ARLs of the NEWMA
chart with known g and σ and with λ = 0.2 are included in the last column. The
control limits L of the EWMA-type control charts are included in the last row
of the table.

From the table, we can observe the following results. First, effectiveness of
the change-point formulation can be clearly seen by comparing the OC ARLs of
the FCP and SSN charts. The FCP chart performed almost uniformly better than
the SSN charts, consistent with the findings in Hawkins et al. (2003) about SPC
of univariate normal processes, and with the theoretical and empirical results in
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Table 2. OC ARL comparison of ACP, FCP, SSN, NEWMA and MEW
charts when IC ARL=200, m0 = 8, n = 25 and τ = 20.

δ ACP FCP SSN MEW NEWMA
0.20 132 (1.79) 136 (1.77) 151 (1.95) 177 (2.07) 35.4 (0.32)
0.30 66.5 (1.25) 78.3 (1.39) 97.1 (1.63) 149 (1.98) 16.5 (0.13)
0.40 24.8 (0.61) 30.2 (0.63) 50.6 (1.19) 112 (1.77) 9.82 (0.06)
0.60 6.11 (0.05) 7.31 (0.11) 8.13 (0.18) 37.8 (1.00) 5.20 (0.03)

(I) 0.80 3.44 (0.02) 3.88 (0.02) 4.04 (0.02) 8.53 (0.25) 3.58 (0.01)
1.00 2.33 (0.01) 2.59 (0.01) 2.96 (0.01) 4.44 (0.02) 2.76 (0.01)
1.50 1.29 (0.00) 1.39 (0.01) 1.90 (0.01) 2.55 (0.01) 1.88 (0.01)
0.20 119 (1.81) 123 (1.72) 141 (1.92) 171 (2.06) 28.3 (0.25)
0.30 45.8 (0.96) 58.1 (1.20) 83.5 (1.59) 134 (1.88) 12.8 (0.09)
0.40 14.9 (0.36) 19.2 (0.48) 34.5 (0.94) 88.8 (1.58) 7.92 (0.04)

(II) 0.60 4.64 (0.03) 5.30 (0.03) 5.65 (0.05) 18.5 (0.56) 4.43 (0.02)
0.80 2.72 (0.01) 3.03 (0.02) 3.45 (0.02) 5.33 (0.04) 3.07 (0.01)
1.20 1.46 (0.01) 1.59 (0.01) 2.13 (0.01) 2.85 (0.01) 2.05 (0.01)
2.00 1.00 (0.00) 1.00 (0.00) 1.34 (0.01) 1.72 (0.01) 1.31 (0.00)
0.20 102 (1.55) 111 (1.57) 121 (1.72) 166 (2.06) 24.7 (0.21)
0.30 32.4 (0.73) 39.3 (0.74) 54.2 (1.14) 123 (1.85) 11.4 (0.08)
0.40 10.5 (0.13) 13.4 (0.23) 17.5 (0.46) 75.4 (1.49) 7.02 (0.04)

(III) 0.50 5.93 (0.05) 6.94 (0.07) 7.28 (0.13) 33.1 (0.90) 5.10 (0.02)
0.75 2.70 (0.01) 2.97 (0.02) 3.29 (0.01) 5.25 (0.05) 3.07 (0.01)
1.00 1.69 (0.01) 1.86 (0.01) 2.34 (0.01) 3.28 (0.01) 2.26 (0.01)
1.50 1.07 (0.00) 1.12 (0.00) 1.59 (0.01) 2.06 (0.01) 1.57 (0.01)
0.25 70.9 (1.32) 85.4 (1.48) 109 (1.72) 152 (1.98) 17.6 (0.14)
0.50 7.56 (0.07) 8.90 (0.09) 12.4 (0.41) 51.9 (1.20) 5.84 (0.03)
0.75 3.71 (0.02) 4.20 (0.03) 4.37 (0.03) 9.96 (0.29) 3.78 (0.02)

(IV) 1.00 2.70 (0.01) 3.01 (0.02) 3.34 (0.02) 5.28 (0.06) 3.07 (0.01)
2.00 3.21 (0.02) 3.10 (0.02) 3.36 (0.02) 5.41 (0.10) 3.11 (0.01)
4.00 4.51 (0.02) 4.16 (0.02) 4.25 (0.03) 6.54 (0.43) 3.69 (0.01)
6.00 5.81 (0.03) 16.1 (0.28) 15.3 (0.24) 20.2 (1.82) 8.24 (0.04)

L 15.93 45.98 15.77
NOTE: Standard errors are in parentheses.

Han and Tsung (2004), as well about comparison of the EWMA and GLR charts.
Second, the ACP chart performed better than the FCP chart in most cases,
especially for detecting small and moderate shifts, which demonstrates the benefit
of adaptive bandwidth selection. It is worth mentioning that, in case (IV) when
δ = 6, g− g1 oscillated dramatically, and the ACP chart performed substantially
better. This demonstrates the fact that the adaptive GLR statistic can adapt to
the unknown smoothness of g−g1 and pick up smaller bandwidths automatically
when detecting more irregular alternatives. See Proposition 2 and Remark A3
in Appendix for more detailed discussion. Of course, one may want to use a
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PositiveNegative

Figure 1. Illustrations of various etching profiles from a DRIE process.

relatively small h in the FCP or SSN chart as well in such cases. However, the
OC model is often unknown in advance. The FCP or SSN chart with a fixed h

can outperform the ACP chart for certain OC models, but they can also be much
worse for other OC models. As a comparison, the ACP chart can always be nearly
the best. Third, we found that the ACP chart can even outperform the NEWMA
chart constructed with known g and σ for detecting moderate and large shifts. In
fact, our simulations (not reported here) showed that, when τ ≥ 120, the ACP
chart outperformed the NEWMA chart nearly uniformly, which is mainly due
to the joint benefits of the adaptive GLR test and the change-point approach.
Regarding the MEW chart, as expected, it did not perform well in all cases
considered, because it completely ignores the profile structure of the data. We
conducted some other simulations with various F , n and τ , to check whether
the above conclusions would change in other cases. These simulation results, not
reported here but available from the authors, showed that the ACP chart works
well for other error distributions as well in terms of its OC ARL, and its good
performance still holds for other choices of n and τ .

4. Application to Monitoring a Deep Reactive Ion Etching Process

In this section, we demonstrate the ACP chart by applying it to a dataset
obtained from the semiconductor manufacturing industry for monitoring a deep
reactive ion etching (DRIE) process that is critical to the output wafer quality
and that requires careful monitoring. In the DRIE process, the desired profile
is the one with smooth and straight sidewalls and flat bottoms, and ideally the
sidewalls should be perpendicular to the bottom of the trench with certain degrees
of smoothness around the corners . Various shapes of profiles, such as positive and
negative profiles, which are due to underetching and overetching, are considered
to be unacceptable (cf., Figure 1). More detailed introduction about the DRIE
process can be found in Rauf, Dauksher, Clemens and Smith (2002) and Zhou,
Zhang, Hao and Wang (2004).

This dataset has been analyzed by Zou et al. (2008), and its details can also
be found in Wang and Tsung (2007) and the references cited therein. In the
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Table 3. Results of various charts for monitoring the DRIE dataset. Note
that profile monitoring starts at t = 9 since the first 8 profiles are treated as
IC ones.

ACP FCP SSN MEW
t lrm0,t σ̂t hm0,t,α lrm0,t/hm0,t,α τ̂

9 0.740 0.431 6.526 0.113 8 0.342 2.849 18.64
10 0.924 0.420 6.816 0.136 8 0.357 4.832 23.30
11 2.493 0.423 7.112 0.351 8 0.639 13.29 47.84
12 1.957 0.420 7.194 0.272 8 0.611 11.76 37.34
13 1.126 0.418 7.437 0.151 8 0.440 6.755 30.00
14 1.573 0.416 7.741 0.203 8 0.320 2.490 24.23
15 2.423 0.411 8.136 0.298 14 0.581 5.512 29.39
16 6.771 0.411 8.487 0.798 14 0.816 15.32 36.90
17 9.053 0.408 8.702 1.040 14 1.109 16.89 40.49

20.05 61.93

dataset, the first 18 profiles are known to be IC. In order to demonstrate the
effectiveness of our proposed approach, we only take the first eight IC profiles for
implementing the bootstrap procedure and discard the remaining ten. In each
of these eight IC profiles, profile dimensional readings are collected at seventy
design points (i.e., n0 = 70), which satisfies the requirements of the bootstrap
procedure. Hence, the desired IC performance could be well approximated even
if we do not make assumptions on the error distribution. As in Zou et al. (2008),
IC ARL is fixed at 370. All other parameters of the ACP chart are chosen as in
the simulation examples. Then the ACP chart was used for monitoring Phase
II profiles, each of which has n = 35 observations. As detailed in Zou et al.
(2008), there are nine Phase II profiles in the dataset, and the last three are
classified as inferior profiles based on engineering knowledge. Table 3 tabulates
the statistics lrm0,t, σ̂t, the bootstrap approximated control limits hm0,t,α, the
ratio lrm0,t/hm0,t,α, and the estimated change-point τ̂ . The corresponding control
chart based on the ratio charting statistic lrm0,t/hm0,t,α is shown in Figure 2,
where the control limit is 1. As a comparison, corresponding results of the FCP,
SSN, and MEW charts are also presented in this table. As in the simulation
examples, we chose λ = 0.2 in the SSN and MEW charts. Their control limits
are given in the last row of the table.

From Table 3 and Figure 2, it can be seen that the ACP chart signals a shift
after the 17th profile is monitored, which matches the NEWMA chart of Zou et
al. (2008). As a by-product, the current chart gives a change-point estimate of
τ̂ = 14. In Zou et al. (2008), a separate diagnostic method needs to be used but
which gives exactly the same result about the shift position. From the table, we
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Figure 2. The ACP control chart for Phase II monitoring of the DRIE
process. Note that profile monitoring starts at t = 9 since the first 8 profiles
are treated as IC ones.

can see that the FCP chart also gives a signal at t = 17, but the SSN and MEW
charts do not give any signal by that time.

5. Concluding Remarks

In this paper, we propose a control chart for monitoring nonparametric pro-
files. Our proposed control chart integrates the dynamic change-point approach
with the adaptive generalized likelihood ratio test. A bootstrap procedure is sug-
gested for determining its control limits without specifying the error distribution.
This method does not assume the IC regression function g or the error variance
σ2 to be known, which could substantially shorten the period of Phase I analysis.
The proposed control chart offers not only a balanced protection against shifts
of different magnitudes, but also adapts to different smoothness of the IC and
OC regression functions. Consequently, it has a nearly optimal performance for
various OC conditions. As demonstrated by the DRIE example, the proposed
approach can be implemented conveniently in industrial applications. It should
be quite effective as long as a few IC profiles are available. Besides these prop-
erties, the ACP chart can be easily extended to cases of unequally spaced or
even random design points, or cases in which monitoring of both the regression
function and the error variance is of interest. These generalizations would require
certain modifications in the GLR statistic (2.2).
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Appendix. Some Statistical Properties of the GLR Test T̃k,t

We now present some statistical properties of the GLR test statistic T̃k,t.
First, a set of conditions is presented for later use. Without loss of generality,
we take 0 ≤ x1 ≤ . . . ≤ xn ≤ 1.

Conditions:
(C1) There exists a positive density f that is Lipschitz continuous and bounded

away from zero such that
∫ xi

0 f(u) du = i/n, i = 1, . . . , n.

(C2) Both g and g1 have continuous second derivatives in [0, 1].

(C3) K(u) is symmetric and bounded, u3K(u) and u3K ′(u) are bounded, and∫
u4K(u) du < ∞.

(C4) E(|ε11|4) < ∞.

(C5) h = hn satisfies h → 0, nh3 → ∞, and nh8 → 0.

(C6) The penalty sequence γn is of order
√

ln lnn.

Remark A.1. By condition C5, the set of bandwidths Hn (cf., (2.4)) should
roughly satisfy hmax = O(n−1/8−s1) and hmin = O(n−1/3+s2), where s1 and s2

are two small positive constants.

Proposition 1 will establish the asymptotic null distribution of T̃k,t, its proof
requires the following lemmas.

Lemma 1. If C1−C5 hold, then σ̂2
t = σ2

[
1 + Op((tn)−1/2) + Op((nh)−1)

]
.

This lemma can be proved easily by combining proofs in Hall and Marron
(1990), about the Nadaraya-Watson estimator, with certain Lr-convergence prop-
erties of LLKE (Fan (1993) and Fan and Gijbels (1996)). The proof is omitted.

Lemma 2. Under C1−C5 and the null hypothesis, (Th,k,t − µ̌h)/σ̌h
L−→ N(0, 1),

where

µ̌h =
2
h

(
K(0) − 1

2

∫
K2(t)dt

)
, σ̌2

h =
8
h

∫ (
K(t) − 1

2
K ∗ K(t)

)2

dt.

Proof. Note that [k(t−k)/t]1/2
(
Ȳ0,k−Ȳk,t

)
can be rewritten as ξk,t = (ξk,t,1, . . . ,

ξk,t,n)T , where ξk,t,i = [k(t−k)/t]1/2(ε̄0,k,i− ε̄k,t,i) and ε̄k,t,i =
∑t

j=k+1 εij/(t−k).
Obviously, ξk,t,i satisfies E(ξk,t,i) = 0, E(ξ2

k,t,i) = σ2, E(|ξk,t,i|4) < ∞, and ξk,t,i

and ξk,t,j are independent of each other when i 6= j. Thus, this lemma follows
by the technical arguments in the proof of Theorem 5 in Fan, Zhang and Zhang
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(2001), and by the arguments on modification of conditions in Proposition 1 of
Zou et al. (2008).

Lemma 3. Under C1−C5, we have v̂2
h = v2

h+op(h−1) and v̂2
h,h0

= v2
h,h0

+op(h−1).

This lemma can be easily proved by a direct calculation using Lemma 7.1 in
Fan, Zhang and Zhang (2001).

Lemma 4. Let T c
h,k,t=Th,k,t − µh, and νh be a n × n matrix with diagonal

elements zero and (i, j)th off-diagonal elements V (ij). Under conditions C1−C6,
if γn > (1 + c)

√
2 ln Jn for some c > 0, then

(i) v̂h,h0 = Op(h−1 − h−1
0 )1/2;

(ii) ξk,t
T (νh − νh0)ξk,t/vh,h0

L−→ N(0, 1); and

(iii)maxh∈Hn\{h0}

∣∣∣(T c
h,k,t − T c

h0,k,t)/v̂h,h0

∣∣∣ = (1+ op(1))×maxh∈Hn\{h0}

∣∣∣ξk,t
T (νh

−νh0)ξk,t/vh,h0

∣∣∣ + op(1).

Results (i) and (ii) above can be shown by similar arguments to those in the
proof of Lemma 2; (iii) is a direct conclusion of (i).

Proposition 1. Under C1−C6 and the null hypothesis, if γn > (1 + c)
√

2 lnJn

for some c > 0, then T̃k,t
L−→ N(0, 1).

Proof. By (i) and (iii) of Lemma 4,

Pr(h̃ 6= h0) = Pr

(
max

h∈Hn\{h0}

∣∣∣∣T c
h,k,t − T c

h0,k,t

v̂h,h0

∣∣∣∣ > γn

)
≤ Pr

(
max

h∈Hn\{h0}

∣∣∣∣∣ξk,t
T (νh − νh0)ξk,t

vh,h0

∣∣∣∣∣ ≥ γn

1 + c

)
+ op(1).

It can be easily checked that νh − νh0 satisfies the conditions of Lemma 2 in
Guerre and Lavergne (2005). Using (ii) of that lemma, and Lemmas 1-4 above,
the remaining part of the proof can be completed by the same arguments as those
in the proof of Theorem 1 in Guerre and Lavergne (2005).

Proposition 2 below considers the consistency of T̃k,t under local alternatives,
in which we use the notation

θ = k/t, δ(x) = g1(x) − g(x), η1 =
∫

K(t)t2dt,

η2 = 8
∫ (

K(t) − 1
2
K ∗ K(t)

)2

dt, ζδ =
tθ(1 − θ)

σ2

∫
δ2(u)f(u)du,

ζ1 =
tθ(1 − θ)η2

1

4σ2

∫
[δ′′(u)]2f(u)du.
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Proposition 2. Assume that C1−C6 hold, and that ζ1 is of an order within
[n−7/16γn, n1/2γn]. Then the asymptotic power of the adaptive GLR test is at
least

Φ
[
n8/9ζδ

(γnη
1/2
2

8ζ1

)1/9
− 9

8
γnη

1/2
2

]
;

thus, the test is consistent when ζδ ≥ cζ
1/9
1 (γnη

1/2
2 /n)8/9 and c > 0 is large

enough.

Proof. First, the power of the test satisfies

P (T̃k,t ≥ vh0zα) ≥ P (Th,k,t − µh ≥ vh0zα + γnv̂h,h0), (A.1)

where zα is the (1 − α)-quantile of the standard normal distribution. Thus, the
adaptive GLR test inherits the power properties of Th,k,t up to γnv̂h,h0 . See
Guerre and Lavergne (2005) for related discussions.

Under a local alternative δ, by similar mathematical manipulations to those
in the proof of Theorem 7 in Fan, Zhang and Zhang (2001), we have

Th,k,t − µh = h−1/2w + nζδ(1 + op(1)) − nh4ζ1, (A.2)

where w = wn is asymptotically normal with variance η2. Since v̂h,h0 and v̂h are
of order h−1/2, we can find an appropriate h in Hn, say hn, such that nζδ−nh4ζ1−
γnv̂h,h0 attains its maximum value asymptotically. Such an hn can be defined
by hn = h0a

−jn , where jn is the integer part of (2/(9 ln a)) ln[8nζ1h0/(γnη
1/2
2 )].

Note that hn is indeed in Hn when ζ1 satisfies the condition imposed. After
substituting hn into (A.2), Proposition 2 follows from (A.1).

Remark A.2. By (A.2), we observe that the asymptotic power of the test
statistic Th,k,t depends not only on δ(·), but also on δ′′(·). The term nh4ζ1 in (A.2)
explains, intuitively, the major reason why choosing the smoothing parameter h

properly would gain test power. Practically, a smaller h is often more effective in
detecting shifts with sharp or oscillating δ (i.e., δ′′ is large), and a larger h often
performs better when δ is flat or smooth (i.e., δ′′ is small). This observation
motivates us to use the adaptive selection procedure when conducting the GLR
test. From the proof of Proposition 2, we can see that, to attain the stated
asymptotic power, the order of “optimal” h should be [γnη

1/2
2 /(nζ1)]2/9. Thus,

the test based on T̃k,t would adapt to different magnitudes of δ′′. Consequently,
T̃k,t would be more robust to unknown alternatives than the test based on Th,k,t

with a fixed bandwidth.
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