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Supplementary Material
This note contains conditions and proofs for the asymptotic normality of the local log-
likelihood estimator.

S1. Notation

Let Nii(s) = I(t; < s, 6; =1), Nai(s) =1I(t; <s, 6; =0), Ti(s) = I(t; > s), and
9= (agv a?? ag? bT7 br{‘v bg)T7
;kl = (X;I‘l’ X;I‘Q’ OlX(P—pl)’ X;I‘l(UZ _u)’ X;FQ(UZ - u)’ le(p—pl))T,

;2 = (X;I‘la le(p—pl), X;I‘Qa X;I‘l(Uz _u)’ le(p—pl), X;I‘Q(Uz _u))T-

The local log-likelihood function ¢ can be expressed in terms of counting process as

2 n T *
l3(9, ) = ZZ/ Ky (U; — u) log — 99 Xj) dNy;(v) (S1.1)
1=1 =170 ley(v)gl(ﬂTX;l)Kh(Uj—u)
=

where we omitted D as it is independent of 9 .
Let (Q, F.P(n, hoy, hO,c)) be the sample space equipped with a right-continuous nonde-

creasing family of o- algebras (Fs : s € [0, 7]), where Fy = O'{ti <w, Xi, Ui, Ti(v), i =



1,2,---.n, 0<v < 5}. All stochastic processes in this paper are assumed to be F; measur-
able. Define My;(s) = Ny(s) — [g Mi(v)dv, 1 =1,2, i =1,2,--- n, where )\j; is the intensity
process of Ny;. Obviously, Mj;(s) is a Fs martingale and My;(s) are orthogonal with predictable

variation process
S
< My; > (S) =< My;, My > (8) :/0 )\li(v)dv.

Let ¢ = H(9 — &), that is 9 = H !¢ + &, then (S1.1) can be reparametrized to

E4(C’ T) = 63(H71<+£, 7—)

— Z/ Ky(U; — u)log (¢ Wi + € X})
I=1i=1 ZlTj(U)gl(CTW + &' X)) Kn(Uj — u)

lei(U),
(S1.2)

where W = H1 X5,

For casy description, we write h1(v) = hoy(v), ha(v) = hoe(v), ZF = (X*, 015 (ppy))'s Z5 =
(X815 01x(ppr)s X02)'s Zi(s) = (Zf1, Z/Ts), X¥0 =1, X®! = X, X® = XXT. We use 0
without subscript to denote 0241, and gl(k)(-) to denote the kth derivative of g;(-), k =0, 1, 2,
I = 1, 2. For any matrix A and vector a, let [|A|| = sup; ;layl, [|al| = sup; |a;| and

la| = (aTa)l/2. For1=1, 2, k=0, 1, 2, let

Anik(C, v, ) ZKh ) (CT i+ X WiHE,

n

Ao, u) = -3 Ky (Us — u)Ts (0)an (Bun( U3 X,
i=1
arC. v, w) = f(u) [ B[P, X, woP (€T Zi(s) + 0w X)Z() MU = u] K (s)ds,
(v, ) = F()E[P(o, X, u)gy" (O (u) X) 27 MU = ],

pi(v, u) = F)B{P(v, X, u)[g (00" X)P/gu(B0n(u)" X) 272U = u},

pi(u) = /OT pi(v, why(v)dv, Ti(u)= p(u)— /OT o (v, w)ag(v, )" hy(v)do.



S2. Condition

The following conditions are imposed to establish the asymptotic normality of the proposed

estimator.

(1)

(8)

The kernel function K(t) is a bounded and symmetric density function with compact

support.

The functions 3;(-),1 = 0,1,2, ¢1(-), g2(-) have continuous second derivatives around the

point v and g1 (+), g2(+) are strictly positive.

The marginal density f(-) of U has a continuous derivative in some neighborhood of w,

and f(u) # 0

Jo hoy(v)dv < oo, [ hoc(v)dv < co.

The conditional probability P(v, z, u) is continuous with respect to w.
n — 00, h — 0, nh/logn — oo, nh® is bounded.

(Asymptotic regularity conditions) The matrix A(u) is positive definite at u, Q(u) is

nonsingular at u.

(Lindeberg condition)

9 (Bo(U)' X1 + B1(U)' X, )Xi Ti(s) 0.

) S o B (U X + AU X

S3. Proof of asymptotic normality

We first present some useful lemmas.

Lemma S3.1. Under conditions (1)-(6), we have

A (€, v, w) = ai(€, v, w) +op(1),  Anp(v, u) = age(v, uw)+ op(1),



=1, 2, k=0, 1, 2, where { lies in a neighborhood of O for fixed w.

This Lemma follows immediately from the same argument for Lemma A.1 in Fan, et al.,

2006.

Lemma S3.2. Suppose the k-variate counting process N has intensity process A. Let
M;(s) = N(s) — [g Mv)dv, i =1,---,k, 0 <s <7, M(s) = (M(s),--, Mg(s))T, and H(s)
be a p x k matriz of locally bounded and predictable. Then M(s) and [j H(v)dM(v) are local

square integrable martingales with

<M> (s) = (dmg/os /\(v)dv), /H )dM (v / H(v dmg/\(v)) H(v) dv,

where [ H(v)dM(v) is the p dimensional vector whose jth component, j = 1, ---, p, is the

sum of integrals, with respect to the k components of M(v), of all entries on jth row of H(v).
See Andersen, et al.,1993, Proposition I1.4.1.

Lemma S3.3. (consistency of € ) Under conditions (1)-(7) , we have

HE-6 Lo,
Proof: By (S1.2), it follows that
nU4(C, 5) = 1140, 5)
T T
Wit €X) . AwlC v,
= 23S [ a0 [t HERELEN) o Lol b W
1=1i=1 gl(E Xu) AnlO(Oa v, U)

0, v, u

+Z{/ Buo(¢, v, u)hi(v dv—/l M’; nio (v, why(v )dU}

2
= ZJ“ JFZJ(2



T * T *
K, (Ui —u) log M%ﬂﬂﬂlﬂ(v)gl(HOZ(Ui)TXi)hl(v)dv. For each

where Byo(¢, v, u) =
( 1 a(& X3)

s

1
n

7

¢, JT(L})(C , s) is a local square integrable martingale with

8 o [ e a{"Wi+€X5) Auo( v, w2,
<6 ) > (0 =n7t) [0 ) log M5 g GG e

By using the same argument as Lemma S3.1, it can be shown that nh < J,S)(Ca ) > (1)
converges in probability to some finite quantity (depending on ¢ ). By the inequality of
Lengart, we have J,S)(C s) = Op((nh)_%), 0<s<r.

Using the same argument as that for Lemma S3.1, we obtain

o(¢, v, u)

%%4$=:/m@vum M_/b%MQum%muWM@+%n

= Il(Ca S)+Op(1)a

T S uT
where b;o(¢, v, u) = f(u)fE{P(v, X, u)log a(C ng(IG(OL)(Z?%)(()) X)gl(ﬁol(u)TX)]U = u}K(s)ds.

Hence we have

nil&l(Ca 3) - n71£4(C7 8) = Il(Ca 3) + IQ(C? 3) + Op(l)'

By simple calculation, we can see the first derivative of (Il(C , s) + Ix(¢, 5)) is zero at
¢ = 0 and its second derivative is a negative definite matrix at ¢ = 0 by condition (7).
Finally we will show that the local log-likelihood function is concave. Since the second

derivative of JT(L?)(C , ) with respect to ¢ is
/ { ZKh T()n(C Wi + € X)W qu0a (U X2) — ("W + € X))
Ano(€, v, u) — - ZKh(Uz‘ —u) T3 () (Wi + € X)) a (Wi + €7 X)W

X% Z Ky (Ui — u)T;(v) {91(901(Uz)TXz) — ("W + ETXZ)} } m

- T T yr* (CT ETX ) * Anll(C7 U, u) ®2
ZKh )¢ Wi + €057 [ a(CW +£TX“)W” Ann(C, v, U)}
An (v, u)
(e, O



where (' W;

+ € X3) is the second derivative of log g;(¢TW;

ﬁTXZ*l) with respect to (.

Obviously, the last term is negatively semidefinite for any ¢ and with ¢ lies in a neighborhood of

0 for fixed u. Using the same argument as that for Lemma S3.1, we have that each component

of the first two terms inside the bracket converges in probability to zero. Thus J (C , S)is

negatively semidefinite matrix for any ¢. Therefore, n=! (64(( , T) — £4(0, T)) is concave with

maximiser being ¢ = & . Using the convex Theorem II.1 of Andersen & Gill (1982, Appendix

IT), we have ¢ converges in probability to the maximiser of (Il(C, T) + (¢, 7')) 0

Proof of Theorem: It is easy to see that

l1(0, T) =

1864 C’ ’
oc  l¢-o
Iy [ GEXD . Aw(0
— K UZ—U 1 z'*_ )
w2y )[QJ(ETX;}) N0}
g/(ETX?kl) * Anll(o,
- Ki( 721/{/1, _
zz;;/ il gz(ETX;}) b A0,

2

Z Rll(O, T) + Z ng(o, T).
=1 =1

v, U

|dMis(w)

S

S

| 7i(0)gn(00n (U X u(0) v

S

)
)
)
)

We first deal with Rj2(0, 7). When U; in the small neighborhood of u, by Taylor’s expansion,

it can be shown that

2
Z ng(O, T)
=1

Define Rj(s)

Bo (u)
'y (w) o (u)
1 2 1 " 2
= P 8w |+
0gxq 0gxq
0(p*pl)><1

= rau)(1+ 0,(1).

and S3.2, we have that

< (R} + R%) >

p | Ti(w) +Ta(w))ro

(1) —

Oqu

Oqu

(p1(w) + p2(u))ve

Omyer | {1+ 0p(1)

1"

By (u)

= vnh R;1(0, s), l =1, 2. Using same argument as that for Lemmas S3.1

El(u)



It remains to be proved that for all € > 0,
2 n T p
>3 [ (SN0 (Si50)] > v Lo,
I=1i=1

g (E X Anll(07 v, U) y — e
Where Sl” \/7 Kh |:gl 5 X Wll - Anl0(07 v, u):|]a ] — 1,2; ,297

By using the elementary inequality
[a—b*I(ja—b| > €) < 4laPI(al > 5) +4/bPL(|b| > 3)

and Taylor’s expansion of 3,(U;), j =0, 1, 2, at u and the continuity of g;(-), g (), 1=1,2,
together with condition (8), we obtain the above result.

Appealing Rebolledos’s martingale central limit theorem, we have

Vih(l1 (0, 7) — rp(u)) =2 N(0, S (u)). (S3.1)

8264( , T)
o¢oC"

finite constant matrix for any random ¢* between 0 and & . Since ¢* £, 0, by the mean-value

We are now going to show that £,,5(¢*,7) = % . converges in probability to a

theorem we have that

la2(C*, ) = Lu2(0, 7) + 0p(1),

and
fn0,7) = g > [ K- [ (& X f;é&_l) o & X0 o) a0
41 gi /0 K (Us — ) [gl” (€' X0 (g@g)[g/(éTX;)P e

Ai(v)dv.

1
ni2(0, v, w)Ano(0, v, u) — Apn (0, v, u)®2}
A%lO(O, v, u)

Similar to the proof of J (C, s) in Lemma S3.3, it can be shown that each component in the

first and second terms equal Op((nh)fé). By simple calculation, we can see the third term



converges in probability to

B I1(u) +To(u) 0gxq = %)
Ogxq (p1(u) + p2(u))p2

Hence £p0(C*, 7) £, —Yo(u).
As & maximizes n~144(¢, 7) and é L, 0, by Taylor’s expansion at 0 and the above result,

we have
&= o) ra(w) = — (B¢, 7)) (£an(0, ) = ru(w)) +0p(1).

This together with (S3.1) lead to
Vih (&= Sa(w) " ra(w)) -2 N (0, So(u) " S () (w) ) |
By simple and straightforward calculation, it follows that

1"

1 _ 1 ”
T (u) = §h2ﬂ2 n (u), So(u) 'rp(u) = §h2M292qxq77 (u),

and



