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Abstract: A proportional hazard function together with partial likelihood estima-
tion is the most common approach to the analysis of censored data. However,
partial likelihood estimation is established on the grounds that the censoring is
non-informative. The partial likelihood approach enjoys many good properties
when the censoring is indeed non-informative. However, in reality, censoring can
be informative. One pays a price in the efficiency of the estimator if partial like-
lihood estimation is used when the censoring is indeed informative. This problem
is particularly acute in the nonparametric case. When censoring is informative,
to make use of the information provided by the censoring times, it is better to
take the local complete likelihood approach. Motivated by the data set about the
first birth interval in Bangladesh, we propose here a varying-coefficient propor-
tional hazard function to fit informatively censored data. We take the complete
likelihood approach coupled with local linear modelling to estimate the functional
coefficients involved in the model. Asymptotic properties of the proposed estimator
are established, that show the proposed estimator is indeed more efficient than the
maximum local partial likelihood estimator. A simulation study was conducted to
demonstrate how much the proposed estimator improves the efficiency of the max-
imum local partial likelihood estimator when sample size is finite. In reality, we do
not know whether censoring is informative or not, and a cross-validation based cri-
terion is proposed to check whether the censoring is informative or not. Finally, the
proposed varying-coefficient proportional hazard function, together with the pro-
posed estimation method, is used to analyse the first birth interval in Bangladesh,
leading to some interesting findings.

Key words and phrases: Informative censoring, local complete likelihood estimation,
local linear modelling, maximum local partial likelihood estimation, proportional
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1. Introduction

1.1. Preamble

Censored data appear frequently in medical science, finance, economics, soci-
ology, and so on. A common approach to analyzing the censored data is maximum
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partial likelihood estimation under the proportional hazard function assumption,
see Cox (1972). Although there are some other approaches such as the unbiased
transformation-based regression approach, see Fan and Gijbels (1994), the pro-
portional hazard function together with partial likelihood estimation is probably
the most influential. For parametric settings, as far as the estimation is con-
cerned, the partial likelihood estimation approach has been well-established, see
Cox and Oakes (1984, Chap.8). Parametric modelling is a traditional modelling
approach. It has many advantages when the model is correctly specified, but
misspecification can lead to large bias.

Fan, Gijbels and King (1997) investigated the maximum local partial like-
lihood estimation for the standard nonparametric setting in which only one co-
variate was included. Their nonparametric setting does not easily extend to the
multiple nonparametric setting with more covariates, due to the ‘curse of dimen-
sionality’. Fan and Li (2006) have a very interesting essay discussing statistical
challenges with high dimensionality. Here we have to assume that the underlying
model has a specific structure, which leads to semiparametric modelling.

Semiparametric modelling is an appealing approach. There have been many
semiparametric models, together with estimation methods, proposed recently.
Examples include additive modelling (Breiman and Friedman (1985) and Hastie
and Tibshirani (1990, Chap.4)), low-dimensional interaction modelling (Fried-
man (1991); Stone, Hansen, Kooperberg and Truong (1997)), multiple-index
models (Xia, Tong, Li and Zhu (2002)), varying-coefficient models (Hastie and
Tibshirani (1993)); Cai, Fan and Li (2000); Fan and Huang (2005)), and so on.

1.2. Modelling strategy and motivation

Different models explore different aspects of high-dimensional data and in-
corporate different prior knowledge into modelling and approximation. Which
model should be used depends on what the data we analyse is like and what
aspect we want to explore. The data for our study come from the Bangladesh
Demographic and Health Survey (BDHS) of 1996-97 (Mitra, Al-Sabir, Cross and
Jamil (1997)), a cross-sectional nationally representative survey of ever-married
women aged between 10 and 49. What we are interested in is how several fac-
tors, commonly found to be associated with the fertility behaviour, affect the
first birth interval which is defined as the duration in months between marriage
and the first birth. Some women in the sample had not had a birth by the time
of the survey and are therefore right-censored. We use y to denote the first birth
interval, and X to denote the vector of all factors concerned. We start with
the standard proportional hazard function, and assume the conditional hazard
function of y given X is

hy(t|X) = h0,y(t)g1(XTb1).
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We also take the censoring time into account, and use C to denote the censoring
time. We assume the censoring time also depends on the covariate X, and the
conditional hazard function of C given X is

hc(t|X) = h0,c(t)g2(XTb2).

The coefficient b1 can be interpreted as the impact of the factors and the model
assumes that the impact of the factors is constant. This assumption is not
plausible as Bangladesh has experienced many changes so the impact of the
factors should vary with time. Further, to explore how the impact varies with
time is important, because the dynamic patterns of the impact may reveal how
society changes with time. We are thus led to the varying-coefficient proportional
hazard function

hy(t|U,X) = h0,y(t)g1

(
XTb1(U)

)
,

where hy(t|U,X) is the conditional hazard function of y given X and time U .
We also assume the impact of the factors on the conditional hazard function of
censoring time vary with time. This leads to the conditional hazard function of
C given X and U of

hc(t|U,X) = h0,c(t)g2

(
XTb2(U)

)
.

Partial likelihood estimation coupled with local linear modelling can be used to
construct estimators of b1(U) and b2(U).

Partial likelihood estimation is established on the grounds that the censoring
is non-informative. The partial likelihood estimation enjoys many good proper-
ties when the censoring is indeed non-informative, see Wong (1986). However,
the censoring can be informative, which means the censoring mechanism may
involve some parameters which appear in the survival mechanism, and are to
be estimated. Please notice that informative censoring is different than depen-
dent censoring. Dependent censoring means the survival time is dependent on
censoring time; Cheng, Hall and Yang (2007) is an interesting paper about non-
parametric inference under dependent truncation. Informative censoring means
the censoring time carries some information about the parameters of interest;
mathematically, the distribution of censoring time involves the parameters of in-
terest. Intuitively, the partial likelihood estimation would pay a price in efficiency
of the estimator obtained, as it does not make use of the information provided
by the censoring time. This problem is particularly acute in the nonparametric
and semiparametric settings as we make fewer assumptions as in the parametric
setting, and should be careful to avoid losing any information. To make use of the
information provided by survival and censoring times, we take a complete likeli-
hood approach coupled with local linear modelling. We show that the proposed
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estimator is more efficient than the maximum local partial likelihood estimator
when censoring is indeed informative.

For our case, that censoring is informative means that some components of
b1(U) are the same as some components of b2(U). Without loss of generality, we
assume the first p1 components of b1(U) are the same as the first p1 components
of b2(U). This leads to

hy(t|U,X) = h0,y(t)g1(XT
01β0(U) + XT

02β1(U)),

hc(t|U,X) = h0,c(t)g2(XT
01β0(U) + XT

02β2(U)),
(1.1)

where (XT
01, X

T
02)

T = X, h0,y(t) and h0,c(t) are unknown baseline functions, g1(·)
and g2(·) are known link functions, βj(·), j = 0, 1, 2, are unknown functional
coefficients to be estimated. Although (1.1) is motivated by the data about
the first birth interval in Bangladesh, apparently it can be used to analyse the
survival data from a wider range of scientific areas. The goal of this paper is
to introduce a methodology to deal with informatively censored data; from now
on, y represents survival time rather than first birth interval only, C is censoring
time, X and U are covariates where X = (x1, . . . , xp)T is a p dimensional vector,
and U is a scalar.

The estimation method, together with the associated asymptotic theory de-
veloped in this paper, straightforwardly applies to the case where the censoring
and survival time depend on different covariates by changing notations.

Generally, we do not know whether censoring is informative or not. We
would pay a price in bias if the proposed informative proportional hazard func-
tion is used when the censoring is indeed non-informative. Further, we need
to detect which unknown functions in the survival mechanism also appear in
the censoring mechanism when the censoring is indeed informative. All these
questions are essentially model selection questions. There are many criteria pro-
posed to select an optimal model. The most commonly used are AIC, BIC and
cross-validation (Stone (1977)). Fan and Li (2002) proposed a promising model
selection approach based on smoothly clipped absolute deviation penalty. We
rely on cross-validation to select the optimal model.

The paper is organised as follows. We begin in Section 2 with a description
of the proposed estimation procedure for the unknown functional coefficients.
In Section 3, we discuss the model selection criterion based on cross-validation.
The asymptotic properties of the proposed estimator are presented in Section
4. A simulation study is conducted in Section 5 to demonstrate how much the
proposed estimator improves on maximum local partial likelihood estimator when
censoring is informative and sample size is finite. Finally, in Section 6, we explore
how several factors which are commonly found to be associated with fertility



LP FOR VCIS MODELS 1323

behaviour affect the length of first birth intervals in Bangladesh, and how the
impacts vary with time based on the proposed model and estimation procedure.

2. Estimation Procedure

We assume the (Ui, Xi, yi), i = 1, . . . , n, are samplied from (U,X, y), in-
dependent and identically distributed. The yi are right-censored and the cen-
soring times, Ci, are samplied from C, and assumed to be independent and
identically distributed. The distribution of C depends on (U,X). The condi-
tional hazard functions of y and C given (U,X) satisfy (1.1). The observed
data are (ti, Ui, Xi, δi), i = 1, . . . , n, where ti = min(yi, Ci), δi = I(yi < Ci),
t = min(y, C), and δ = I(y < C).

We assume yi is independent of Ci given (Ui, Xi). The conditional likelihood
function of (ti, δi), i = 1, . . . , n, given (Ui, Xi), i = 1, . . . , n, is

L =
n∏

i=1

{ ∫ ∞

ti

f(u, ti|Ui, Xi)du

}δi
{ ∫ ∞

ti

f(ti, v|Ui, Xi)dv

}1−δi

,

where f(u, v|U,X) is the conditional joint density function of (C, y) given (U,X).
Let

Xi = (XT
i1, X

T
i2)

T, Λc(t) =
∫ t

0
h0,c(u)du, Λy(t) =

∫ t

0
h0,y(u)du,

g1i = g1

(
XT

i1β0(Ui) + XT
i2β1(Ui)

)
, g2i = g2

(
XT

i1β0(Ui) + XT
i2β2(Ui)

)
.

By simple calculation, we have the log-likelihood function

L =
n∑

i=1

[
− g2iΛc(ti) − g1iΛy(ti) + (1 − δi)

{
log h0,c(ti) + log g2i

}
+δi

{
log h0,y(ti) + log g1i

}]
. (2.1)

For any given u, by Taylor’s expansion, we have βj(Ui) ≈ aj + bj(Ui − u),
j = 0, 1, 2, when Ui is in a small neighbourhood of u. This leads to the local
log-likelihood function

`0 =
n∑

i=1

[
− g2ih(a0,b0,a2,b2)Λc(ti) − g1ih(a0,b0,a1,b1)Λy(ti)

+(1 − δi)
{

log h0,c(ti) + log g2ih(a0,b0,a2,b2)
}

+δi

{
log h0,y(ti) + log g1ih(a0,b0,a1,b1)

}]
Kh(Ui − u), (2.2)
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where Kh(·) = K(·/h)/h, h is the bandwidth, K(·) is the kernel function,

g1ih(a0,b0,a1,b1) = g1

(
XT

i1a0 + XT
i1b0(Ui − u) + XT

i2a1 + XT
i2b1(Ui − u)

)
,

g2ih(a0,b0,a2,b2) = g2

(
XT

i1a0 + XT
i1b0(Ui − u) + XT

i2a2 + XT
i2b2(Ui − u)

)
.

The least informative modelling approach, see Wong (1986), is employed to deal
with Λy(t) and Λc(t), i.e., Λy(t) has a possible jump λyj only at the observed
failure time tj and Λc(t) has a possible jump λcl only at the observed censoring
time tl. This means

Λy(tj) =
n∑

i=1

δiI(ti ≤ tj)λyi, h0,y(tj) = δjλyj ,

Λc(tj) =
n∑

i=1

(1 − δi)I(ti ≤ tj)λci, h0,c(tj) = (1 − δj)λcj ,

(2.3)

which, together with (2.2), leads to

`1 =
n∑

i=1

[
− g2ih(a0,b0,a2,b2)

n∑
j=1

(1 − δj)I(tj ≤ ti)λcj

−g1ih(a0,b0,a1,b1)
n∑

j=1

δjI(tj ≤ ti)λyj

+(1 − δi)
{

log λci + log g2ih(a0,b0,a2,b2)
}

+δi

{
log λyi + log g1ih(a0,b0,a1,b1)

}]
Kh(Ui − u), (2.4)

which is the objective function used for estimation. Let R = {i : δi = 1, 1 ≤ i ≤
n}, and Rc = {i : δi = 0, 1 ≤ i ≤ n}. Maximising `1 with respect to λyi and λcj ,
i ∈ R, j ∈ Rc, we get the maximizer

λ̂yi = Kh(Ui − u)
[ n∑

j=1

I(tj ≥ ti)g1jh(a0,b0,a1,b1)Kh(Uj − u)
]−1

, i ∈ R,

λ̂ci = Kh(Ui − u)
[ n∑

j=1

I(tj ≥ ti)g2jh(a0,b0,a2,b2)Kh(Uj − u)
]−1

, i ∈ Rc.

Substituting λ̂yi and λ̂cj for λyi and λcj respectively in (2.4), i ∈ R, j ∈ Rc, we
have

`2 =
n∑

i=1

Kh(Ui − u)

{
(1 − δi) log

g2ih(a0,b0,a2,b2)∑n
j=1 I(tj ≥ ti)g2jh(a0,b0,a2,b2)Kh(Uj − u)
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+δi log
g1ih(a0,b0,a1,b1)∑n

j=1 I(tj ≥ ti)g1jh(a0,b0,a1,b1)Kh(Uj − u)

}
+ D, (2.5)

where D is independent of ai, bi, i = 0, 1, 2. Maximize `2 with respect to ai, bi,
i = 0, 1, 2, to get the maximizer (âi, b̂i), i = 0, 1, 2. The estimator of βi(u) is
taken to be âi. As there is no closed form for the maximizer of `2, the Newton-
Raphson algorithm is used to maximize `2.

From (2.5), it is easy to see that (â1, b̂1), the estimator of the functional
coefficient that does not appear in the censoring mechanism, is the same as the
maximiser of

n∑
i=1

K(Ui − u)δi log
g1ih(a1,b1)∑n

j=1 I(tj ≥ ti)g1jh(a1,b1)Kh(Uj − u)
, (2.6)

which is the local partial likelihood function based on the observed survival times.
So, for the functional coefficient that does not appear in the censoring mechanism,
there is no difference between its estimators obtained by either the proposed local
complete likelihood approach or the local partial likelihood approach based on
the observed survival times.

When the censoring is non-informative, a0 and b0 would disappear from `2,
and to maximise `2 would be equivalent to maximising (2.6) and

n∑
i=1

K(Ui − u)(1 − δi) log
g2ih(a2,b2)∑n

j=1 I(tj ≥ ti)g2jh(a2,b2)Kh(Uj − u)
,

which is the local partial likelihood function based on the observed censoring
times. So, the proposed estimator would be exactly the same as maximum local
partial likelihood estimator when censoring is non-informative.

3. Model Selection

In this section, we devise a cross-validation-based criterion to assess whether
the censoring is informative or not, and find the optimal model.

Because model selection is in the global sense, the criterion for model selec-
tion cannot be based on a local likelihood function such as `2 at (2.5). We have
to start from the original log conditional joint density function of (ti, δi) given
(Ui, Xi),

Di =(1−δi)
{

log h0,c(ti)+log g2i

}
+δi

{
log h0,y(ti)+log g1i

}
−g2iΛc(ti)−g1iΛy(ti).

Because Λc(·) and Λy(·) are unknown nuisance functions, we use least informative
modelling, i.e. (2.3), to model them. Substituting (2.3) for Λc(·), Λy(·), h0,c(·),
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and h0,y(·) in (2.1), then maximising L with respect to λyi and λcj , i ∈ R, j ∈ Rc,
we have

λ̌yi =
( n∑

j=1

I(tj ≥ ti)g1j

)−1

, i ∈ R, λ̌ci =
( n∑

j=1

I(tj ≥ ti)g2j

)−1

, i ∈ Rc.

Substituting (2.3) for Λc(·), Λy(·), h0,c(·), and h0,y(·) in Di, then replacing λcj

and λyj by λ̌cj and λ̌yj respectively, we have

Ďi = (1 − δi) log
g2i∑n

j=1 I(tj ≥ ti)g2j
+ δi log

g1i∑n
j=1 I(tj ≥ ti)g1j

− D0i,

where

D0i = g1i

n∑
j=1

δjI(tj ≤ ti)
( n∑

k=1

I(tk ≥ tj)g1k

)−1

+g2i

n∑
j=1

(1 − δj)I(tj ≤ ti)
( n∑

k=1

I(tk ≥ tj)g2k

)−1

.

Because
∑n

i=1 D0i = n, D0i does not contribute anything to the cross-validation
and can be dropped from Ďi, which leads to

Fi = (1 − δi) log
g2i∑n

j=1 I(tj ≥ ti)g2j
+ δi log

g1i∑n
j=1 I(tj ≥ ti)g1j

.

Fi is the quantity on which the proposed cross-validation is based.
For each i, i = 1, . . . , n, delete the ith observation and, based on the other

n− 1 observations, use the estimation procedure proposed above to compute the
estimators of βj(·), j = 0, 1, 2. Denote them by β̂

\i
j (·), j = 0, 1, 2. Compute

ĝ1j = g1

(
XT

j1β̂
\i
0 (Uj) + XT

j2β̂
\i
1 (Uj)

)
,

ĝ2j = g2

(
XT

j1β̂
\i
0 (Uj) + XT

j2β̂
\i
2 (Uj)

)
, j = 1, . . . , n.

Let F̂i be Fi with g1j and g2j being replaced, respectively, by ĝ1j and ĝ2j , j =
1, . . . , n. The cross-validation sum is

CV = n−1
n∑

i=1

F̂i,

and the chosen model is the one maximising CV.
The proposed CV can also be used to select bandwidth. However, it is

difficult to accomplish model selection and bandwidth selection simultaneously.
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Smaller bandwidth would have the same effect as fewer coefficients involved in the
censoring mechanism: both would lead to smaller bias and larger variance. As
our primary interest lies in the coefficients related to the survival time, we assume
censoring is noninformative and ignore the first term in Fi when constructing the
CV to select bandwidth. The selected bandwidth is the one maximizing

n−1
n∑

i=1

δi log
ĝ1i∑n

j=1 I(tj ≥ ti)ĝ1j
.

As we assume the censoring is noninformative when selecting bandwidth, one
may think the selected bandwidth would tend to larger. It is true that assuming
censoring to be noninformative would favor larger bandwidth, but, on the other
hand, cross-validation as a criterion favors smaller bandwidths. So, intuitively
the selected bandwidth should be all right. Our simulation results show this
bandwidth selection does work well.

4. Asymptotic Properties

For clearer notation, we suppress u when there is no ambiguity. We use Ik

to denote a k×k identity matrix, 0k×l to be a k× l matrix with all entries being
zero, q = 2p−p1, and H to be a diagonal matrix with size 2q. The first q elements
on the diagonal of H are 1, and the last q elements are h. For any function G(·),
we write G′(·) and G′′(·) for its first and second derivative, respectively. Let

η(u) =
(
β0(u)T,β1(u)T, β2(u)T

)T

, η̂(u) =
(
β̂0(u)T, β̂1(u)T, β̂2(u)T

)T

,

η̂′(u) =
(
β̂′

0(u)T, β̂′
1(u)T, β̂′

2(u)T
)T

, ξ(u) =
(
η(u)T, η′(u)T

)T

,

ξ̂(u) =
(
η̂(u)T, η̂′(u)T

)T

,

µi =
∫

siK(s)ds, νi =
∫

siK2(s)ds, P (v, x, u) = P (t ≥ v|X = x,U = u),

f(u) be the density of U and, for l, i, j = 1, 2,

θ0l(u) = (β0(u)T, βl(u)T)T, α∗
l0(v, u) = f(u)E

[
P (v,X, u)gl(θ0l(u)TX)|U = u

]
,

α∗
lj(v, u) = f(u)E

[
P (v,X, u)g

′
l(θ0l(u)TX)X0j |U = u

]
,

ρ∗lij(v, u) = f(u)E
{

P (v,X, u)[g
′
l(θ0l(u)TX)]2

gl(θ0l(u)TX)X0iXT
0j

∣∣∣U = u

}
,

ρ∗1ij(u) =
∫ τ

0
ρ∗1ij(v, u)dΛy(v), ρ∗2ij(u) =

∫ τ

0
ρ∗2ij(v, u)dΛc(v),
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Γ∗
1ij(u) = ρ∗1ij(u) −

∫ τ

0
α∗

1i(v, u)α∗
1j(v, u)Tα∗

10(v, u)−1h0,y(v)dv,

Γ∗
2ij(u) = ρ∗2ij(u) −

∫ τ

0
α∗

2i(v, u)α∗
2j(v, u)Tα∗

20(v, u)−1h0,c(v)dv,

∆(u) =

Γ∗
111(u) + Γ∗

211(u) Γ∗
112(u) Γ∗

212(u)

Γ∗
121(u) Γ∗

122(u) 0(p−p1)×(p−p1)

Γ∗
221(u) 0(p−p1)×(p−p1) Γ∗

222(u)

 ,

where we use τ to denote a fixed number, and Ω(u) is the same as ∆(u) but with
Γ∗

lij(u) replaced by ρ∗lij(u). eT2q×q = (Iq,0q×q).

Theorem. Under the conditions in the Appendix (at http://www.stat.sinica.
edu.tw/statistica), we have

√
nh

{
H(ξ̂(u) − ξ(u)) − 1

2
h2µ2e2q×qη

′′(u)
}

D−→ N(02q×1, Σ(u)),

where

Σ(u) =

(
∆(u)−1ν0 0q×q

0q×q Ω(u)−1µ−2
2 ν2

)
.

Corollary. Under the conditions of the Theorem, we have

√
nh

(
η̂(u) − η(u) − 1

2
h2µ2η

′′(u)
)

D−→ N(0q×1, ∆(u)−1ν0).

From the Corollary, it is easy to see that the variance of the proposed esti-
mator β̂0(u) of β0(u) is{

Γ∗
111(u) + Γ∗

211(u) − Γ∗
112(u)Γ∗

122(u)−1Γ∗
121(u)

}−1
(nh)−1(1 + o(1)).

In Section 2, we have seen that β̂1(u) is the same as the maximum local partial
likelihood estimator of β1(u) based on the observed survival times. This implies
that the variance of the maximum local partial likelihood estimator of β1(u) is
the same as the variance of β̂1(u),{

Γ∗
122(u) − Γ∗

121(u)Γ∗
111(u)−1Γ∗

112(u)
}−1

(nh)−1(1 + o(1)).

Because the positions of β1(u) and β0(u) in hy(t|U,X) in (1.1) are in equilibrium,
the variance of the maximum local partial likelihood estimator of β0(u) should
be {

Γ∗
111(u) − Γ∗

112(u)Γ∗
122(u)−1Γ∗

121(u)
}−1

(nh)−1(1 + o(1)).

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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Similarly, the bias of the maximum local partial likelihood estimator of β0(u)
should be 2−1h2µ2β

′′
0(u). Now, it is clear the proposed estimator of β0(u) shares

the same bias with the maximum local partial likelihood estimator of β0(u), but
has smaller variance by the amount[{

Γ∗
111(u) − Γ∗

112(u)Γ∗
122(u)−1Γ∗

121(u)
}−1

−
{

Γ∗
111(u) + Γ∗

211(u) − Γ∗
112(u)Γ∗

122(u)−1Γ∗
121(u)

}−1
]
(nh)−1(1 + o(1)),

which is of the same order as the variance itself. So, the proposed estimator is
more efficient and the improvement in efficiency is significant.

5. Simulation Study

In this section, we are going to use a simulated example to assess how well the
proposed local complete likelihood based estimation method works. We compare
the proposed estimator with the maximum local partial likelihood estimator, and
demonstrate that the proposed estimator is indeed more efficient when sample
size is finite.

Example. In (1.1), take n = 1, 000, p1 = 1, p = 2, g1(·) = g2(·) = exp(·),
h0,c(t) = h0,y(t) = 4t3, β0(u) = sin(2πu), β1(u) = 2 sin(πu), and β2(u) =
cos(πu). The covariates (Ui, Xi), i = 1, . . . , n, are generated from the uniform
distribution.

For any unknown function h(t), if ĥ(t) is an estimator of h(t), the mean
integrated squared error (MISE) of ĥ(t) is

MISE = E

{ ∫ (
h(t) − ĥ(t)

)2
dt

}
.

We performed 100 simulations, the average censoring rate across the 100
simulations was 36%. In each simulation, the proposed local complete likelihood
estimation and local partial likelihood estimation were used, respectively, to esti-
mate the unknown functional coefficients. The kernel function in the estimation
procedure was taken to be the Epanechnikov kernel K(t) = 0.75(1 − t2)+. The
accuracy of the obtained estimators was assessed by their MISEs.

To compare the proposed local complete likelihood based estimator with the
maximum local partial likelihood estimator, for different bandwidths, we com-
puted the MISEs of the estimators of βi(·), i = 0, 1, 2, obtained by either the
proposed local complete likelihood estimation or local partial likelihood estima-
tion. The results are presented in Figure 1. It can be seen that the MISE of the
estimator of β0(·) obtained by the proposed local complete likelihood estimation
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Figure 1. From left to right, one was the MISEs of the estimators of β0(·), of
β1(·), of β0(·), and of β2(·). The solid lines are the MISEs of the estimators
obtained by the proposed local complete likelihood estimation; the dashed
lines in the first two figures are the MISEs of the maximum local partial
likelihood estimators based on the observed survival times; the dashed lines
in the last two figures are the MISEs of the maximum local partial likelihood
estimators based on the observed censoring times. In the last figure, the
boxplot of cv − cv1 is on the right, that of cv − cv2 is on the left.

is well below the MISE of the maximum local partial likelihood estimator of β0(·)
for any bandwidth. For β1(·) and β2(·), there is no difference between the local
complete likelihood estimation and local partial likelihood estimation.

To examine how well the proposed bandwidth selection serves the estimation
of functional coefficients, we set the proposed local complete likelihood estimation
with bandwidth selected by the proposed bandwidth selection to estimate β0(·)
and β1(·) and computed the MISEs of the estimators. The resulting MISEs
were 0.061 for β0(·), and 0.107 for β1(·), which are quite small. In fact, from
the first two figures in Figure 1, we can see that 0.061 and 0.107 are almost
the minimums of the MISEs of β0(·) and β1(·), respectively. This indicates the
proposed bandwidth selection serves the estimation well.

Finally, to examine how well the proposed cross-validation criterion works,
we set the sample size to be 300. We denote the CVs of the true model, where
X01 = x1, by cv, the model assuming censoring is noninformative by cv1, and
the misspecified model, the model mistakenly assuming X01 = x2, by cv2. We
performed 100 simulations and computed cv−cv1 and cv−cv2 for each simulation.
The boxplots of cv − cv1 and cv − cv2 are shown in Figure 1. From Figure 1, we
can see the proposed cross-validation works well on model selection.

6. Analysis of First Birth Intervals in Bangladesh

Family planning and health programs in developing countries usually advo-
cate delayed childbearing and increased birth spacing, with the aims of controlling
fertility levels and improving maternal and child health. Indicators of the success
of such programs include the timing of the first birth (the first birth interval) and
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the length of time between subsequent births. Of particular interest are changing
impacts of important factors, over time, on the length of birth intervals.

We present an analysis of the first birth interval in Bangladesh, using data
from a nationally representative survey of ever-married women of reproductive
age.

The proposed informative varying-coefficient proportional hazard function
allows us to explore changes in the impacts of several factors on women’s first
birth interval over time. Education level and region are commonly found to be
associated with fertility behaviour, for example.

Bangladesh has seen a dramatic decrease in fertility. This fertility decline
is generally attributed to a successful national family planning program (see, for
example, Cleland, Phillips, Amin and Kamal (1994)). The decrease in fertility
is commensurate with an increase in the age at first marriage; a nationally rep-
resentative survey of women in 1996−97 (Mitra et al. (1997)) found that the
median age at marriage was 13.3 years among respondents aged 45−49 at the
time of survey, compared to 15.3 years for respondents aged 20−24. There has
been a slower increase in the age at first birth; the median age at first birth was
16.9 years among women aged 45−59, and 18.4 years among the younger cohort.
These trends in age at marriage and age at first birth imply that the length of the
first birth interval (measured from the age at marriage, since pre-marital fertility
is rare in Bangladesh) has become shorter over time, which suggests that the fer-
tility decline is due to increased birth spacing rather than delayed childbearing.
In this paper, we examine the trend in the duration of first birth intervals, as
well as the impact of background characteristics.

The data for our study come from the Bangladesh Demographic and Health
Survey (BDHS) of 1996−97 (Mitra et al. (1997)), a cross-sectional nationally rep-
resentative survey of ever-married women aged between 10 and 49. The analysis
is based on a sample of 8189 women.

The dependent variable, yi, is the duration in months between marriage
and the first birth for the ith woman. A small number of women (0.6% of the
total sample size) reported a pre-marital birth, and they are excluded from the
analysis. When a woman was asked for the date of her first marriage in the
BDHS, the intention was to collect the age at which she started to live with her
husband. However, it is likely that some older women reported the age at which
they were formally married which, in Bangladesh, can take place at a very young
age and some time before puberty (Mitra et al. (1997)). For this reason, we
calculate the first birth interval assuming a minimum effective age at marriage
of twelve years. The youngest age at first birth in the sample was twelve years
and this is assumed to be the youngest age at which a woman can reasonably be
at risk of giving birth. 11.53 % of women in the sample had not had a birth by
the time of the survey and are therefore right-censored.
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Table 1. The CVs of The Models

Model {U, x1} {U, x2} {U, x3} {U, x4} {U, x5}
CV -7.5454 -7.5636 -7.5228 -7.5513 -7.5640

{U, xi} stands for the model with the coefficient of xi and the trend not appearing in the
mechanism of censoring.

We consider several covariates which are commonly found to be associated
with fertility behaviour in Bangladesh. The selected categorical covariates in-
clude the woman’s religion (Muslim or other) (x1), type of region of residence
(urban or rural) (x2), the woman’s level of education (categorised as none, pri-
mary +) (x4), and the husband’s level of education (primary - or secondary +)
(x5). The selected continuous covariates include the woman’s age at first mar-
riage in years (x3), and year of marriage (U).

The proposed cross-validation criterion was used to assess whether the cen-
soring is informative or not. Ideally we would compute the CVs for all models,
but this appears computationally impossible as there are 64 possible models. So,
we appealed to the backward elimination method to reduce the computational
burden. We started with the full model, the one with coefficients of all variables
appearing in the mechanism of censoring, and computed its CV. The CV of the
full model was −7.850. The CVs of the models in the final step in the backward
elimination procedure are presented in Table 1.

From Table 1, it is clear that the censoring is informative, and the impacts
of all selected variables except the year of marriage and the woman’s age at
first marriage appear in the mechanism of censoring. The proposed informative
varying-coefficient model, with X01 = (x1, x2, x4, x5)T and X02 = (1, x3)T, was
used to fit the data. The proposed local complete likelihood estimation was
employed to estimate the functional coefficients. The kernel function for the local
linear modelling in the estimation procedure was again the Epanechnikov kernel,
and the bandwidth was selected to be 10% of the range of year of marriage by
the proposed cross-validation based bandwidth selection procedure. The results
obtained are presented in Figure 2.

Figure 2 shows that the hazard of a first birth increases with year of marriage.
Thus, the younger marriage cohorts have shorter birth intervals. This trend is
expected since the increase in the age at marriage during this period has been
accompanied by relatively little change in the age at first birth. Cultural norms
regarding the age to childbearing have been slower to change than norms about
the age at marriage. The figure also shows a clearly nonlinear dynamic pattern
with a periodic feature.

From Figure 2, it can be seen that Muslim women have shorter first birth
interval than other religions, however, the difference decreases sharply from 1960
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Figure 2. The solid lines are the impacts of the factors concerned. For
example, the middle one on the upper panel is the impact of being Muslim.

to 1970, then it slightly increases, then decreases again. After 1980, the difference
becomes very small. After 1995, the difference seems larger again. However, the
post-1995 pattern should be interpreted with caution since there are relatively
few women in the sample who married after 1995. Urban women have longer
first birth intervals than rural women. Figure 2 also shows that the difference is
varying with time.

From Figure 2, we can see the impact of age at first marriage on the hazard
of a first birth is always positive. This can be interpreted as women who married
at very young ages are likely to delay having their first child. We can also see
the impact is decreasing with time. This pattern is as expected. The age at first
marriage in Bangladesh is increasing and the age at first birth does not change
very much, so the impact of age at first marriage is getting small.

From Figure 2 it can be seen that, compared to women with no education,
the hazard of a first birth is higher (i.e. the duration of the first birth interval is
lower) for women educated to primary level or beyond. The longer birth intervals
among women with no education may be partly explained by the higher frequency
with which these women report their age at formal marriage rather than their
age at cohabitation. Calculating the duration to the first birth from an origin of
age twelve for these women may have artificially inflated the length of their birth
intervals. Figure 2 also shows that the impact of the husband’s education on the
length of the first birth interval is positive before 1980, and negative thereafter.
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