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Abstract: We study the generalized maximum likelihood estimator of location and

location-scale mixtures of normal densities. A large deviation inequality is ob-

tained which provides the convergence rate n−p/(2+2p)(log n)κp in the Hellinger

distance for mixture densities when the mixing distributions have bounded finite

p-th weak moment, p > 0, and the convergence rate n−1/2(log n)κ when the mixing

distributions have an exponential tail uniformly. Our results are applicable to the

estimation of the true density of independent identically distributed observations

from a normal mixture, as well as the estimation of the average marginal densities

of independent not identically distributed observations from different normal mix-

tures. The validity of our results for mixing distributions with p-th weak moment,

0 < p < 2, and for not identically distributed observations, is of special interest in

compound estimation and other problems involving sparse normal means.

Key words and phrases: Convergence rate, Hellinger distance, large deviation, max-

imum likelihood, mixture density, normal distribution.

1. Introduction.

In this paper we study the generalized maximum likelihood estimator
(GMLE) of the average of marginal densities of observations from normal mix-
tures. Normal mixtures have been used in a broad range of applications and are
related to many problems in statistics (Lindsay (1995), Genovese and Wasser-
man (2000) and Ghosal and van der Vaart (2001, 2007a,b)). A primary motiva-
tion of our investigation of the normal mixture is the compound estimation of
normal means (Robbins (1951), Stein (1956), James and Stein (1961), Donoho
and Johnstone (1994), Abramovich, Benjamini, Donoho and Johnstone (2006),
Zhang (1997, 2003, 2005), Johnstone and Silverman (2004), and Jiang and Zhang
(2007)), where the oracle Bayes rule can be explicitly expressed in terms of the
average of the marginal densities of the observations (Robbins (1956), and Brown
(1971)). In this compound estimation context, the average marginal density is
a mixture of normal densities but the observations, which are independent not
identically distributed (inid), are not generated from the mixture. Although little
is known about the GMLE of the average marginal density based on inid observa-
tions, it contains the important, better understood special case of the estimation
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of a normal mixture density based on independent identically distributed (i.i.d.)
observations directly generated from the mixture.

There is a rich literature on the estimation of normal mixtures based on
i.i.d. data, including the generalized maximum likelihood method (Kiefer and
Wolfowitz (1956)) and its computational algorithms (Dempster, Laird and Ru-
bin (1977) and Vardi and Lee (1993)), Fourier kernel estimators (Zhang (1997)),
and more. In a broader context, nonparametric and sieve MLEs of density func-
tions have been considered by many (van de Geer (1993, 1996), Shen and Wong
(1994), Wong and Shen (1995), Genovese and Wasserman (2000) and Ghosal and
van der Vaart (2001, 2007b)). Among these papers, Genovese and Wasserman
(2000), and Ghosal and van der Vaart (2001, 2007b) directly study the estima-
tion of a normal mixture density based on i.i.d. data. For location-scale mix-
ing distributions with bounded support and a known lower bound on the scale,
Genovese and Wasserman (2000) provides large deviation inequalities for sieve
MLEs of the normal mixture density with convergence rates n−1/6(log n)(1/6)+

or n−1/4(log n)1/4 in the Hellinger distance, depending on the choice of sieves.
These rates are improved to n−1/2(log n)κ′

in Ghosal and van der Vaart (2001) for
the GMLE when the mixing distribution has an exponential tail. For location
mixing distributions with finite p-th weak moment, Genovese and Wasserman
(2000) provides the convergence rates n−1/4

√
log n or (log n)−p/2 log log n, both

for p > 2, depending on the choice of sieves, while direct use of the entropy
calculations of Ghosal and van der Vaart (2001, 2007b) in the large deviation
inequality of Wong and Shen (1995) yields, respectively, the convergence rates
n1/p−1/2(log n)1/2 for p > 2 and n1/(2p)−1/2 log n for p > 1.

In this paper, we establish a large deviation inequality which unifies and
improves results in Genovese and Wasserman (2000) and Ghosal and van der
Vaart (2001) and establishes the faster convergence rate of n−p/(2+2p)(log n)κp

when the p-th weak moment is bounded. Our results also improve upon the
logarithmic factor of the convergence rates in Ghosal and van der Vaart (2001,
2007b) when the mixing distribution has a heavier-than-normal exponential tail.
Moreover, our results are valid for sparse mixing distributions with finite p-
weak moment for small 0 < p < 2 (Donoho and Johnstone (1994)) and in the
more general inid setting, both crucial features for applications to the compound
estimation and other problems involving sparse normal means.

In order to cover both the inid case and the more standard density estima-
tion problem based on i.i.d. observations, we consider a general model in which
the observations are independent and each observation is normally distributed
given its latent conditional mean and variance. This includes the inid case of
deterministic conditional means and variances and the i.i.d. case where the con-
ditional means and variances are themselves i.i.d. vectors, among other possible
data generating models.
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We organize the paper as follows. Section 2 states our main theorem for
inid observations from possibly different location mixtures with a known com-
mon scale. Section 3 contains extensions of the results in Section 2, including
location-scale mixtures, deterministic and i.i.d. latent variables, sieve MLE, and
more technical discussion of related work. Section 4 discusses the connection to
compound estimation. Section 5 provides mathematical proofs.

2. The Main Theorem

In this section we consider inid observations from location mixtures with a
known common scale. Our main theorem establishes a large deviation inequality
and provides convergence rates of the GMLE to the average marginal densities
of the observations. The implication of these results in other settings will be
discussed in Section 3. We divide the materials into three subsections to describe
the statistical model, the estimator, and the main theorem.

2.1. The inid location-mixture model

Our problem is best formulated in terms of latent location variables or the
conditional means as follows. Let (Xi, θi) be independent random vectors with
the conditional densities

Xi|θi ∼
1
σ

ϕ
(x − θi

σ

)
∼ N(θi, σ

2), i = 1, . . . , n, (2.1)

under a probability measure Pn, where X ≡ (X1, . . . , Xn) ∈ IRn is observable,
θ ≡ (θ1, . . . , θn) is the unknown vector of the conditional means of the observation
X, the variance σ2 > 0 is known, and ϕ(x) ≡ (2π)−1e−x2/2 is the standard
normal density. We study the properties of the GMLE for the estimation of the
average marginal density of the observations:

fn(x) ≡ 1
n

n∑
i=1

d

dx
Pn{Xi ≤ x}. (2.2)

This includes the cases of i.i.d. θi and completely deterministic θi under different
choices of the probability measure Pn, since a deterministic sequence of constants
can be treated as a sequence of degenerate random variables.

The average marginal density (2.2) can be explicitly written as a normal
mixture density. Define the standardized normal location-mixture density as

hG(x) ≡
∫

ϕ(x − u)dG(u). (2.3)

Let Gn be the average of the distribution functions of the standardized (deter-
ministic or random) unknowns {θ1/σ, . . . , θn/σ} under Pn:

Gn(u) ≡ 1
n

n∑
i=1

Pn

{θi

σ
≤ u

}
. (2.4)
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Let Φ(x) ≡
∫ x
−∞ ϕ(z)dz be the standard normal cumulative distribution function.

Since Pn(Xi ≤ x) =
∫

Φ(x/σ − u)dP{θi/σ ≤ u}, we have

fn(x) =
1
σ

hGn

(x

σ

)
=

∫
1
σ

ϕ
(x − u

σ

)
dGn

(u

σ

)
(2.5)

as a mixture of the N(θ, σ2) densities.

2.2. The GMLE

The GMLE, as suggested in Kiefer and Wolfowitz (1956), is defined as fol-
lows. Let G be the collection of all distributions in the real line IR and define

H ≡ {hG : G ∈ G } (2.6)

as the family of all location-mixtures (2.3) of normal densities with the unit scale.
Given X, the GMLE of a normal mixture density with scale σ is

f̂n(x) ≡ 1
σ

ĥn

(x

σ

)
, ĥn ≡ argmax

h∈H

n∏
i=1

h
(Xi

σ

)
. (2.7)

Here ĥn is the member h in the class H in (2.6) that maximizes the “likelihood”∏n
i=1 h(Xi/σ) of the standardized observation X/σ, even though

∏n
i=1 h(xi) is

not necessarily the joint density of X/σ for any h ∈ H without the i.i.d. as-
sumption.

Since the family H is itself indexed by the completely unknown mixing
distribution G, given X the GMLE f̂n in (2.7) is a mixture of normal densities
of scale σ:

f̂n(x) =
1
σ

hĜn

(x

σ

)
, Ĝn ≡ argmax

G∈G

n∏
i=1

hG

(Xi

σ

)
, (2.8)

where Ĝn is the GMLE of the mixing distribution Gn. Although the maximiza-
tion is usually done over the parameter G ∈ G computationally, the formulation
in (2.7) is more relevant for studying f̂n as a density estimator since the properties
of f̂n are largely determined by the entropy of suitable sieves of the parameter
space H as a density family.

The GMLE f̂n is well defined since its rescaled version ĥn in (2.7) is a well
defined map from X/σ ∈ IRn into H (Lindsay (1995), and Ghosal and van der
Vaart (2001)). It follows from (2.3) and the definition of Ĝn in (2.8) that the
support of Ĝn is always within the range of the standardized data {Xi/σ, i ≤
n} due to the monotonicity of ϕ(x − u) in |x − u|. Thus, hĜn

(Xi/σ), i ≤ n,
are bounded away from zero and infinity for each vector X/σ. This and the
uniform smoothness of h ∈ H give the existence of the GMLE ĥn and the
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uniqueness of ĥn(Xi/σ), i ≤ n, due to the convexity of H and the log-concavity
of the likelihood

∏n
i=1 h(Xi/σ) in h ∈ H . The computation of the GMLE is

typically carried out using iterative algorithms. For example, one may use the
EM algorithm to maximize over the subfamily of all discrete distributions G
supported on a fine grid in the range of the standardized data.

The GMLE in (2.7) and (2.8) is a sensible estimator for the average mixing
density fn, since the expected log-likelihood

En log
n∏

i=1

h(Xi/σ) =
n∑

i=1

∫
log h(x)dPn

{Xi

σ
≤ x

}
= n

∫
{log h(x)}hGn(x)dx

is uniquely maximized at h = hGn ∈ H and fn(x) = σ−1hGn(x/σ) by (2.2) and
(2.5). It is called GMLE in the following senses. First, the maximization in (2.7)
is done over an infinite-dimensional parameter space H and the estimator Ĝn

in (2.8) is completely nonparametric in the mixing distribution G ∈ G . Second,
in the general inid model (2.1), the individual Xi are not generated from any
member of the family Fσ ≡ {σ−1hG(x/σ) : G ∈ G } unless θi themselves are
i.i.d. random variables.

2.3. Large deviation inequality and convergence rates

Define

dH(f, g) ≡
(∫ (√

f −√
g
)2

)1/2

as the Hellinger distance between two densities f and g. Our main result provides
a large deviation inequality for the Hellinger distance dH(f̂n, fn) at a certain
convergence rate εn depending explicitly on the weak moment of the average
mixing distribution Gn in (2.4).

The p-th weak moment of a distribution function G is {µw
p (G)}p, where

µw
p (G) ≡

{
sup
x>0

xp

∫
|u|>x

G(du)
}1/p

. (2.9)

Due to the Markov inequality, the p-th weak moment is no greater than the
standard p-th absolute moment: {µw

p (G)}p ≤
∫
|u|pG(du). The convergence rate

εn, as a function of the sample size n, the mixing distribution G, and the power
p of the weak moment, is defined as

ε(n, G, p) ≡ max
[√

2 log n,
{

n1/p
√

log nµw
p (G)

}p/(2+2p)
]√

log n

n
. (2.10)
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Let an ³ bn denote an/bn + bn/an = O(1) throughout the paper.

Theorem 1. Suppose (Xi, θi) are independent random vectors with the condi-
tional distribution (2.1) under Pn, with a fixed σ > 0. Let fn be the average
marginal density in (2.2) and f̂n be its GMLE in (2.7). Then, there exists a
universal constant t∗ such that for all t ≥ t∗ and log n ≥ 2/p,

Pn

{
dH(f̂n, fn) ≥ tεn

}
≤ exp

(
− t2nε2

n

2 log n

)
≤ e−t2 log n, (2.11)

where εn ≡ ε(n,Gn, p) is as in (2.10) with the average mixing distribution Gn in
(2.4) and p > 0. In particular,

εn ³


n−p/(2+2p)(log n)(2+3p)/(4+4p), µw

p (Gn) = O(1) for a fixedp

n−1/2(log n)3/4
{

M
1/2
n ∨ (log n)1/4

}
, Gn([−Mn,Mn]) = 1, p = ∞

n−1/2(log n)1/[2(2∧α)]+3/4,
∫

e|cu|
α
Gn(du) = O(1), p ³ log n,

where α and c are fixed in the third case.

The strength of the large deviation inequality (2.11) is evident from its uni-
formity in {p, t, σ} and the explicit continuous dependence of the convergence rate
εn on p and the weak moment. As a result, the convergence rates in Theorem 1
significantly improve upon the existing results, cf. Section 3.3.

Remark 1. It follows from (2.5) and (2.8) that fn(x) = σ−1hGn(x/σ) and
f̂n(x) = σ−1hĜn

(x/σ) are all normal location mixtures, so that

dH(f̂n, fn) = dH(hĜn
, hGn), (2.12)

due to the scale invariance of the Hellinger distance. It follows that Theorem 1
also implies the consistency of the GMLE Ĝn for the estimation of the average
mixing distribution Gn in (2.4) through Fourier inversion. However, this consis-
tency argument does not provide rates for the convergence of Ĝn in distribution,
even for i.i.d. data.

Remark 2. According to the proofs in Section 5, the conclusions of Theorem 1
are also valid for any approximate GMLE Ĝn which guarantees

n∏
i=1

{
hĜn

(Xi/σ)
hGn(Xi/σ)

}
≥ e−2t2nε2n/15.

Remark 3. Since the constant t∗ in Theorem 1 is universal, we are allowed to
optimize over p to obtain

Pn

{
dH(f̂n, fn) ≥ tεn,∗

}
≤ exp

(
−

t2nε2
n,∗

2 log n

)
≤ e−t2 log n,
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with εn,∗ ≡ inf{ε(n,Gn, p) : log n ≥ 2/p}. This optimal p is approximately
achieved at p ³ log n under the condition

∫
e|cu|

α
Gn(du) = O(1).

Remark 4. Since the large deviation bound is non-asymptotic, Theorem 1 allows
σ = σn to depend on n. This is utilized in our discussion of sieve estimators in
Section 3.

3. Consequences of the Main Theorem

The general inid formulation (2.1) and the possible dependence of the proba-
bility measure Pn on n allow applications of Theorem 1 in many settings, includ-
ing location-scale mixtures, location mixtures with unknown scale, deterministic
latent variables as in the compound estimation theory, and i.i.d. observations
from normal mixtures. The large deviation inequality can be also used to study
the GMLE (2.8) as a sieve estimator for a general smooth density function. These
variations of Theorem 1 and related work are discussed in this section.

3.1. Location-scale mixture or location mixture with unknown scale

As in (2.1), the inid location-scale normal mixture model is best described
by a sequence of independent random vectors (Xi, ξi, τi) with the following con-
ditional densities under Pn:

Xi|(ξi, τi) ∼
1
τi

ϕ
(x − ξi

τi

)
∼ N(ξi, τ

2
i ), τi ≥ σ, (3.1)

where σ > 0 is a known lower bound for the latent scale variables. This includes
the location model with an unknown common scale τi = τ as long as we have
the knowledge of the lower bound σ for the common τ .

As far as the densities of the observations Xi are concerned, the location-
scale mixture model (3.1) is identical to the location mixture model (2.1). This
can be seen as follows. Since the N(ξi/σ, τ2

i /σ2) density is the convolution of the
N(0, 1) and N(ξi/σ, τ2

i /σ2 − 1) densities, (3.1) implies

Pn

{Xi

σ
≤ x

}
= EnΦ

(x − ξi/σ

τi/σ

)
= En

∫
ϕ(x − u)dΦ

(
u − ξi/σ√
τ2
i /σ2 − 1

)

with the convention Φ((u − ξ)/0) = I{ξ ≤ u}. Thus, (2.1) holds with

Pn

{θi

σ
≤ u

}
= EnΦ

(
u − ξi/σ√
τ2
i /σ2 − 1

)
. (3.2)

This gives the equivalence between the two models (2.1) and (3.1), since (3.1) is
formally more general than (2.1). The equivalence of (2.1) and (3.1) naturally
leads to our second theorem.
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Theorem 2. Suppose (3.1) holds under certain probability measures Pn, instead
of (2.1). Then all the conclusions of Theorem 1 hold with εn ≡ ε(n,Gn, p), where

Gn(u) =
1
n

n∑
i=1

EnΦ
(

u − ξi/σ√
τ2
i /σ2 − 1

)
=

1
n

n∑
i=1

EnΦ

(
uσ − ξi√
τ2
i − σ2

)
. (3.3)

Moreover, (2.11) provides the convergence rate εn ³ n−p/(2+2p)(log n)(2+3p)/(4+4p)

if

sup
x>0

xp

n

n∑
i=1

Pn

{
|ξi| > x

}
+

1
n

n∑
i=1

Enτp
i = O(1) (3.4)

for a fixed p > 0, while εn ³ n−1/2(log n)1/(2α)+3/4 for p ³ log n if for some fixed
0 < α ≤ 2 and c > 0, n−1

∑n
i=1 En(e|cξi|α + e(cτi)

α/(1−α/2)
) = O(1).

Remark 5. For α = 2, we adopt the convention e(cτi)
α/(1−α/2)

= 0, = 1, or = ∞
when cτi < 1, = 1, or > 1, respectively.

Theorem 2 is useful for more explicit calculations of the convergence rates
εn ≡ ε(n,Gn, p) in terms of the moments of ξi and τi. It is also helpful for
comparisons between our and existing results in Section 3.3, since the convergence
rates for models (2.1) and (3.1) are different in Ghosal and van der Vaart (2001).

3.2. Deterministic latent location and scale variables

Since Pn is allowed to depend on n in Theorems 1 and 2, it can be also
considered as the probability measure given the means θ in (2.1) or given the
means ξ ≡ (ξ1, . . . , ξn) and standard deviations τ ≡ (τ1, . . . , τn) in (3.1). Here
we treat the more general case of deterministic ξ and τ in (3.1). Define

Gn,ξ,τ (u) ≡ 1
n

n∑
i=1

Φ
(

uσ − ξi

(τ2
i − σ2)1/2

)
, (3.5)

fn,ξ,τ (x) ≡ n−1
n∑

i=1

1
τi

ϕ
(x − ξi

τi

)
. (3.6)

Theorem 3. Suppose Xi, i ≤ n, are independent N(ξi, τ
2
i ) observations under

Pn,ξ,τ with unknown deterministic vectors ξ and τ and a known lower bound

0 < σ ≤ τi. Let f̂n be the GMLE in (2.7) and fn,ξ,τ (x) be the average density of
Xi, i ≤ n, in (3.6). Then, for all t ≥ t∗ and log n ≥ 2/p,

Pn,ξ,τ

{
dH(f̂n, fn,ξ,τ ) ≥ tεn

}
≤ exp

(
− t2nε2

n

2 log n

)
≤ e−t2 log n,
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where t∗ is a universal constant and εn ≡ ε(n,Gn,ξ,τ , p) is as in (2.10) with the

distribution Gn,ξ,τ in (3.5). In particular, εn ³ n−p/(2+2p)(log n)(2+3p)/(4+4p) for

a fixed p > 0 if n−1
∑n

i=1(|ξi|p +τp
i ) = O(1), while εn ³ n−1/2(log n)1/(2α)+3/4 for

p ³ log n if n−1
∑n

i=1 exp
(
|cξi|α+|cτi|α/(1−α/2)

)
= O(1) for some fixed 0 < α ≤ 2

and c > 0.

Since ξ and τ are teated as deterministic, Theorem 3 follows immediately
from Theorem 2 with Pn = Pn,ξ,τ . Clearly, Theorem 3 is applicable to the case
of deterministic means in (2.1) with ξi = θi and τi = σ.

3.3. The i.i.d. case and related work

Let H denote a bivariate mixing distribution of location and scale. Suppose
throughout this subsection that we observe

i.i.d. Xi ∼ fH(x) ≡
∫∫

1
τ
ϕ
(x − ξ

τ

)
H(dξ, dτ) (3.7)

under a probability Pn = PH , and H(IR×[σ,∞)) = 1 with a known lower bound
σ > 0 for the scale.

Since the inid model (3.1) is more general than (3.7), the large deviation
inequality (2.11) in Theorems 1 and 2 provides εn ³ n−p/(2+2p)(log n)(2+3p)/(4+4p)

as the convergence rate for the GMLE f̂n under

sup
x>0

xpPH{|ξ| > x} + EHτp < ∞, (3.8)

and εn ³ n−1/2(log n)1/(2α)+3/4 under EH exp(|cξ|α+|cτ |α/(1−α/2))<∞ for some
0 < α ≤ 2 and c > 0.

For the estimation of fH under (3.7) and the support bound H([−M,M ] ×
[σ, σ∗]) = 1 with finite M and σ∗, Genovese and Wasserman (2000) provides
large deviation inequalities for certain sieve MLEs with convergence rates
n−1/6(log n)(1/6)+ or n−1/4(log n)1/4 in the Hellinger distance, depending on the
choice of sieves. For the Kullback-Leibler loss, Li and Barron (1999) obtained
the convergence rate n−1/4(log n)1/4. These rates are improved in Ghosal and
van der Vaart (2001) to n−1/2(log n)κ′

for the GMLE, under the exponential
bound EHe|cξ|

α
< ∞ and the support bound H(IR×[σ, σ∗]) = 1 with finite

σ∗, where κ′ = 1/2 + 1/(2 ∨ α) under the independence of location and scale
H(dξ, dτ) = H1(dξ)H2(dτ), and κ′ = 1/2 + 2/(2∨α) is slightly worse in general.
Under the same conditions, further improved entropy bounds in Ghosal and van
der Vaart (2007b) lead to κ′ = 1+1/{2(2∨α)} via the entropy integral of Wong
and Shen (1995). Thus, Theorem 2 improves upon the power of the logarithmic
factor of the convergence rates in Ghosal and van der Vaart (2001, 2007b) from
κ′ to κ = 3/4 + 1/{2(2 ∨ α)}, and extends the large deviation inequality to inid
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observations and distributions with wider support. The right-hand side of (2.11)
is of larger order than the e−c(log n)2 in Ghosal and van der Vaart (2001), but the
difference is minimal since both large deviation inequalities require large t.

Under (3.7) with fixed τ = σ and (d/dx)P{|ξ| ≤ x} ∝ xp+1 with p > 2,
Genovese and Wasserman (2000) provides the convergence rates n−1/4

√
log n or

(log n)−p/2 log log n depending on the choice of sieves. Under the weak moment
condition xpP{|ξ| > x} = O(1), the entropy bounds in Ghosal and van der
Vaart (2001, 2007b) lead respectively to the convergence rates n1/p−1/2

√
log n

and n1/(2p)−1/2 log n via Wong and Shen (1995). In comparison, the better con-
vergence rate n−p/(2+2p)(log n)(2+3p)/(4+4p) in Theorem 2 is a significant improve-
ment. In particular, our theorems are applicable for small 0 < p < 2, a case of
particular interest in the compound estimation and other problems for sparse
means, cf. Section 4.

3.4. GMLE as a sieve estimator

Let Fσ ≡ {σ−1h(x/σ) : h ∈ H } be the family of mixture normal densities
with scale σ. For location-scale mixtures (3.7) without a lower bound for the
scale, i.e. with H(IR×(0, σ]) > 0 for all σ > 0, Genovese and Wasserman (2000)
studies sieve MLEs with sieves inside Fσn without giving explicit convergence
rates to fH , where σn → 0 slowly. In Priebe (1994), normal-mixture sieve MLEs
exhibit more sparse solutions than standard kernel methods, so that the MLE
over normal mixture sieves Fσn provides an attractive alternative to more con-
ventional smoothing methods for density estimation. Here we provide a direct
application of Theorem 1 to the GMLE (2.7) as a sieve estimator for a general
dansity f0, with σ = σn → 0.

For densities hG ≡
∫

ϕ(x − u)G(du) in (2.3) and f0, define

q0(G, σ, t) ≡ P0

{
n−1

n∑
i=1

log
(

f0(Xi)
σ−1hG(Xi/σ)

)
≥ t2

}
.

Theorem 4. Suppose Xi are i.i.d. variables with density f0 under a proba-
bility measure P0. Suppose q0(Gn, σn, snεn) → 0 for certain distributions Gn

and constants σn and sn, where εn ≡ ε(n,Gn, pn) is as in (2.10) for certain
pn ≥ 2/ log n. Let fn(x) = σ−1

n hGn(x/σn), Ĝn be as in (2.8) with the data X/σn,
and f̂n(x) = σ−1

n hĜn
(x/σn). Then, there exists a universal constant t∗ such that

for all t ≥ max{t∗, 2sn
√

log n},

P0

{
dH(f̂n, f0) > tεn + dH(fn, f0)

}
≤ exp

(
− nt2ε2n

(4 log n)

)
+ q0(Gn, σn, snεn) → 0. (3.9)
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Since the observations Xi are i.i.d. random variables from the density f0

under P0, log(f0(Xi)/fn(Xi)) are i.i.d. variables under P0. Thus, sufficient con-
ditions for q0

(
Gn, σn, snεn

)
→ 0 can be derived from the Weak Law of Large

Numbers. The convergence rate in (3.9) is regulated through the tail and smooth-
ness of the density f0, respectively, in terms of the weak p-th moment of Gn in
(2.10) and the bandwidth σn > 0. Since densities with unbounded support are
considered, further investigation of sieve MLEs or other smoothing methods is
beyond the scope of this paper.

4. Discussion

Although the estimation of normal mixture densities is a problem of impor-
tant independent interest, a primary motivation of our investigation is the use
of the GMLE in the compound estimation of normal means (Zhang (1997, 2003)
and Jiang and Zhang (2007)) under the risk function

En,θ

{
1
n

n∑
i=1

(
θ̂i − θi

)2
}

, (4.1)

where En,θ is the expectation under which (2.1) holds with deterministic param-
eter vector θ ≡ (θ1, . . . , θn) and known σ = 1. Here we provide a brief technical
discussion of this connection, especially the crucial role of the convergence of the
GMLE under the p-th weak moment condition for 0 < p < 2.

Since the normal density is a special case of the Laplace family discussed
in Robbins (1956) and Brown (1971)), the oracle Bayes rule, which minimizes
the compound risk (4.1) among all separate estimators of the form θ̂i = t(Xi), is
given by

θ̂i = t∗Gn
(Xi), t∗G(x) ≡ x +

h′
G(x)

hG(x)
, (4.2)

where hG is as in (2.3), h′
G ≡ (d/dx)hG, and Gn in (2.4) becomes the empirical

distribution function of the unknown constants {θ1, . . . , θn}. The basic idea of
the general empirical Bayes estimation (Robbins (1956)) is to approximate the
oracle (4.2) using a nonparametric estimator of hGn . For example

θ̂i = t̂n(Xi), t̂n(x) ≡ x +
h′

Ĝn
(x)

max{hĜn
(x), n−2}

, (4.3)

provides a general empirical Bayes estimator with the GMLE hĜn
in (2.8).

An important problem in the compound estimation of normal means is the
optimality for sparse means due to its connection to wavelet denoising and other
nonparametric estimation problems (Donoho, Johnstone, Kerkyacharian and Pi-
card (1995), Johnstone and Silverman (2005), and Zhang (2005)). It has been



1308 CUN-HUI ZHANG

pointed out in Donoho and Johnstone (1994) that a sparse mean vector θ can
be viewed as a member of small `p balls Θn,p,Cn ≡ {θ : n−1

∑n
i=1 |θi|p ≤ Cp

n}
with 0 < p < 2. Thus, the optimality in the compound estimation of sparse nor-
mal means is commonly expressed as the simultaneous asymptotic minimaxity
in a broad class of small `p balls (Donoho and Johnstone (1994), Abramovich,
Benjamini, Donoho and Johnstone (2006), Johnstone and Silverman (2004), and
Zhang (2005)).

Theorem 1 provides a uniform large deviation inequality for the convergence
of the Hellinger distance dH(hĜ, hGn) in the weak `p balls. This result plays a
crucial role in our investigation of the compound estimation of sparse normal
means, since the `p balls Θn,p,Cn are subsets of weak `p balls {θ : µw

p (Gn) ≤ Cn}
by (2.9) and (2.4). In a forthcoming paper (Jiang and Zhang (2007)), the general
empirical Bayes estimator (4.3) is demonstrated to provide superior numerical
results compared with the extensive simulations in Johnstone and Silverman
(2004) and is proved to possess the the simultaneous asymptotic minimaxity
in all the weak `p balls of radii (log n)4+3/p+p/2/n ¿ Cp

n ¿ np(log n)4+9p/2,
0 < p < 2, compared with Abramovich, Benjamini, Donoho and Johnstone
(2006) and Johnstone and Silverman (2004). Here an ¿ bn means an/bn → 0.
This simultaneous asymptotic minimaxity is established using Theorem 1 along
with an oracle inequality for Bayes rules with misspecified priors and a Gaussian
isoperimetric inequality for certain regularized Bayes rules.

5. Proofs

Our proofs are closely related to those in Shen and Wong (1994), Wong
and Shen (1995), and Ghosal and van der Vaart (2001, 2007b). Large deviation
inequalities for sieve MLEs of a density are typically obtained via an entropy in-
tegral (Shen and Wong (1994), and Wong and Shen (1995)). A direct application
of this method (Ghosal and van der Vaart (2001)) to the GMLE (2.7) provides
convergence rates from the entropy integral for the family

HM ≡
{

hG ∈ H : G([−M,M ]) = 1
}

(5.1)

at truncation levels M = Mn satisfying Pn{ĥn ∈ HMn} ≈ 1, i.e., 1 − Gn([−Mn,
Mn]) ³ 1/n. In the proof of Theorem 1 below, we use much smaller truncation
levels Mn by approximating ĥn(Xi/σ) with certain sieves for |Xi/σ| ≤ Mn, and
bounding ĥn(Xi/σ) with the constant ϕ(0) for |Xi/σ| > Mn. This is a crucial
difference between our and previous proofs, since a smaller truncation level M =
Mn leads to a smaller order of the entropy for the family (5.1), which then leads to
faster convergence rates. Still, we use a modification of an exponential inequality
in Wong and Shen (1995) and an improved version of the entropy bounds in
Ghosal and van der Vaart (2001, 2007b).
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We need three lemmas. The first one approximates a general normal mixture
(2.3) by a certain discrete mixture under the the supreme norm in bounded
intervals,

‖h‖∞,M ≡ sup
|x|≤M

|h(x)|, M > 0. (5.2)

It also considers the Lp norm ‖h‖p ≡ (
∫
|h(x)|pdx)1/p, p = 1,∞, and the Hellinger

distance dH(·, ·) for mixing distributions with bounded support. Let bxc denote
the greatest integer lower bound and dxe the smallest integer upper bound of x.

Lemma 1. Let hG denote the mixture density in (2.3). Let a > 0, η = ϕ(a),
and M > 0. Given any mixing distribution G, there exists a discrete mixing
distribution Gm, with support [−M − a,M + a] and at most m = (2b6a2c +
1)d2M/a + 2e + 1 atoms, such that

‖hG − hGm‖∞,M ≤ η
{

1 +
1

(2π)1/2

}
. (5.3)

Moreover, if G([−M,M ]) = 1, then

‖hG − hGm‖p ≤ η, p = 1,∞, dH(hG, hGm) ≤ η, (5.4)

for a certain discrete Gm with support [−M,M ] and at most m atoms, where
m ≤ C∗| log η|max(M/

√
| log η|, 1) for a certain universal constant C∗.

Remark 6. Ghosal and van der Vaart (2007b) proved (5.4) with m ≤ C∗| log η|
max(M, 1). Compared with their proofs, we partition the interval (−M−a, M+a]
into larger subintervals to allow the smaller number of atoms m in (5.4).

Proof. Let j∗ = d2M/a + 2e and k∗ = b6a2c. Define semiclosed intervals

Ij = (−M + (j − 2)a, (−M + (j − 1)a) ∧ (M + a)
]
, j = 1, . . . , j∗,

to form a partition of (−M −a,M +a]. It follows from Carathéodory’s Theorem
that there exists a discrete distribution function Gm, with support [−M−a,M+a]
and no more than m = (2k∗ + 1)j∗ + 1 support points, such that∫

Ij

ukG(du) =
∫

Ij

ukGm(du), k = 0, 1, . . . , 2k∗, j = 1, . . . j∗. (5.5)

We prove (5.3) for any Gm satisfying (5.5).
For t2/2 ≤ k∗ + 2, the alternating sign of the Taylor expansion of e−t2/2

yields

0 ≤ Rem(t) ≡ (−1)k
∗+1

{
ϕ(t) −

k∗∑
k=0

(−t2/2)k

k!
√

2π

}
≤ (t2/2)k

∗+1

(k∗ + 1)!
√

2π
.
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Thus, since k∗ + 1 ≥ 6a2, for x ∈ Ij ∩ [−M,M ], Stirling’s formula yields

|hG(x) − hGm(x)| ≤
∣∣∣∣ ∫

(Ij−1∪Ij∪Ij+1)c

ϕ(x − u){G(du) − Gm(du)}
∣∣∣∣

+
∣∣∣∣ ∫

Ij−1∪Ij∪Ij+1

Rem(x − u){G(du) − Gm(du)}
∣∣∣∣

≤ ϕ(a) +
{(2a)2/2}k∗+1

√
2π(k∗ + 1)!

≤ η +
(e/3)k∗+1

2π(k∗ + 1)1/2
. (5.6)

Since (e/3)6 ≤ e−1/2 and k∗ + 1 ≥ 6a2, (e/3)k∗+1 ≤ e−a2/2, so that (5.6) implies
(5.3).

For (5.4), we define Ij = (−M+(j−1)a,−M+ja] and impose the constraints∫
Ij

uk{G(du) − Gm(du)} = 0 along with Gm([−M,M ]) = 1 for all intergers
j ≤ j∗− 2, with m = (2k∗ +1)(j∗− 2)+1 atoms for Gm. The proof of (5.3) then
yields ‖hG −hGm‖∞ ≤ η(1 + 1/

√
2π). The L1 bound follows by integrating (5.6)

over x, which gives

‖hG − hGm‖1 ≤
∫ ∣∣∣∣ ∫

|x−u|≥a
ϕ(x − u){G(du) − Gm(du)}

∣∣∣∣dx

+η
(
1 +

1√
2π

) ∫∫
|x−u|≤2a

{G(du) + Gm(du)}dx

≤ 4η + 4aη
(
1 +

1√
2π

)
.

Finally, d2
H(hG, hGm) ≤ ‖hG − hGm‖1 gives the bound on the Hellinger distance.

Our second lemma provides an entropy bound for the family H in (2.6) and
HM in (5.1). For any semi-distance d0 in H = H∞, the η-covering number of
HM is the smallest possible cardinality of its η-net: with Ball(h0, η, d0) ≡ {h :
d0(h, h0) < η},

N(η,HM , d0) ≡ inf
{

N : HM ⊆ ∪N
j=1Ball(hj , η, d0)

}
.

Lemma 2. There exists a universal constant C∗ such that

log N(η,H , ‖ · ‖∞,M ) ≤ C∗(log η)2 max
(

M√
| log η|

, 1
)

(5.7)

for all 0 < η ≤ (2π)−1/2 and M > 0. Moreover,

log N(η,HM , d0) ≤ C∗(log η)2 max
(

M√
| log η|

, 1
)

, (5.8)

where d0 is the Hellinger, L1 or L∞ distances.
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Remark 7. Ghosal and van der Vaart (2007b) proved the upper bound

log N(η,HM , d0) ≤ C∗| log η|max(M, 1) log
(

(M + 1)
η

)
with d0 being the Hellinger, L1 or L∞ distances. Compared with their proof,
the smaller upper bound (5.8) is a consequence of the smaller m in (5.4) and
the cancellation of log(M +1) in an application of Stirling’s formula in the proof
below.

Proof. Let a ≡ aη ≡
√

2 log(2/η) and

m = (2b6a2c + 1)d2M

a
+ 2e + 1 ≤ C∗

2
| log η|max

(
1,

M√
| log η|

)
. (5.9)

It follows from Lemma 1 that there exists a discrete distribution Gm with support
[−M − a,M + a] and at most m atoms such that

‖hG − hGm‖∞,M ≤ η

2

{
1

(2π)1/2
+

1
2π

}
. (5.10)

The next step is to approximate the hGm in (5.10) by hGm,η where Gm,η is
supported in a lattice and has no more than m atoms. Let θ be a variable with
the distribution Gm and θη ≡ η, sgn(θ)b|θ|/ηc, Define Gm,η as the distribution
of θη. Since |θ − θη| ≤ η,

‖hGm − hGm,η‖∞ ≤ C∗
1η, C∗

1 ≡ sup
x

|ϕ′(x)| = (2eπ)−1/2. (5.11)

The support of Gm,η is in the grid Ωη,M ≡ {0,±η,±, 2η, . . .}∩ [−M−aη,M +aη].
The last step is to bound the covering number of the collection of all hGm,η .

Let Pm be the set of all probability vectors w ≡ (w1, . . . , wm) satisfying wj ≥ 0
and

∑m
j=1 wj = 1. Let Pm,η be an η-net of Pm:

inf
wm,η∈Pm,η

‖w − wm,η‖1 ≤ η, ∀w ∈ Pm,

with |Pm,η| = N(η,Pm, ‖·‖1). Let {θj , j = 1, . . . ,m} be the support of Gm,η and
wm,η be a probability vector in Pm,η satisfying

∑m
j=1 |Gm,η({θj}) − wm,η

j | ≤ η.
Then,∥∥∥∥hGm,η −

m∑
j=1

wm,η
j ϕ(x − θj)

∥∥∥∥
∞

≤ C∗
0

m∑
j=1

∣∣∣Gm,η({θj}) − wm,η
j

∣∣∣ ≤ C∗
0η,

where C∗
0 ≡ supx ϕ(x) = 1/

√
2π. Thus, by (5.10) and (5.11),∥∥∥∥hG −

m∑
j=1

wm,η
j ϕ(x − θj)

∥∥∥∥
∞,M

≤
(

1/2√
2π

+
1/2
2π

+ C∗
1 + C∗

0

)
η ≤ η. (5.12)
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Counting the number of ways to realize wm,η and {θj} in (5.12), we find

N(η,H , ‖ · ‖∞,M ) ≤ N(η,Pm, ‖ · ‖1)
(
|Ωη,M |

m

)
, (5.13)

with m satisfying (5.9) and |Ωη,M | = 1 + 2b(M + a)/ηc.
Since Pm is in the `1 unit sphere of IRm, N(η, Pm, ‖ · ‖1) is no greater than

the maximum number of disjoint Ball(vj , η/2, ‖·, ‖1) with ‖vj‖1 = 1. Since
all these balls are inside the `1 (1 + η/2)-sphere, volume comparison yields
N(η,Pm, ‖ · ‖1) ≤ (2/η + 1)m. This and (5.13) imply, via Stirling’s formula,

N(η, H , ‖ · ‖∞,M ) ≤
(2/η + 1)m|Ωη,M |m

m!

≤
{(

1+
2
η

)(
1 +

2(M+a)
η

)}m{
(m + 1)m+1/2e−m−1

√
2π

}−1

≤
[
(η+2)(η + 2(M+a))e

(m + 1)

]m

η−2me{2π(m + 1)}−1/2. (5.14)

For η = o(1), a =
√

2 log(2/η) → ∞, so that m ≥ (1+o(1))24a(M +a) → ∞ and
(η+2)(η+2(M +a))e = (1+o(1))4e(M +a) ≤ m+1. Thus, N(η,H , ‖·‖∞,M ) ≤
η−2m by (5.14). This and (5.9) imply (5.7). The proof of (5.8) is similar to that
of (5.4) and is omitted.

Lemma 3. Let (Xi, θi) be independent random vectors with the conditional distri-
butions Xi|θi ∼ N(θi, 1) under Pn. Let Gn and µw

p (G) be as in (2.4) and (2.9), re-
spectively, with σ = 1. Then for all constants M ≥

√
8 log n, 0 < λ ≤ min(1, p/2)

and a > 0,

En

{ n∏
i=1

|aXi|I{|Xi|≥M}
}λ

≤ exp
[
2(aM)λ

{
2/M√

2π
+ n

(2µw
p (Gn)
M

)p
}]

.

Proof. Since
∑n

i=1 Eh(Xi) = n
∫

h(x)hGn(x)dx,

En

{ n∏
i=1

|aXi|I{|Xi|≥M}
}λ

≤
n∏

i=1

(
1 + aλEn|Xi|λI{|Xi| ≥ M}

)
≤ exp

{
|a|λn

∫
|x|≥M

|x|λhGn(x)dx

}
. (5.15)

Let Z ∼ N(0, 1) and θ ∼ Gn under Pn. Since Z + θ ∼ hGn and λ ≤ 1,∫
|x|≥M

|x|λhGn(x)dx = En|Z + θ|λI{|Z + θ| ≥ M}

≤ En|2Z|λI
{
|Z| ≥ M

2

}
+ En|2θ|λI

{
|θ| ≥ M

2

}
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≤ 2Mλ−1En|Z|I
{
|Z| ≥ M

2

}
+

∫
|x|≥M

2

(2|x|)λGn(dx). (5.16)

Let Cp ≡ µw
p (Gn). It follows from integrating by parts and (2.9) that∫

|x|≥M
2

(2|x|)λGn(dx) ≤ Mλ

∫
|x|> M

2

Gn(dx) + 2λ

∫ ∞

M
2

∫
|u|>x

Gn(du)dxλ

≤ MλCp
p

(M/2)p
+ 2λ

∫ ∞

M
2

Cp
p

xp

λ

x1−λ
dx =

Mλ−p2pCp
pp

(p − λ)
.

Since λ ≤ p/2 and M ≥
√

8 log n, inserting the above inequality into (5.16) yields∫
|x|≥M

|x|λhGn(x)dx ≤ 4Mλ

M

∫ ∞

M
2

xϕ(x)dx + 2Mλ 2pCp
p

Mp

≤ 4Mλ

Mn
√

2π
+ 2Mλ 2pCp

p

Mp
.

This and (5.15) imply the conclusion.

Proof of Theorem 1. Since the Hellinger distance is scale invariant as in
(2.12), we assume σ2 = 1 without loss of generality. Since d2

H(f, g) ≤ 2, (2.11)
automatically holds for tεn ≥ t∗εn > 2. Since εn ≥ (log n)

√
2/n by (2.10) and t∗

is large, it suffices to consider large n.
Let Cp ≡ µw

p (Gn), η ≡ 1/n2, and M ≡ 2nε2
n/(log n)3/2. Define

h∗(x) ≡ ηI{|x| ≤ M} + (ηM2)x−2I{|x| > M}. (5.17)

We first find an upper bound on the likelihood ratio Ln(hĜn
, hGn) in the

event {dH(hĜn
, hGn) ≥ tεn}, where for all positive functions h1 and h2,

Ln(h1, h2) =
n∏

i=1

{h1(Xi)
h2(Xi)

}
.

We consider any approximate GMLE that guarantees

Ln(hĜn
, hGn) =

n∏
i=1

{hĜn
(Xi)

hGn(Xi)

}
≥ e−2t2nε2n/15. (5.18)

Let {hj , j ≤ N} be an η-net of H under the seminorm ‖ · ‖∞,M , (5.2), as in
Lemma 2, with N ≡ N(η, H , ‖ · ‖∞,M ). Let h0,j be densities satisfying

h0,j ∈ H , dH(h0,j , hGn) ≥ tεn, ‖h0,j − hj‖∞,M ≤ η, (5.19)
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if they exist, and J ≡ {j ≤ N : h0,j exists }. For any h ∈ H with dH(h, hGn) ≥
tεn, there exists j ∈ J such that

h(x) ≤


h0,j(x) + 2η = h0,j(x) + 2h∗(x), |x| ≤ M

ϕ(0) =
1√
2π

, |x| > M,

due to h∗(x) = η for |x| ≤ M and suph∈H h(x) = ϕ(0). It follows that

Ln(hĜn
, hGn) ≤ sup

j∈J
Ln(h0,j + 2h∗, hGn)

∏
|Xi|≥M

(2π)−1/2

2h∗(Xi)

in the event {dH(hĜn
, hGn) ≥ tεn}. Thus, by (5.18),

Pn

{
dH(hĜn

, hGn) ≥ tεn

}
≤ Pn

{
sup
j∈J

Ln(h0,j + 2h∗, hGn)
∏

|Xi|≥M

(2π)−1/2

2h∗(Xi)
≥ e−2t2nεn/15

}

≤ Pn

{[
sup
j∈J

n∏
i=1

h0,j(Xi) + 2h∗(Xi)
hGn(Xi)

]
≥ e−4t2nε2n/5

}
+Pn

{ ∏
|Xi|≥M

(2π)−1/2

2h∗(Xi)
≥ e2t2nε2n/3

}
. (5.20)

Next, we derive large deviation inequalities for the right-hand side of (5.20).
For j ∈ J , a modification of the proof of Lemma 1 of Wong and Shen (1995)
yields

Pn

{ n∏
i=1

h0,j(Xi) + h∗(Xi)
hGn(Xi)

≥ e−4nt2ε2n/5

}

≤ e2nt2ε2n/5
n∏

i=1

En

√
{h0,j(Xi) + 2h∗(Xi)}

hGn(Xi)

≤ exp

{
2nt2ε2n

5
+

n∑
i=1

En

(√
{h0,j(Xi) + 2h∗(Xi)}

hGn(Xi)
− 1

)}

= exp
{

2nt2ε2n
5

+ n

(∫ √
(h0,j + 2h∗)hGn − 1

)}
. (5.21)

Since
∫

h∗ = 4ηM by (5.17) and dH(h0,j , hGn) ≥ tεn,∫ √
(h0,j + 2h∗)hGn − 1 ≤ −

d2
H(h0,j , hGn)

2
+

√
2

∫
h∗
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≤ −(tεn)2

2
+

√
8ηM.

Since |J | ≤ N , the above inequality and (5.21) yield

Pn

{
sup
j∈J

n∏
i=1

h0,j(Xi)+2h∗(Xi)
hGn(Xi)

≥e−4nt2ε2n/5

}
≤ exp

(
log N+n

√
8ηM − nt2ε2n

10

)
.

(5.22)

Since N ≡ N(η,H , ‖ · ‖∞,M ) with η ≡ 1/n2 and M ≡ 2nε2n/(log n)3/2 ≥ 4
√

log n
by (2.10), Lemma 2 provides

log N + n
√

8ηM ≤ C∗(2 log n)2 max
( M√

2 log n
, 1

)
+

√
8M

≤
{(t∗)2

40

}
M(log n)3/2 ≤

( t2

20

)
nε2n

for large n and t∗ ≤ t. Thus, by (5.22)

Pn

{
sup
j∈J

n∏
i=1

h0,j(Xi) + 2h∗(Xi)
hGn(Xi)

≥ e−4nt2ε2n/5

}
≤ e−nt2ε2n/20. (5.23)

By (5.17), 1/h∗(x) = x2/(ηM2) = (nx/M)2 for |x| ≥ M , so that

Pn

{ ∏
|Xi|≥M

(2π)−1/2

2h∗(Xi)
≥ e2nt2ε2n/3

}
≤ e−2nt2ε2n/(3 log n)E

{ ∏
|Xi|≥M

∣∣∣nXi

M

∣∣∣}1/log n

.

(5.24)
Since M ≡ 2nε2

n/(log n)3/2 ≥
√

16 log n by (2.10) and log n ≥ 2/p by assumption,
Lemma 3 is applicable with a ≡ n/M and λ ≡ 1/ log n ≤ 1, yielding

E

{ ∏
|Xi|≥M

∣∣∣nXi

M

∣∣∣}1/log n

≤ exp
(

e√
2π log n

+ 2en
(2Cp

M

)p
)

. (5.25)

Since M/2 = nε2
n/(log n)3/2 and Cp ≡ µw

p (Gn), (2.10) gives

nε2n/ log n

n(2Cp/M)p
=

(εn

√
n/ log n)2(1+p)

n(
√

log nCp)p
≥ 1.

Therefore, (5.24) and (5.25) give

Pn

{ ∏
|Xi|≥M

(2π)−1/2

2h∗(Xi)
≥ e2nt2ε2n/3

}
≤ e−(2t2/3−2e)nε2n/log n+e/

√
2π log n.
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Inserting this inequality and (5.23) into (5.20), we find that (2.11) holds for large
n and t∗ ≤ t, since nε2

n/ log n ≥ 2 log n by (2.10).

The rate εn ³ n−p/(2+2p)(log n)(2+3p)/(4+4p) is clear from (2.10) under µw
p (Gn)

= O(1). The rate εn ³ n−1/2(log n)3/4{M1/2
n ∨ (log n)1/4} also follows immedi-

ately from (2.10) under Gn([−Mn,Mn]) = 1. If
∫

e|cu|
α
Gn(du) = O(1) for certain

positive c and α ≤ 2, then

µw
αk(Gn) ≤ 1

c

{ ∫
|cu|αkGn(du)

}1/(αk)

≤ 1
c

{
k!

∫
e|cu|

α
Gn(du)

}1/(αk)

= O(1)k1/α,

so that (2.10) with p = log n ³ αk yields√
n

log n
εn ³ n1/(2+2p)(log n)p/(4+4p)

(
k1/α

)p/(2+2p)
³ (log n)1/4+1/(2α).

This completes the proof.

Proof of Theorem 2. Due to the equivalence of (2.1) and (3.1), it suffices to
translate the rate εn ≡ ε(n, Gn, p) into functionals of the moments of ξi and τi,
where Gn is as in (3.3). Again we assume σ = 1 without loss of generality. By

(3.2), we may write θi|(ξi, τi) ∼ N(ξi, τ
2
i −1), so that θi = ξi +Zi

√
τ2
i − 1, where

Zi are i.i.d. N(0, 1) random variables independent of (ξi, τi). For the p-th weak
moment, (3.4) implies

{µw
p (Gn)}p ≤ sup

x>0

xp

n

n∑
i=1

Pn{|θi + Ziτi| > x}

≤ sup
x>0

xp

n

n∑
i=1

Pn

{
|θi| >

x

2

}
+

2p

n

n∑
i=1

En|Zi|pEnτp
i = O(1).

Moreover, |(Zi/2)cτi|α ≤ max{(Zi/2)2, (cτi)α/(1−α/2)} implies

Ene|cθi/4|α ≤ En

(
e|cξi/2|α + e|cτi|α/(1−α/2)

+ eZ2
i /4

)
.

Hence, n−1
∑n

i=1 En

(
e|cξi|α + e(cτi)

α/(1−α/2))
= O(1) implies∫

e|cu/4|αGn(du) = n−1
n∑

i=1

Ene|cθi/4|α = O(1),

and the conclusions follow from Theorem 1.

Proof of Theorem 4. Define

An ≡
{ n∏

i=1

f0(Xi)
σ−1

n hGn(Xi/σn)
≥ ens2

nε2n

}
.
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Since the Hellinger distance is scale invariant as in (2.12), the left-hand side of
(3.9) is no greater than

P0

{
dH(hĜn

, hGn) ≥ tεn, Ac
n

}
+ P0{An}

≤ ens2
nε2nPn

{
dH(hĜn

, hGn) ≥ εn, Ac
n

}
+ q0(Gn, σn, snεn),

where Pn is the probability under which Xi are i.i.d. variables with common
density σ−1

n hGn(x/σn). Hence, (3.9) follows from Theorem 1.
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