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Abstract: We propose a penalized polynomial spline method for simultaneous model

estimation and variable selection in additive models. It approximates nonparamet-

ric functions by polynomial splines, and minimizes the sum of squared errors subject

to an additive penalty on norms of spline functions. This approach sets estimators

of certain function components to zero, thus performing variable selection. Under

mild conditions, we show that the newly proposed method estimates the non-zero

function components in the model with the same optimal mean square convergence

rate as the standard polynomial spline estimators, and correctly sets the zero func-

tion components to zero with probability approaching one, as n goes to infinity.

Besides being theoretically justified, the proposed method is easy to understand

and straightforward to implement. Extensive Monte Carlo simulation studies show

the newly proposed method compares favorably with the existing ones in finite sam-

ple performance. We also illustrate the use of the proposed method by analyzing

two data sets.

Key words and phrases: Boston housing price, knot, mean square consistency, ozone

data, penalized least squares, SCAD.

1. Introduction

Variable selection is of special importance in multivariate regression anal-
ysis. By effectively identifying the subset of important variables, the variable
selection can not only enhance model interpretability, but also improve its pre-
diction accuracy. Since the seminal work of Akaike (1973), many methods have
been developed for variable selection.

Commonly used methods for variable selection are based on assumptions
that the data are generated by linear regression models. The simple linear struc-
ture enables easy estimation of model parameters, and convenient construction
of variable selection criteria such as Mallows’s Cp (Mallows (1973)), the Akaike
information criterion (AIC) (Akaike (1973)), and the Bayesian information cri-
terion (BIC) (Schwarz (1978)). These criteria balance goodness of fit and model
complexity with a fixed penalty on the number of non-zero coefficients. Re-
cently, a rather modern approach emerged and gained popularity. The idea is
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to minimize a penalized least squares with the penalty being an irregular func-
tion of the regression coefficients. Examples include bridge regression (Frank
and Friedman (1993), the nonnegative garrote (Breiman (1995)), the least abso-
lute shrinkage and selection operator (LASSO) (Tibshirani (1996)), SCAD (Fan
and Li (2001)), and least angle regression (LARS) (Efron, Hastie, Johnstone and
Tibshirani (2004)). Recent works of Yuan and Lin (2006, 2007) successfully ex-
tended the nonnegative garrote, LASSO and LARS to select grouped variables,
which is particularly useful in multi-level ANOVA models. What makes these
methods attractive is that the penalized least squares shrink some coefficients to
zero, thus simultaneously selecting the variables and estimating the coefficients
without an exhaustive search over all candidate models.

Although the aforementioned methods are useful for selecting significant vari-
ables in many applications, their proper use is restricted to linear models. Many
data in application, however, exhibit strong non-linearity. Various non- and semi-
parametric methods have been used successfully to model non-linearity, due to
their ability to discover data structure that linear and parametric models fail to
detect. Of special importance is the additive model (Stone (1985) and Hastie
and Tibshirani (1990)) that relaxes the strict linear assumption, but retains the
interpretable additive form of linear regression models. More importantly, the
additive model circumvents the so-called ‘curse of dimensionality’ arising in mul-
tivariate nonparametric function estimation. In fact, Stone (1985) showed that
the additive model can be estimated at the optimal rate of convergence for uni-
variate functions. More recent works related to additive model include Linton
and Nielsen (1995), Linton and Härdle (1996), Sperlich, Tjøstheim and Yang
(2002), Yang, Sperlich and Härdle (2003) and Xue and Yang (2006a,b).

Variable selection in additive models has also been considered by several
authors. Chen and Tsay (1993) suggested the use of the adaptive backfitting
BRUTO algorithm; (Hastie (1989)) looked at time series data; Shively, Kohn
and Wood (1999) presented a hierarchical Bayesian approach in a nonparametric
manner; Lin and Zhang (2006) proposed a component selection and smooth-
ing operator (COSSO) for model selection in more general functional ANOVA
models. The work most related to ours is Huang and Yang (2004), which pro-
posed nonparametric extensions of BIC and AIC via polynomial spline smooth-
ing. Although shown to be consistent, the polynomial spline BIC method can be
computationally inefficient for even moderates size of covariates, since it needs
to search over all candidate models, and the estimation of each nonparametric
additive sub-model is not easy.

In this article, we propose an efficient penalized polynomial spline estima-
tion method for additive models. Unlike the polynomial spline BIC in Huang
and Yang (2004), it selects significant variables and estimates nonparametric
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functions simultaneously, without exhaustive search over all candidate models.
It is a nonparametric extension of the SCAD (Fan and Li (2001); and Hunter and
Li (2005)), which recently gained popularity for variable selection in linear mod-
els. Like the SCAD, the proposed penalized polynomial spline method is shown
to have oracle properties: when there are zero function components in the true
model, they are shrunk to zero with probability approaching to 1; non-zero func-
tion components are estimated as accurately as the standard polynomial spline
estimates of the correct submodel can manage.

The article proceeds as follows. Section 2 describes the additive model.
Section 3 introduces the penalized polynomial spline and discusses some imple-
mentation issues, such as knot number and tuning parameter selection. Section 4
presents the asymptotic properties of the proposed estimator. Section 5 contains
simulation studies and applications. The proofs are given in the Appendix.

2. The Model

Let Y be a variable of interest and X = (X1, . . . , Xd)T be a vector of predictor
variables. The additive model assumes

m(x) = E(Y |X = x) = α0 +
d∑

l=1

αl(xl), (2.1)

where x = (x1, . . . , xd)T , α0 is an unknown constant, and {αl(·)}d
l=1 are unknown

nonparametric functions. For identifiability of (2.1), one assumes E{αl(Xl)} = 0,
for l = 1, . . . , d. Suppose now that a random sample {Xi,Yi}n

i=1 has been ob-
served. Then α0 = E(Y ), and can be consistently estimated by α̂0 =

∑n
i=1 Yi/n

at the rate of 1/
√

n, which is faster than any rate of convergence for nonparamet-
ric function estimation. Thus for notational convenience, one can safely assume
α0 = 0. As in most work on nonparametric smoothing, estimation of the non-
parametric functions {αl(·)}d

l=1 is conducted on a compact support. Without
loss of generality, let the compact set be X = [0, 1]d.

Following Stone (1985, p.693), for each 1 ≤ l ≤ d, define the space of l-
centered square integrable functions on [0, 1] as H0

l = {α : E{α(Xl)} = 0,
E{α2(Xl)} < +∞}. Then we model the regression function m as a mem-
ber of the model space M, a collection of functions on X defined as M =
{m =

∑d
l=1 αl;αl ∈ H0

l }. For any m ∈ M, set En(m) =
∑n

i=1 m(Xi)/n, and
E(m) = E{m(X)}. For any functions m1,m2 ∈ M, define the empirical and
theoretical inner products as 〈m1,m2〉n = En(m1m2) and 〈m1,m2〉 = E(m1m2),
respectively. The induced empirical and theoretical norms are denoted as ‖m‖2

n =
En(m2) and ‖m‖2 = E(m2), respectively. Then the model space M is a Hilbert
space equipped with the theoretical inner product.
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In this paper, we are particularly interested in the variable selection problem
for the additive model. Suppose that only an unknown subset of covariates in
(2.1) is significant with αl(xl) 6= 0 a.s.. Let S0 ⊂ {1, . . . , d} be the index set of
significant variables, i.e., αl(xl) 6= 0 a.s., for any l ∈ S0 with αl(xl) = 0 a.s., for
any l /∈ S0. Then the goal of variable selection is to correctly identify S0 based
on {Xi, Yi}n

i=1, a random sample of size n from the distribution of (X, Y ).

3. Penalized Polynomial Spline Estimation

To select significant variables, we propose to use a penalized polynomial
spline method that involves approximation of the nonparametric functions
{αl(·)}d

l=1 by polynomial splines.

3.1. The estimators

Polynomial splines are piece-wise polynomials connected smoothly over a set
of interior knots. For each 1 ≤ l ≤ d, let kl = {0 = xl,0 < xl,1 < · · · < xl,Nl

<

xl,Nl+1 = 1} be a knot sequence with Nl interior knots on [0, 1]. For an integer
p ≥ 1, the polynomial spline space ϕl = ϕ(p, kl, [0, 1]) consists of functions that
are polynomials of degree p (or less) on intervals [xl,i, xl,i+1), i = 0, . . . , Nl − 1,
and [xl,Nl

, xl,Nl+1], and globally has p − 1 continuous derivatives. Such polyno-
mial splines can approximate smooth functions with an error of approximation
depending on a smoothing parameter hl = maxi=0,...,Nl

|xl,i+1 −xl,i|, see de Boor
(2001). A different amount of smoothing hl can be used for each αl(·). Let
h = max1≤l≤d hl.

For each l, let ϕ0,n
l = {gl : gl ∈ ϕl,

∑n
i=1 gl(Xil)/n = 0} be the space

of empirically centered polynomial splines. Define the approximation space
Mn = {mn(x) =

∑d
l=1 gl(xl); gl ∈ ϕ0,n

l }. Then the standard polynomial spline
method (Stone (1985)) estimates m by minimizing the sum of squares over the
approximation space Mn, i.e.,

m̃ = argmin
mn∈Mn

1
2
‖Y − mn‖2

n, (3.1)

where Y = Y (·) denotes a random function which interpolates the values Y1, . . .,
Yn at X1, . . . ,Xn. This approach fails to reduce the model complexity when some
of the explanatory variables are redundant. Here we propose to fit a penalized
least squares that automatically sets small estimated functions to zero, resulting
in a parsimonious model. It is defined as

m̂ = argmin
mn=

Pd
l=1 gl∈Mn

[
1
2
‖Y − mn‖2

n +
d∑

l=1

pλn(‖gl‖n)

]
, (3.2)



VARIABLE SELECTION IN ADDITIVE MODELS 1285

where pλn(·) ≥ 0 is a given penalty function depending on a tuning parameter λn.
In general, a larger λn results in a simpler model with fewer variables selected;
the selection of λn will be discussed in Section 3.4. In (3.2), the empirical norm
‖ · ‖n is used instead of the theoretical one, since the definition of the theoretical
norm depends on the unknown distribution of covariates X.

The formulation (3.2) is quite general. In particular, if Mn = {mn(x) =∑d
l=1 βlxl} and the covariates are normalized with

∑n
i=1 xil/n=0 and

∑n
i=1 x2

il/n

= 1, for l = 1, . . . , d, then (3.2) reduces to a family of variable selection methods
for linear models, with the penalty pλn(‖gl‖n) = pλn(|βl|). For example, the
L1 penalty pλn(|β|) = λn|β| results in the LASSO (Tibshirani (1996)), and the
L2 penalty pλn(|β|) = λn|β|2 results in a ridge regression. Fan and Li (2001)
proposed to use the smoothly clipped absolute deviation (SCAD) penalty, whose
first order derivative is given as

p′λn
(|β|) = λnI(|β| ≤ λn) +

(aλn − |β|)+
a − 1

I(|β| > λn) (3.3)

for some a > 2. For linear models, Fan and Li (2001) showed that the SCAD
improves over other penalty functions and results in a solution with desirable
properties, such as unbiasedness, sparsity, and continuity. Thus in this paper we
focus on using the SCAD penalty in (3.2), and extend the asymptotic results for
the SCAD penalized least squares to the additive models. In the following, we
refer to the resulting method as spline SCAD.

3.2. Polynomial spline basis representation

To gain further insight, we adopt the spline basis representation of the
proposed polynomial spline estimation in (3.2). For each l = 1, . . . , d, write
Jl = Nl + p, and let Bl = {Bl1, . . . , BlJl

} be a basis for ϕ0,n
l . For exam-

ple, the centered truncated power basis is used in implementation, with {Blj =
blj −En(blj)}Jl

j=1, where bl = {bl1, . . . , blJl
} is the truncated power basis given as

{xl, . . . , x
p
l , (xl − xl,1)

p
+, . . . , (xl − xl,Nl

)p
+}, in which (x)p

+ = (x+)p.
For any fixed x = (x1, . . . , xd)T ∈ X , let Bl(xl) = [Bl1(xl), . . . , BlJl

(xl)]T .
Then from (3.1) and (3.2), one can express m̃ and m̂ as

m̃(x)=
d∑

l=1

α̃l(xl), α̃l(xl)= β̃T
l Bl(xl), and m̂(x)=

d∑
l=1

α̂l(xl), α̂l(xl)= β̂T
l Bl(xl),

(3.4)
where the coefficients β̃ = (β̃T

1 . . . , β̃T
d )T and β̂ = (β̂T

1 . . . , β̂T
d )T minimize the sum

of squares and the penalized sum of squares, respectively:

β̃ = argmin
β=(βT

1 ...,βT
d )T

1
2

∥∥∥∥Y −
d∑

l=1

βT
l Bl

∥∥∥∥2

n

, (3.5)
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β̂ = argmin
β=(βT

1 ...,βT
d )T

[
1
2

∥∥∥∥Y −
d∑

l=1

βT
l Bl

∥∥∥∥2

n

+
d∑

l=1

pλn(‖βl‖Kl
)

]
, (3.6)

where ‖βl‖Kl
=

√
βT

l Klβl with Kl =
∑n

i=1 Bl(Xil)BT
l (Xil)/n. Note that the

solutions given in (3.4) do not depend on the particular choice of spline basis Bl,
l = 1, . . . , d.

• Remark 1: In solving the two minimization problems, (3.6) is relatively more
difficult to compute since pλn(·) is singular at the origin and does not have
second derivative at some points. But when d = 1 and m(x) = α(x),

α̂ = {I(aλn < ‖α̃‖n) + c1I(2λn < ‖α̃‖n ≤ aλn) + c2I(‖α̃‖n ≤ 2λn)}α̃,

where c1 = [(a − 1)‖α̃‖n − aλn]/[(a − 2)‖α̃‖n], c2 = [(‖α̃‖n − λn)+]/[‖α̃‖n],
and α̃ is the standard polynomial spline estimator. This clearly shows that α̂

is a threshold rule in α̃. In particular, it yields zero when α̃ is small enough
(‖α̃‖n ≤ λn), and leaves α̃ unchanged when α̃ is large (‖α̃‖n ≥ aλn). In Sub-
section 3.3, we will discuss how to solve (3.6) under a more general framework.

• Remark 2: The basis representation (3.6) reveals that the spline SCAD
shares a similar penalized form as the P-spline (Ruppert, Wand and Carroll
(2003)). They are different in nature at least in two respects: (a) the P-
spline uses a quadratic penalty on the coefficients {βlk}d,Nn

l=1,k=1, essentially a
type of ridge regression, and is unable to produce sparse solutions; the spline
SCAD uses a SCAD penalty on the function norms and is able to shrink all
coefficients associated with a variable to zero simultaneously and give sparse
solutions. (b) The P-spline assumes a fixed knot number, while the spline
SCAD allows the knot number to increase with the sample size, which makes
rigorous asymptotics possible.

• Remark 3: Yuan and Lin (2006, 2007) successfully extended the non-negative
garrotte, LASSO, and LARS to select significant factors (groups of variables)
instead of individual variables. The method proposed in this paper applies
the SCAD penalty to group variables. Using the SCAD penalty, we are able
to show that the proposed method enjoys oracle properties when the number
of variables in a group increases with sample size. It is not clear whether the
group variable selection using the non-negative garrotte, LASSO, or LARS
have such an oracle property.

3.3. Local quadratic approximation algorithm

Since the SCAD penalty is singular at the origin, it is challenging to find the
minimizer β̂ of (3.6). However, following Fan and Li (2001), the penalty function
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can be locally approximated by a quadratic function, and the Newton-Raphson
algorithm then can be applied to minimize the penalized sum of squares.

Let β0 = (β0T
1 , . . . , β0T

d )T be an initial value that is close to β̂, and βk =
(βkT

1 , . . . , βkT
d )T be the value at the kth iteration. In the implementation, we have

used β0 = β̃. For l = 1, . . . , d, if β0
l is very close to zero, i.e., ‖β0

l ‖Kl
< ε for some

small threshold value ε, then set β1
l = 0. In the implementation, we have used ε =

10−6. Without loss of generality, we write β1 = (β1T
1 , . . . , β1T

d1
, β1T

d1+1, . . . β
1T
d )T =

(β1T
11 , β1T

22 )T with the last d− d1 components being zero, β1
22 = 0. To update the

first d1 non-zero components, local quadratic approximation is used. Note that
[∂pλn(‖βl‖Kl

)]/[∂βl] = [p′λn
(‖βl‖Kl

)‖βl‖−1
Kl

Klβl]/2, for βl 6= 0. Therefore one has

pλn

(
‖βl‖Kl

)
≈ pλn

(
‖β0

l ‖Kl

)
+

1
2
p′λn

(
‖β0

l ‖Kl

)
‖β0

l ‖−1
Kl

[
β0T

l Kl(βl − β0
l )

]
≈ pλn

(
‖β0

l ‖Kl

)
+

1
2
p′λn

(
‖β0

l ‖Kl

)
‖β0

l ‖−1
Kl

(
βT

l Klβl − β0T
l Klβ

0
l

)
for β0

l ≈ βl. As a result, (3.6) can be locally approximated, up to a constant, by

1
n

n∑
i=1

(
Yi −

d1∑
l=1

βT
l Bl(Xil)

)2

+
d1∑
l=1

ϕ(β0
l )βT

l Klβl, (3.7)

with ϕ(β0
l )=p′λn

(‖β0
l ‖Kl

)‖β0
l ‖

−1
Kl

. Let
−→
B11 = (

−→
B1, . . . ,

−→
Bd1), with

−→
B l = {Bl(X1l),

. . . ,Bl(Xnl)}T and Σλn = diag{ϕ(β0
1)K1, . . . , ϕ(β0

d1
)Kd1}. Then the minimizer

of (3.7) is given as β1
11 = {

−→
BT

11

−→
B11 +nΣλn}−1−→BT

11Y. One repeats this procedure
to convergence. In the implementation, we have used the convergence criterion
that

√
(βk − βk+1)T (βk − βk+1) ≤ 10−6.

Following Hunter and Li (2005), we show that our modified local quadratic
approximation (LQA) algorithm is also an instance of a majorization-minimiz-
ation (MM) algorithm. Then the convergence of the proposed algorithm can be
studied using techniques applicable to MM algorithms in general. For l = 1, . . . , d

and any vectors α, α0 with length Nl + p, set

Φl
α0(α) = pλn

(
‖α0‖Kl

)
+

1
2
p′λn

(
‖α0

l ‖Kl

)
‖α0

l ‖−1
Kl

(
‖αl‖2

Kl
− ‖α0

l ‖2
Kl

)
.

Denote the penalized sum of squares by Q(β) = [‖Y −
∑d

l=1 βT
l Bl‖2

n]/2 +
∑d

l=1

pλn(‖βl‖Kl
).

Theorem 1. Suppose βk = (βkT
1 , . . . , βkT

d )T , with βk
l 6= 0 for all l at the kth

iteration. Let Sk(β) = [‖Y −
∑d

l=1 βT
l Bl‖2

n]/2 +
∑d

l=1 Φl
βk

l

(βl). Then Sk(β) ≥
Q(β) for all β, with equality when β = βk.
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Suppose βk+1 is the minimizer of Sk(β). From Theorem 1, one has Sk(βk) ≥
Sk(βk+1) implies Q(βk) ≥ Q(βk+1). That is, a decrease in the value of a quadratic
function Sk(β) guarantees a decrease in the value of Q(β). Thus the minimization
of the penalized sum of squares Q(β) can be replaced by minimizing a quadratic
function Sk(β) that has a closed-form solution.

3.4. Smoothing and tuning parameters

To implement the proposed spline SCAD, one needs to choose appropriate
spline spaces {ϕn

l }d
l=1 and tuning parameters a, λn involved in the SCAD penalty.

For the choices of {ϕn
l }d

l=1 we use splines with equally spaced knots and fixed
degrees, and select only {Nl}d

l=1, the number of interior knots using the data.
The same strategy is also used in Huang, Wu and Zhou (2004). Following Fan
and Li (2001), we take a = 3.7, which works well from our simulation experiences.

Denote the parameters to be selected by θ = (N1, . . . , Nd, λn). For fast
computation, we use K-fold cross-validation to select θ, with K = 5 in imple-
mentation. The full data T is randomly partitioned into K groups of about
the same size, denoted as T j , for j = 1, . . . ,K. Then for each j, the data
T − T j is used for estimation and T j for validation. For any given θ, denote
the resulting estimator of m by m̂j

θ. Then the cross-validation criterion is given
as CV(θ) =

∑K
j=1

∑
i∈dj

{Yi − m̂j
θ(Xi)}2, where dj denotes the indices of data

points included in the j-th group. We select θ̂ to minimize CV(θ). In practice,
the minimization problem over a d + 1 dimension can be computationally diffi-
cult. However, for smooth functions, the results are quite stable when a sufficient
number of knots is used. Thus, for fast computation, we suggest taking the same
number of interior knots over different directions, i.e., N1 = · · · = Nd = N . Then
the minimization is a two-dimensional problem, and the tuning parameters can
be estimated by a two-dimensional grid search. To be more specific, according
to Theorem 2, the optimal order of Nl is Ñ = n1/(2p+3) for each l. Thus, in
the implementation, we select the optimal N from the integers in [0.5Ñ , 2Ñ ].
Furthermore, to satisfy the order assumptions of λn in Theorem 3, we select λn

from the interval [0.5 log(n)
√

Ñ/n, 2 log(n)
√

Ñ/n].

4. Asymptotic Properties

In this section, we establish the asymptotic properties of the spline SCAD
estimator m̂ in (3.2). Throughout this section, the penalty function pλn(·)
is the SCAD penalty defined in (3.3). Write the true regression function as
m0(x) =

∑d
l=1 αl0(xl) =

∑s
l=1 αl0(xl) +

∑d
l=s+1 αl0(xl) where, without loss of

generality, αl0 = 0 a.s. for l = s + 1, . . . , d, and s is the total number of
nonzero function components. For any m =

∑d
l=1 αl ∈ M, define l(m) =
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(‖Y − m‖2
n)/2 +

∑d
l=1 pλn(‖αl‖n). Recall that m̂n = m̂ = argming∈Mn

l(g),
where the notation m̂n is used to emphasize its dependence on n.

We first show that there exists a local minimizer of l(·) over Mn whose mean
square (or L2) convergence rate is Op(ρn), where ρn = 1/

√
nh + hp+1, the L2

convergence rate for standard polynomial spline.

Theorem 2. Under assumptions (A1−A4) in the on-line supplement, if λn → 0,
then there exists a local minimizer m̂n of l(·) in Mn, for n sufficiently large, that
satisfies ‖m̂n − m0‖ = Op(ρn).

Theorem 2 shows that m̂n enjoys the same rate of convergence as the stan-
dard polynomial spline estimators. Furthermore, write m̂n =

∑d
l=1 α̂l, with

α̂l ∈ ϕ0,n
l (Lemma A.2 in the on-line material implies such an additive represen-

tation is essentially unique). Then ‖α̂l−αl0‖ = Op(ρn) for each l = 1, . . . , d. Now
we prove that the minimizer m̂n =

∑d
l=1 α̂l in Theorem 2 possess the sparsity

property, i.e., α̂l = 0 a.s. for l = s+1, . . . , d, which makes it a consistent variable
selection method.

Theorem 3. Under assumptions (A1−A4) in the on-line supplement, if λn → 0
and ρn/λnarrow0, then with probability approaching 1, α̂l = 0 a.s. for l =
s + 1, . . . , d.

5. Examples

In this section, we assess the finite sample performance of the proposed
spline SCAD with simulations, and illustrate its use with the analysis of the
Ozone concentration data and Boston housing price data. The spline SCAD is
compared with the component selection and smoothing operator (COSSO) (Lin
and Zhang (2006)), multivariate additive regression splines (MARS) (Friedman
(1991)), and polynomial spline BIC and AIC (Huang and Yang (2004)).

In the simulated examples, the averaged integrated squared error (AISE)
is used to assess estimation accuracies. Denoting the estimator of m in the r-
th (1 ≤ r ≤ R) replication as m̂r, and {xm}ngrid

m=1 the grid points, we define
AISE(m̂r) = [

∑R
r=1(1/ngrid)

∑ngrid

m=1{m(xm)− m̂r(xm)}2]/R. Let S and S0 be the
selected and true index set of significant variables respectively. Following Huang
and Yang (2004), we say S is correct if S = S0; S overfits if S0⊂ S and S0 6= S;
and S underfits if S0 6 ⊂S.

5.1. Simulated example

In this example, we simulated 100 data sets consisting of n = 100, or 250
observations from the model Y = m(X) + δε, where the dimension of X is 10
but m(x) = 5g1(x1)+3g2(x2)+4g3(x3)+6g4(x4), with g1(x) = x, g2(x) = (2x−
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1)2, g3(x) = sin(2πx)/(2 − sin(2πx)), and g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) +
0.3 sin2(2πx) + 0.4 cos3(2πx) + 0.5 sin3(2πx). The covariates X were generated
to have a compound symmetry covariance structure: Xl = (Wl + tU)/(1 + t),
l = 1, . . . , 10, where (W1, . . . ,W10) and U are i.i.d. from Uniform[0, 1], and t was
taken to be 0 or 2. The error ε was standard normal and the noise level σ was
1.319, which gives a signal to noise ratio 3 : 1 when t = 0. The same model was
also considered in Lin and Zhang (2006).

We applied spline SCAD with both linear splines (SCAD1) and cubic splines
(SCAD3) to the simulated data. A random sample was simulated from the model
with t = 0 and n = 250. Figure 1 plots the empirical norms of the estimated
components ‖α̂l(λn)‖n against the tuning parameter λn, along with the location
of λ̂n selected from the 5-fold CV method. We fixed a = 3.7, and N = 3 for
SCAD1, N = 2 for SCAD3. Figure 1 clearly showed the selected λn worked well
and gave the correct model with four terms for both SCAD1 and SCAD3 in this
run. Figure 2 plots the estimated component functions for the first four terms.

We then compared spline SCAD with COSSO, MARS, and spline AIC and
BIC. We also considered the standard linear spline (LS) estimations of the full and
oracle models. The full model is the one of all possible covariates, while the oracle
model contains only non-zero components. For COSSO, the matlab code was
downloaded from ’www.stat.ncsu.edu/ hzhang2’. The tuning parameters were
selected using 5-fold CV with M chosen from 100 equally spaced grid points in
[0, 35], and λ0 was chosen from grid points {2−j}100

j=1. For spline AIC and BIC, we
used code obtained from the author, and MARS simulations were done in R, with
the function “mars” in the “mda” library. For spline SCAD and LS, we always
used the same N interior knots equally spaced for each function component,
where N was selected from the 5-fold CV method described in Subsection 3.4.

Table 1 summarizes variable selection and estimation results from various
methods. It shows that COSSO, two spline SCAD fits and spline BIC were gen-
erally comparable. Furthermore, two spline SCAD fits and spline BIC performed
slightly better than COSSO when sample size was large (n = 250) and the co-
variates were uncorrelated (t = 0), while COSSO performed the best when the
covarites were correlated (t = 1). Overall, spline AIC and MARS tend to over-
fit. Table 1 also shows SCAD1 worked as well as the linear spline estimation of
the oracle model, and much better than the linear spline estimation of the full
model in terms of estimation accuracy (AISEs). The simulation results support
Theorems 1−2.

In this simulation study, spline SCAD, COSSO and spline BIC performed
comparably. The differences among the three methods mirror the differences
among SCAD, LASSO, and BIC in linear models. Similar to SCAD in linear
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Figure 1. The empirical norm of each estimated component function is
plotted against the tuning parameter λn in one run with t = 0 and n = 250.
The dashed line indicates the location of the selected optimal λn from the
CV method.

Figure 2. The estimated component functions using penalized linear spline
(dashed line), using penalized cubic spline (dotted line), and the true com-
ponent functions (solid line) in one run with t = 0 and n = 250. Shown
are the components for the first four variables. For the other variables, both
estimated and true component functions are zero.
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Table 1. Simulated example, variable selection results. The columns of C,
U , and O give, respectively, the numbers of correct-fitting, under-fitting, and
over-fitting over 100 replications, and the columns of Size give the average
number of selected variables.

n Method t = 0 t = 2

C U O Size AISE C U O Size AISE

100 SCAD1 85 4 11 4.07 0.683 21 76 3 2.90 1.042

SCAD3 81 8 11 4.01 0.709 13 84 3 2.83 1.494

COSSO 86 2 12 4.12 0.754 37 38 25 4.2 0.898

BIC 92 2 6 4.04 0.591 22 76 2 2.93 1.037

AIC 33 1 66 5.39 1.009 24 26 50 5.37 1.433

MARS 10 0 90 5.10 1.730 20 40 45 4.70 1.246

ORACLE 100 0 0 4.00 0.539 100 0 0 4.00 0.824

FULL 0 0 100 10.00 1.453 0 0 100 10 2.127

250 SCAD1 100 0 0 4.00 0.2897 82 18 0 3.80 0.4044

SCAD3 98 0 2 4.02 0.2712 75 23 2 3.71 0.4614

COSSO 91 0 9 4.17 0.2905 83 3 14 4.13 0.3714

BIC 100 0 0 4.00 0.2832 83 17 0 3.81 0.4020

AIC 41 0 59 4.85 0.3572 40 11 49 4.6 0.4533

MARS 40 0 60 4.80 0.7374 38 2 60 4.91 0.5083

ORACLE 100 0 0 4.00 0.2832 100 0 0 4.00 0.3594

FULL 0 0 100 10.00 0.5183 0 0 100 10 0.6345

models, we showed spline SCAD also have oracle properties. However, it is
conceivable from LASSO that COSSO may not have the oracle property.

5.2. Applications to ozone data and Boston housing price data

We applied the spline SCAD to two data examples: the ozone data and
the Boston housing price data, available from the R library ’mlbench’. The
two data sets were previously analyzed by several authors, e.g., Breiman and
Friedman (1985), Buja, Hastie and Tibshirani (1989) and Breiman (1995). The
ozone data consists of daily measurements of ozone concentration, and eight
meteorological quantities for 330 days in 1976 in the LOS Angeles basin. To
account for the seasonal effect, we also included one additional variable called
date-of-the-year, as in Breiman and Friedman (1985). The Boston housing price
concerns the median value of owner-occupied homes in each of the 506 census
tracts in the Boston Standard Metropolitan Statistical Area in 1970. It contains
12 sociodemographic variables that are thought to affect housing price.

In our analysis, we standardized all variables (both explanatory and response
variables), so that each had a zero mean and unit sample standard deviation. The
methods discussed in simulation studies were applied and compared by their es-
timation and prediction performances. A total of m observations were randomly
left out for prediction, and the remaining observations were used for modeling
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Table 2. Data examples: estimation, prediction and variable selection results
of several methods.

Ozone Housing

Method avg. ASEE avg. ASPE avg. size avg. ASEE avg. ASPE avg. size

SCAD1 0.1733 0.2136 7.5 0.1413 0.1591 7.1

SCAD3 0.1792 0.2330 6.7 0.1565 0.1478 7.9

COSSO 0.1909 0.2198 7.2 0.1181 0.1750 9.4

BIC 0.1859 0.2166 6.5 0.1710 0.1623 4.3

AIC 0.1696 0.2492 8 0.1354 0.1675 8.5

MARS 0.1752 0.2542 8.2 0.1414 0.1902 9.3

FULL 0.1680 0.2675 9 0.1407 0.1969 12

fitting, where m = 30 and 50 for the ozone and Boston housing data, respectively.
Then the averaged squared estimation errors (ASEE) and averaged squared pre-
diction errors (ASPE) were calculated for each method. This procedure was
replicated 20 times for each data. Table 2 reports the averaged ASEE, averaged
ASPE and averaged number of selected variables from 20 replications. For both
data sets, all variable selection methods resulted in models with smaller size and
better predictions than the full model, which indicates that redundant variables
exist in both data sets. Among all variable selection methods, the spline SCADs
(SCAD1 and SCAD3) gave parsimonious models with the best prediction per-
formance.

Acknowledgements

We thank an associate editor and the reviewers for their constructive com-
ments that have greatly helped to improve the article.

Appendix

The necessary assumptions and lemmas for the following proofs are given
in the on-line supplement material available at http://www.stat.sinica.edu.
tw/statistica.

Proof of Theorem 1. The proof of the Theorem 1 is immediate. Note that
the definition of Φl

α0(α) depends on α, and α0 only through ‖α‖Kl
and ‖α0‖Kl

.
Thus it is equivalent to show that Φθ0(θ) ≥ pλn(θ) for any θ, θ0 > 0, where we
define Φθ0(θ) = pλn(θ0) + [p

′
λn

(θ0)(θ2 − θ2
0)]/(2θ0). This is proved in Proposition

3.1 of Hunter and Li (2005).

Proof of Theorem 2.
Let Mn,0 = {mn(x) =

∑s
l=1 gl(xl); gl ∈ ϕ0,n

l }, the approximation space
knowing αl0 = 0, for s + 1 ≤ l ≤ d. Let m̂∗

n,0 = argminmn,0∈Mn,0
‖Y − mn,0‖2

n

and m̂∗
n = argminmn∈Mn

‖Y − mn‖2
n, the best least square approximation of m0

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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in approximation spaces Mn,0, and Mn, respectively. Write m̂∗
n,0 =

∑s
l=1 α̂∗

l0.
Then for any g =

∑d
l=1 gl ∈ Mn, with ‖g − m0‖ = Cρn, using pλn(0) = 0 and

pλn(·) ≥ 0 one has

l(g) − l(m̂∗
n,0)

≥
(‖Y − g‖2

n − ‖Y − m̂∗
n,0‖2

n)
2

+
s∑

l=1

{
pλn(‖gl‖n) − pλn(‖α̂∗

l0‖n)
}

=
(‖m̂∗

n − g‖2
n − ‖m̂∗

n − m̂∗
n,0‖2

n)
2

+
s∑

l=1

{
pλn(‖gl‖n) − pλn(‖α̂∗

l0‖n)}. (A.1)

Let An = supφ∈Mn
|‖φ‖2

n/‖φ‖2 − 1|. For the first term in (A.1),

1
2

(
‖m̂∗

n − g‖2
n − ‖m̂∗

n − m̂∗
n,0‖2

n

)
≥ 1

2
‖m̂∗

n − g‖2(1 − An) − 1
2
‖m̂∗

n − m̂∗
n,0‖2(1 + An) = I + II,

in which, I = (‖m̂∗
n − g‖2 −‖m̂∗

n − m̂∗
n,0‖2)/2 and II = −[An(‖m̂∗

n − g‖2 + ‖m̂∗
n −

m̂∗
n,0‖2)]/2. By the triangle inequality,

2I ≥ ‖g−m0‖2 − 2‖g−m0‖‖m̂∗
n−m0‖ − ‖m̂∗

n,0−m0‖2 − 2‖m̂∗
n−m0‖‖m̂∗

n,0−m0‖
= C2ρ2

n − 2Cρn‖m̂∗
n−m0‖ − ‖m̂∗

n,0−m0‖2 − 2‖m̂∗
n−m0‖‖m̂∗

n,0−m0‖. (A.2)

By Lemma A.1, the last three terms in (A.2) are each of order Op(ρ2
n). Thus

by choosing a sufficient large C, the first term dominates in (A.2), uniformly
for g ∈ Mn with ‖g − m0‖ = Cρn. Furthermore, Lemma A.2 entails that

An = Op(
√

log2(n)/(nh)) = Op(1). Thus term II is also dominated by term
I. Now for the second term in (A.1), the triangle inequality gives, for each l,
‖αl0‖+ ‖αl0 − gl‖ ≥ ‖gl‖ ≥ ‖αl0‖−‖αl0 − gl‖, where ‖αl0 − gl‖ ≤ ‖m0 − g‖/c4 =
Cρn/c4 from Lemma A.3. Therefore, ‖αl0‖ + Cρn/c4 ≥ ‖gl‖ ≥ ‖αl0‖ − Cρn/c4.
Furthermore Lemma A.2 gives ‖gl‖n ≥ ‖gl‖(1−An). Noting that ρn, An, λn → 0,
as n → ∞, for n large enough, one has ‖gl‖ ≥ aλn, and ‖gl‖n ≥ aλn, for
each l = 1, . . . , s. Therefore, by the definition of pλn(·), one has pλn(‖gl‖n) =
pλn(‖gl‖) = (a + 1)λ2

n/2. Similar arguments also give, for each l = 1, . . . , s,
pλn(‖α̂∗

l0‖n) = pλn(‖α̂∗
l0‖) = (a+1)λ2

n/2. Thus
∑s

l=1{pλn(‖gl‖n)−pλn(‖α̂∗
l0‖n)} =

0.
Therefore when n is sufficiently large, for any ε > 0 there exists a sufficiently

large C such that, P{infg∈Mn‖g−m0‖=Cρn
l(g) > l(m̂∗

n,0)} ≤ 1 − ε. Hence there
exits a local maximizer m̂n ∈ Mn such that ‖m̂n − m0‖ = Op(ρn).

Proof of Theorem 3.
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Define Mn,1, a subspace of Mn, as Mn,1 = {mn(x) =
∑d

l=s+1 gl(xl); gl ∈
ϕ0,n

l }. It is sufficient to show that, for any gn,0 =
∑s

l=1 gl ∈ Mn,0 with ‖gn,0 −
m0‖ = Op(ρn), and any constant C, one has Λ(gn,0) = mingn,1∈Mn,1,‖gn,1‖≤Cρn

Λ(gn,0 + gn,1). Consequently, one needs to show that as narrow∞, uniformly
for all gn,0 =

∑s
l=1 gl ∈ Mn,0 with ‖gn,0 − m0‖ = Op(ρn), and for some small

εn = Cρn and gl ∈ ϕl
0,n, l = s+1, . . . , d, with probability tending to 1, Λ(gn,0) ≤

Λ(gn,0 + gl), 0 < ‖gl‖ < εn. Note that

Λ(gn,0) − Λ(gn,0 + gl)

=
1
2

(
‖m̂∗

n − gn,0‖2
n − ‖m̂∗

n − gn,0 − gl‖2
n

)
− pλn(‖gl‖n)

=
{

1
2

(
‖m̂∗

n − gn,0‖2 − ‖m̂∗
n − gn,0 − gl‖2

)
− pλn(‖gl‖)

}
{1 + op(1)}

≤
{

1
2
‖gl‖

(
‖m̂∗

n − gn,0‖ + ‖m̂∗
n − gn,0 − gl‖

)
− pλn(‖gl‖)

}
{1 + op(1)}

=
{

λn‖gl‖
(Rn

λn
−

p′λn
(w)

λn

)}
{1 + op(1)},

in which w is a value between 0 and ‖gl‖, and Rn ≡ (‖m̂∗
n − gn,0‖+ ‖m̂∗

n − gn,0 −
gl‖)/2 = Op(ρn), by arguments similar to those in the proof of Theorem 2. This
completes the proof, observing that lim infn→∞ lim infwarrow0+ p′λn

(w)/λn = 1 >

0, and Rn/λn = op(1).
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