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This note contains proofs for Proposition 1 and Theorems 1 and 2.

Proof of Proposition 1. Model A implies model B because, with δ(Xi, Ri) ≡
E(Wi − Zi|Xi, Ri),

E (Yi0|Xi, Ri) = E {Yi − γ(Si;ψ
∗)Zi|Xi, Ri}

= E [Yi − γ(Si;ψ
∗) {Wi − δ(Xi, Ri)} |Xi, Ri]

by (A3) and (A5), and because E (Yi0|Xi, Ri) = E (Yi0|Xi) by (A1). Note that

this does not require assumptions about the conditional association between Yi

and Wi, given Zi, suggesting that this continues to hold when measurement error

is differential.

To show that (6) is the only restriction (other than (5)) imposed on the

observed data law, we proceed as in Robins and Rotnitzky (2004) by exhibiting

for any observed data law satisfying (5) and (6), a joint law of the full data

(Y, {Yrz,∀r, z}, Z,W,R,X) satisfying the restrictions of model A, where Yrz is

the potential outcome that would have been observed for given subject following

exposure to (R,Z) = (r, z), all other experimental conditions being the same

as in the considered study. Given (R = r, Z = z,W = w,X = x, Y = y), we

define Yrz = y to satisfy (A2). We set f(Z|R = r,W = w,X = x, Y = y)

equal to an arbitrary density with conditional mean w − δ to satisfy (A5). We

define f(Yr0|R = r, Z = z,W = w,X = x, Y = y) to be an arbitrary density

with conditional mean y − γ(x, r;ψ∗)z. In addition, given (R = r, Z = z,W =

w,X = x, Y = y), we set Yr0 = Yr′0 ≡ Y0 for each r′ to satisfy (A1). By (6), the

conditional distribution of Y0 then also satisfies E(Y0|X = x, R) = E(Y0|X = x)
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for each x. Remaining features of the full data density can be chosen arbitrarily.

Proof of Theorem 1. Let for simplicity of exposition and motivated by the data

analysis, γ(Xi;ψ) = ψ,Zi = ZiRi and E(Wi − Zi|Xi, Ri) = δ∗Ri. Define Uiδ =

dδ(Ri,Xi) [Yi − ψ(Wi − δ)Ri − q(Xi)] and Uiψ = dψ(Ri,Xi) [Yi − ψ(Wi − δ)Ri

−q(Xi)] the estimating functions for δ∗ and ψ∗, respectively. Under weak regu-

larity conditions as stated for general M-estimators in van der Vaart (1998, p.48,

60), Taylor expansions show that

0 =
1√
n

n
∑

i=1

Uiδ + E

(

∂Uδ
∂ψ

)√
n(ψ̂ − ψ∗) + E

(

∂Uδ
∂δ

)√
n(δ̂ − δ∗)

+
1

2
E

(

∂2Uδ
∂ψ∂δ

)

√
n(ψ̂ − ψ∗)(δ̂ − δ∗) + op(1) (1)

from which

√
n(δ̂ − δ∗)

ψ̂ + ψ∗

2
= op(1) − E−1 {dδ(R,X)R}

×
[

1√
n

n
∑
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Uiδ − E {dδ(R,X)(W − δ∗)R}
√
n(ψ̂ − ψ∗)

]

Plugging this into a first order Taylor expansion of Uiψ, shows that

√
n(ψ̂ − ψ∗) = − [E {dψ(R,X)(W − δ∗)R}

−E {dψ(R,X)R}
E {dδ(R,X)R}E {dδ(R,X)(W − δ)R}

]−1

×
[

1√
n

n
∑

i=1

Uiψ − E {dψ(R,X)R}
E {dδ(R,X)R}Uiδ

]

+ op(1)

Standard application of the Central Limit Theorem and Slutsky’s Theorem now

shows that
√
n(ψ̂ − ψ∗) = Op(1) and that Part 1 of Theorem 1 holds.

Note that the last 3 terms in expression (1) of these Supplementary Materials

can be replaced with E {dδ(R,X)R}
{

ψ∗ +Op(n
−1/2)

}√
n(δ̂ − δ), from which

√
n(δ̂ − δ)ψ∗ =

√
n(δ̂ − δ)(ψ̂ + ψ∗) {1/2 + op(1)} equals

−
[

E {dδ(R,X)R} − E {dδ(R,X)(W − δ∗)R}
E {dψ(R,X)(W − δ∗)R}E {dψ(R,X)R}

]

−1

×
[

1√
n

n
∑

i=1

Uiδ −
E {dδ(R,X)(W − δ∗)R}
E {dψ(R,X)(W − δ∗)R}Uiψ

]

+ op(1)
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The latter expression is bounded in probability (under standard regularity con-

ditions). It follows that, as ψ∗ goes to zero with increasing sample size, δ̂ does

not converge to δ∗ at root-n rate and hence is not uniformly root-n consistent. In

particular, there is no root-n consistent estimator of δ∗ under model A at ψ∗ = 0,

which proves Part 2 of Theorem 1. This is also seen by noting that the expected

derivative of the efficient estimating function for (ψ, δ) w.r.t. δ is zero at ψ = 0.

Part 3 of Theorem 1 is immediate from Robins (1994).

Proof of Theorem 2. Let for simplicity of exposition, but without loss of gen-

erality, γ(Xi;ψ) = ψ,Zi = ZiRi and E(Wi − Zi|Xi, Ri) = δ∗Ri. Then standard

asymptotic theory for M-estimators (van der Vaart, 1998) and Taylor expansions

of the estimating functions (9) for ψ∗ w.r.t. δ̂(ψ) shows that (9) equals

1√
n

n
∑

i=1

P{δ̂(ψ) ∈ ∆}Uiψ(ψ, δ) + P{δ̂(ψ) /∈ ∆}Uiψ(ψ, 0) + op(1)

−
[

P{δ̂(ψ) ∈ ∆} +

{

ϕ
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)

− ϕ

(
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√
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)}
√
n|ψ|δ
σ(ψ)

]

×E {dψ(R, T )R}
E {dδ(R, T )R}Uiδ(ψ, δ) (2)

That the remainder term converges to zero in probability for any fixed ψ can be

seen because, for some δ̃ on the open line segment between δ̂(ψ) and δ∗ (under

regularity conditions which include uniform convergence of n−1
∑n
i=1 Uiψ(ψ, δ)

w.r.t. δ), the remainder term equals

[

Pδ=δ̃{δ̂(ψ) ∈ ∆}E
{

∂2

∂δ2
Uiψ(ψ, δ̃)

}

+ 2
∂

∂δ
Pδ=δ̃{δ̂(ψ) ∈ ∆}E
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∂
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}

+
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{
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}

] √
n

2
{δ̂(ψ) − δ∗}2 + op(1)

Here, E
{

∂2Uiψ(ψ, δ̃)/∂δ2
}

= 0. Because E
{

∂Uiψ(ψ, δ̃)/∂δ
}

= Op(1)ψ under

standard regularity conditions and
√
n{δ̂(ψ)−δ∗}2 = Op(1)n−1/2ψ−2, the second

term is

Op(1)
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∆l − δ̃
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− ϕ
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√
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1

σ(ψ)
= op(1)
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for any fixed ψ. Because E
{

Ui0(ψ) − Uiψ(ψ, δ̃)
}

= Op(1)δ̃ψ, the third term is
{

ϕ

(

∆l − δ̃

σ(ψ)/(
√
n|ψ|)

)

− ϕ

(

∆u − δ̃

σ(ψ)/(
√
n|ψ|)

)}

n|ψ|ψδ̃
σ(ψ)3

(∆l − ∆u) = op(1)

for any fixed ψ because xaϕ(x) → 0 as x→ ∞ for arbitrary a > 0.

Because the estimating functions in expression (2) of the Supplementary

Materials have mean and variance depending on the sample size, the trian-

gular array Central Limit Theorem (Serfling, 1980, p.31) is needed to derive

the asymptotic distribution of (9) for fixed ψ. Application of this Theorem

shows that for arbitrary fixed ψ, the estimating functions in (9) are asymptot-

ically normally distributed under the weak regularity condition that the stan-

dard deviation of the estimating functions Ũi(ψ), as defined by expression (2) of

these Supplementary Materials, is bounded (i.e. O(1)) and that asymptotically

E‖Ũi(ψ)−E{Ũi(ψ)}‖k = o(nk/2−1) for each k. Because for any fixed ψ∗ 6= 0 and

δ∗ ∈ ∆ =]∆l,∆u[, P{δ̂(ψ∗) ∈ ∆} converges to 1, it follows under these conditions

that n−1/2∑n
i=1 Ũi(ψ

∗) will be asymptotically normally distributed with mean

zero and finite variance, which is given by the variance of expression (2) of the

Supplementary Materials. Within faster than root-n shrinking neighbourhoods

of zero (i.e. if ψ∗ = kn−a for some constant k and a > 1/2), the remainder term

in the Taylor series expansion is still op(1). Further, P{δ̂(ψ∗) ∈ ∆} converges

to 0 and U0(ψ
∗) has mean converging to zero at 1 over na-rate. It then again

follows that n−1/2∑n
i=1 Ũi(ψ

∗) is asymptotically normally distributed with mean

zero and finite variance. Finally, within 1 over root-n shrinking neighbourhoods

of zero (i.e. if ψ∗ = kn−1/2 for some constant k), the remainder term in the

Taylor series expansion is bounded in probability, but not op(1). The significant

contribution of the squared term
√
n{δ̂(ψ∗)−δ∗}2 implies that n−1/2∑n

i=1 Ũi(ψ
∗)

may not converge to a normal distribution, nor to a mean zero distribution along

such sequences. The implications of this will be discussed in the next paragraph.

The asymptotic distribution of ψ̃ (rather than root-n times the sample av-

erage of its estimating function) is now immediate via a further Taylor series

expansion of the estimating functions (w.r.t. ψ), evaluated at ψ̃. This shows

that for any fixed ψ

0 =
1√
n

n
∑

i=1

P{δ̂(ψ) ∈ ∆}Uiψ(ψ, δ) + P{δ̂(ψ) /∈ ∆}Uiψ(ψ, 0) + op(1)
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−
[
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−
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ϕ
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√
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)√
n(ψ̃ − ψ)

That the remainder term converges to zero in probability for any fixed ψ can be

seen using a similar derivation as before. We conclude that, up to an op(1) term

and for fixed ψ,
√
n(ψ̃ − ψ) is a linear transformation of n−1/2∑n

i=1 Ũi(ψ) and

thus shares its asymptotic properties. Specifically, within faster and slower than 1

over root-n shrinking neighbourhoods of zero (and in particular at arbitrary fixed

ψ),
√
n(ψ̃ − ψ) is asymptotically normally distributed with mean zero and finite

variance under weak regularity conditions. Within 1 over root-n neighbourhoods

of zero,
√
n(ψ̃ − ψ) may be asymptotically biased and not normally distributed.


