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Abstract: Instrumental variables (IV) estimators are well established in a broad

range of fields to correct for measurement error on exposure. In a distinct promi-

nent stream of research, IV’s are becoming increasingly popular for estimating

causal effects of exposure on outcome since they allow for unmeasured confounders

which are hard to avoid. Because many causal questions emerge from data which

suffer severe measurement error problems, we combine both IV approaches in this

article to correct IV-based causal effect estimators in linear (structural mean) mod-

els for possibly systematic measurement error on the exposure. The estimators rely

on the presence of a baseline measurement that is associated with the observed

exposure and known not to modify the target effect. Simulation studies and the

analysis of a small blood pressure reduction trial (n = 105) with treatment non-

compliance confirm the adequate performance of our estimators in finite samples.

Our results also demonstrate that incorporating limited prior knowledge about a

weakly identified parameter (such as the error mean) in a frequentist analysis can

yield substantial improvements.
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1. Introduction

Instrumental variables (IV) methods have a long tradition in economics and
econometrics, where they are used in connection with structural equation models.
They have more recently entered the medical, epidemiological, and biostatisti-
cal literature (for reviews, see e.g., Greenland (2000), and Martens, Pestman,
de Boer, Belitser and Klungel (2006)). To estimate the average causal effect of
an exposure on an outcome in the presence of unmeasured confounders, these
methods rely on so-called IV’s. These are variables which (i) are associated
with the exposure; (ii) have no direct effect on the outcome; and (iii) do not
share common causes with the outcome (Hernán and Robins (2006)). IV’s arise
naturally in double-blind randomized trials with treatment noncompliance be-
cause randomization (i.e., the instrument) is associated with received treatment
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(i.e., exposure), often does not affect the outcome other than through received
treatment, and shares no common causes with the outcome by virtue of random-
ization. They are hence frequently used to adjust for treatment noncompliance
in randomized experiments (see e.g., Goetghebeur and Vansteelandt (2005), for
a review) and for the analysis of randomized encouragement designs (Ten Have,
Elliott, Joffe, Zanutto and Datto (2004)). At the same time, they are becom-
ing increasingly popular in observational settings where the conditions for an IV
are harder to justify. In genetics, for instance, the random assortment of genes
transferred from parents to offspring - called ‘Mendelian randomization’ - resem-
bles the use of randomization in experiments, and is therefore a natural IV for
estimating the effect of genetically affected exposures on a given trait (Didelez
and Sheehan (2007), and Lawlor, Harbord, Sterne, Timpson and Smith (2008)).
Casas, Bautista, Smeeth, Sharma and Hingorani (2005) use this idea to assess the
influence of plasma homocysteine level on the risk of stroke with homozygosity
at a specific allele as an IV. In most observational studies no real or natural ran-
domization is present, in which case the availability of an IV must be assessed on
theoretical grounds. For instance, Leigh and Schembri (2004) use the cigarette
price per region as an IV to estimate the effect of smoking on health, assuming
that the price of cigarettes may only impact health by mediating exposure to
cigarette smoke.

With the increasing popularity of IV methods in causal inference comes the
growing concern for their performance under common complications, such as mis-
classification or measurement error on exposure. In the context of noncompliance
adjustment in clinical trials (Dunn (1999), and Goetghebeur and Vansteelandt
(2005)) for instance, simple measures of compliance with drug therapy, such as
pill counts, are notorious for overestimating the amount of drug actually taken
(Urquhart and De Klerk (1998)). HIV prevention studies tend to rely on self
reported measures of sexual activity and accompanying preventive action, in-
cluding use of condoms or microbicide gels, which are subject to ‘pleasing bias’
(Van Damme et al. (2002)). Many other exposure measures are popular even
though they are bias prone.

Random measurement error on exposure is not alarming for IV estimators in
linear (structural mean) models (Goetghebeur and Vansteelandt (2005)). These
estimators continue to be asymptotically unbiased when random measurement
error is ignored, with at most a slight loss of efficiency. When measurement error
is systematic, tests of the causal null hypothesis of no effect remain valid, but
effect estimates may become biased. Because systematic error is a real concern in
many practical settings (e.g., overreporting of drug compliance, underreporting
of alcohol use, . . .), our goal in this article is to investigate how IV estimators
for the parameters in linear (structural mean) models may be adjusted for sys-
tematic measurement error. Goetghebeur and Vansteelandt (2005) show how
this can be done when the average size of the error is known. This allows for



CORRECTING IV-ESTIMATORS FOR MEASUREMENT ERROR 1225

sensitivity analyses, but leaves open the question of how to estimate the average
size of the measurement error and subsequently correct for it. Because of iden-
tifiability problems, the latter can only be realized when extraneous information
is available. One common source of information is an IV for the measurement
error (Buzas and Stefanski (1996), Carroll, Ruppert, Crainiceanu, Tosteson and
Karagas (2004) and Carroll, Ruppert, Stefanski and Crainiceanu (2006)). In
contrast to the original IV used for confounder adjustment, we define this to
be a (pre-exposure) surrogate for the observed exposure (in the sense that it is
correlated with exposure), which is assumed not to modify the exposure effect
of interest. The general interest in such variables stems from the fact that we
can identify settings where such variables exist (see later) and that other sources
of information on the measurement error, such as repeated measurements or
validation samples, are typically not available in large classes of problems (e.g.,
noncompliance adjustment).

In the next section, we build on ideas from linear regression models with
error in the covariates (Carroll et al. (2006)) to show how an IV for the measure-
ment error can help correct IV-based causal effect estimators for systematic error
under linear structural mean models (Goetghebeur and Lapp (1997), and Robins
(1994)). In Section 2.3, we diagnose poor performance of the error-adjusted esti-
mator in small to moderate sample sizes as compared to the standard estimator
which ignores measurement error. We show in Section 3 that this is due to the
average magnitude of the error being weakly identified at causal effects close
to zero. In Section 3, we accommodate this by imposing liberal bounds on the
magnitude of the average error. This leads to reliable estimators for the causal
effect of observed exposure with good performance in finite samples. The latter
is confirmed through the analysis of a placebo-controlled hypertension trial in
Section 4, and through simulation studies in Section 5. Our results reveal how
the incorporation of prior information (in the form of bounds on weakly identified
nuisance parameters) in a frequentist analysis can recover considerable precision
for the target parameter.

2. Adjusting for Measurement Error

2.1. Assumptions

We consider data on a scalar exposure Zi, a scalar outcome Yi, and possibly
a vector of baseline (i.e., pre-exposure) covariates Xi drawn from independent
subjects i = 1, . . . , n, to study the average effect of exposure Zi on outcome Yi.
We define this effect as an expected contrast

E(Yi − Yi0|Zi,Xi), (2.1)

between observed outcomes Yi and potential exposure-free outcomes Yi0 (Rubin
(1978)). The latter indicates a reference response which would have been mea-
sured for subject i if all conditions had been the same as in the current study, but
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no exposure had been received; that is, if the assigned experimental treatment
contained no active dose. Because true exposure Zi is imprecisely measured, the
observed exposure level Wi for subject i may differ from the actual exposure level
Zi, which is unobserved.

Since Yi0 and Zi are not generally observed, identification of the causal effect
(2.1) requires assumptions.

Assumption A1 (Causal IV assumption). Ri is a causal instrumental vari-
able (IV−C) for inferring the causal effect of Zi on Yi; that is, Ri is conditionally
dependent on Zi, given Xi, and satisfies the following:

1. Exclusion restriction (Angrist, Imbens and Rubin (1996)): Ri has no direct
effect on the outcome (only an indirect effect via the exposure is possible).
That is, with Yi0r the potential outcome that we would have observed for
subject i if (Ri, Zi) were set to (r, 0), we assume that Yi0r = Yi0 for all values
of r in the support of Ri.

2. Randomization assumption: within strata of baseline covariates Xi, E(Yi0|Xi,
Ri) = E(Yi0|Xi).

In double-blind randomized trials of an asymptomatic disease, one expects these
assumptions to hold for randomization Ri since patients and physicians are un-
aware of the assigned treatment (Robins (1994)).

Assumption A2 (Consistency assumption). To link exposure-free outcomes
to observed outcomes, Yi = Yi0 for subjects with Zi = 0.

Assumption A3 (Model assumption). The expected causal effect (2.1) fol-
lows the linear structural mean model (Robins (1994), and Goetghebeur and
Lapp (1997))

E(Yi − Yi0|Zi,Xi, Ri) = γ(Xi; ψ∗)Zi, (2.2)

where γ(Xi;ψ) is a known function smooth in ψ, satisfying γ(Xi;0) = 0, and
where ψ∗ is an unknown finite-dimensional parameter.

For instance, in placebo-controlled randomized experiments with Ri = 1 for
subjects randomized to the experimental arm and Ri = 0 for placebo control,
and with Zi denoting exposure to the experimental treatment, we may choose

E(Yi − Yi0|Zi,Xi, Ri) = ψ∗Zi. (2.3)

Here, ψ∗ expresses the expected change in outcome when those exposed to Zi = 1
would have their exposure set to zero. When treatment effects are potentially
modified by pre-treatment covariates, one may add covariate-exposure interac-
tions, as in

E(Yi − Yi0|Zi,Xi, Ri) = (ψ∗
1 + ψ∗′

2 Xi)Zi.
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Here, ψ∗
2 defines the change in the average effect of unit exposure per unit increase

in Xi.
Note that we restrict our development to models (2.2) which postulate the

causal effect to be linear in the exposure. This is a standard restriction in the
literature on IV-estimation and on two-stage-least-squares estimation of causal
effects (Hernán and Robins (2006)) because linear structural mean models with
nonlinear exposure effects suffer from identification problems, even in the ab-
sence of measurement error (Vansteelandt and Goetghebeur (2005)). For similar
reasons, no effect modification by the IV-C is allowed. Note, however, that the
linear model can be seen as a first order approximation and that model (2.2)
will therefore often give a reasonable approximation, even for nonlinear causal
effects.

Assumption A4 (Measurement error IV assumption). Given the difficulty
in obtaining information about measurement error characteristics, we introduce
an instrumental variable for the measurement error (IV−M). In contrast to an
IV-C which satisfies Assumption A1, we define this to be a surrogate Ti ⊆ Xi

for the observed exposure (in the sense that is it is conditionally associated with
Wi, given (Si, Ri), where Si is such that Xi ≡ (Si,Ti)), which is measured prior
to exposure and is such that it does not modify the causal effect of received
exposure on the outcome, i.e., such that

E(Yi − Yi0|Zi,Xi, Ri) = E(Yi − Yi0|Zi,Si, Ri). (2.4)

We thus assume that γ(Xi; ψ) in (2.2) does not involve Ti. With a slight abuse
of notation, we denote it by γ(Si;ψ). Importantly, note that the IV-M Ti differs
from and satisfies different assumptions than the IV-C Ri, which satisfies As-
sumption A1. The former IV will be used to correct for systematic measurement
error, the latter to infer a causal effect of Z on Y .

The use of a no-interaction assumption such as (2.4) is increasingly common
in causal inference, in particular in the context of IV-estimation. For instance,
Ten Have, Joffe, Lynch, Brown, Maisto and Beck (2007), Joffe, Small and Hsu
(2007), and Albert (2008) use similar no-interaction assumptions to infer direct
causal effects. Vansteelandt and Goetghebeur (2004), and Fischer and Goetghe-
beur (2004) rely on no-interaction assumptions for assessing effect modification
by treatment-free responses. In this study, the interest in Assumption A4 is mo-
tivated by the fact that other sources of information on the measurement error,
such as repeated measurements or validation samples, are typically not available
in large classes of problems (e.g., noncompliance adjustment), and by the fact
that we can identify settings where the assumption is reasonable. For instance,
in randomized clinical trials, one source of an IV for the measurement error on
treatment noncompliance would be a measurement of placebo compliance during
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a run-in period of the study. Indeed, run-in placebo compliance is associated with
treatment compliance and likely not further related to the treatment effect, given
the actual compliance during the active study period (unless in the presence of
side effects, where large differences between treatment and placebo compliance
may be suggestive of side effects and thus of treatment activity). More generally,
one can use a second causal IV as an IV for the measurement error. Indeed, an
IV-C is associated with the considered exposure by Assumption A1, and does
not modify the target causal effect by Assumption A3. It thus satisfies the con-
ditions for an IV-M. The use of multiple IV-C’s turns out feasible in practice as
it is commonly considered in econometrics and, more recently, also in Mendelian
randomization studies (Didelez and Sheehan (2007)). For instance, to assess the
effect of C-reactive protein on insulin resistance, one may use the CRP-gene as an
IV-C and the interleukin-6 gene - which is known to be associated with C-reactive
protein through other pathways than the CRP-gene and which thus applies as a
second IV-C - as an IV-M. Note furthermore that the restrictions for an IV-M are
much weaker than those for an IV-C as an IV-M need not satisfy the exclusion
restriction, nor the randomization assumption (see Assumption A1). Note also
that (2.4) is weaker than the typical IV-assumption encountered in measurement
error models (Carroll et al. (2006)) as it does allow for the IV to be associated
with the outcome, conditional on the exposure.

Assumption A5 (Constant average measurement error). For simplicity
and because information about the average error is weak, we develop our ap-
proach below for constant (but unknown) average error E(Wi −Zi|Xi, Ri) = δ∗.
This assumption is standard in the measurement error literature, but is straight-
forwardly relaxed (e.g., by postulating E(Wi − Zi|Xi, Ri) = δ∗0 + δ∗

′
1 Xi).

2.2. Inference

Our goal is to estimate the parameter ψ∗ indexing (2.2) under model A,
which is the model for the observed data (Yi,Wi, Ri,Xi) defined by assumptions
A1−A5 with the conditional density

f(Ri|Xi) known. (2.5)

The latter assumption holds in a randomized trial when Ri indicates random-
ized assignment, because treatment allocation is then under the control of the
investigator. If (2.5) fails, then all further results remain valid upon replacing
f(Ri|Xi) with a consistent estimator.

It will follow from our Proposition 1 (whose proof is given in the Supple-
mentary Materials on http://www.stat.sinica.edu.tw/statistica) that the
average measurement error δ∗ is all that must be known for identifying ψ∗ under
model A.

http://www.stat.sinica.edu.tw/statistica
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Proposition 1. Model A is the same model for the observed data as the condi-
tional mean independence model B for the observed data model, defined by (2.5)
and

E
[
Yi − γ(Si;ψ∗)(Wi − δ∗)|Xi, Ri

]
= E

[
Yi − γ(Si;ψ∗)(Wi − δ∗)|Xi

]
. (2.6)

Note the essential difference between models A and B. Model A is expressed
in terms of counterfactuals and therefore has parameters with a causal interpre-
tation. Model B imposes the same restrictions on the observed data as model A,
but is not expressed in terms of counterfactuals. This makes the parameters in
this model harder to interpret, but simplifies inference as the model is expressed
in terms of observed data only. Note also that model A imposes only weak re-
strictions on the error distribution. First, it allows the error to be associated
with both the true exposure Zi and observed exposure Wi. It thus encompasses
both the classical and Berkson error model (Carroll et al. (2006)). In addition,
by avoiding assumptions about the conditional association between Wi and Yi

given Zi, it allows for so-called differential error, which is associated with out-
come conditional on exposure (see the proof of Proposition 1 for a more explicit
argument). This can be important. For instance, in a clinical trial, patients
may be more reluctant to ‘confess’ to noncompliance when their outcome stayed
below target. Finally, model A makes no assumptions on the measurement error
distribution other than Assumption 5. This is useful because the error distribu-
tion can be quite complex. For instance, with low level exposures, negative errors
become constrained by the fact that negative exposures are never reported.

By Proposition 1 and the fact that ψ∗ is the same functional of the observed
data under models A and B, inference for ψ∗ is the same under both models. It
follows that the set of all consistent and asymptotically normal (CAN) estimators
for ψ∗ is the same under models A and B, where the latter can be obtained as
in Robins (1994) by solving the mean independence estimating equations

n∑
i=1

d(Ri,Xi)
[
Yi − γ(Si; ψ)(Wi − δ) − q(Xi)

]
= 0 (2.7)

jointly for θ = (ψ′, δ)′, with d(Ri,Xi) = g(Ri,Xi) − E{g(Ri,Xi)|Xi} and with
g(Ri,Xi) and q(Xi) arbitrary (non-trivial) index functions of the dimension of
θ. Note that (2.7) is designed to make the predicted exposure-free outcomes
Yi−γ(Si;ψ)(Wi−δ) mean independent of Ri, conditional on Xi, in order to satisfy
Assumption A1. The index functions g(Ri,Xi) and q(Xi) can be arbitrarily
chosen without affecting the consistency of the resulting estimators of ψ∗. In
particular, they can be chosen in view of efficiency. Under the homoscedasticity
assumption that the conditional variance of Yi−γ(Xi; ψ)(Wi−δ), given (Ri,Xi),
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is constant, semi-parametric efficiency (Robins (1994)) is for instance obtained
by setting q(Xi) equal to

qopt(Xi) = E
{

Yi − γ(Si; ψ)(Wi − δ)|Xi, Ri

}
and d(Ri,Xi) equal to dopt(Ri,Xi) = gopt(Ri,Xi) − E{gopt(Ri,Xi)|Xi}, with

gopt(Ri,Xi) = E

{
∂γ(Si; ψ)(Wi − δ)

∂θ

∣∣∣Xi, Ri

}
.

These choices will be used later in the data analysis and simulation study.

Theorem 1.
1. Under weak regularity conditions, the solution ψ̂(d, q) to (2.7) satisfies√

n(ψ̂(d, q) − ψ∗) → N(0, Γ(d, q)) in distribution, where

Γ(d, q)=E−1

{
∂Ui(d, q; ψ∗)

∂ψ

}
Var {Ui(d, q; ψ∗)}E−1′

{
∂Ui(d, q;ψ∗)

∂ψ

}
, (2.8)

with d(Ri,Xi) = (dψ(Ri,Xi), dδ(Ri,Xi)) and

Ui(d, q;ψ) =
[
dψ(Ri,Xi) −

E{dψ(Ri,Xi)γ(Si; ψ)}
E{dδ(Ri,Xi)γ(Si; ψ)}

dδ(Ri,Xi)
]

×
[
Yi − γ(Si; ψ)(Wi − δ) − q(Xi)

]
.

2. The average error δ∗ is not root-n estimable at ψ∗ = 0.
3. For arbitrary (d, q), Γ(dopt, qopt) ≤ Γ(d, q) where A ≤ B is defined as A − B

being semi-positive definite.

Part 1 of Theorem 1 (whose proof is given in the Supplementary Materials)
confirms that the solution ψ̂(d, q) to (2.7) is a root-n CAN estimator of ψ∗. This
is even so at ψ∗ = 0 where δ∗ is not root-n estimable. Theorem 1 also shows how
to calculate the efficient score Ui(dopt, qopt; ψ) for ψ∗ in model A. For example,
in Section 4, we consider the analysis of a placebo-controlled randomized trial
with Zi denoting compliance to the experimental treatment. Because the placebo
arm (Ri = 0) is unexposed, Zi = ZiRi and there is no measurement error in that
arm so that we modify Assumption A5 to E(Wi −Zi|Xi, Ri) = δ∗Ri. With Xi =
Ti, γ(Si; ψ) = ψ and, assuming homoscedasticity and constant randomization
probabilities π = P (Ri = 1) = P (Ri = 1|Xi), the semi-parametric efficient score
for ψ∗ is

(Ri−π)
[
E(Wi|Ri = 1,Xi)−E{E(Wi|Ri = 1,Xi)}

]{
Yi−ψ(Wi−δ)Ri−qopt(Xi)

}
.

This score differs from the efficient score in the absence of biased measure-
ment error (i.e., assuming that δ∗ = 0) in that it carries the additional term
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E{E(Wi|Ri = 1,Xi)}, which corrects for estimation of the error mean. This
term reduces the variance of the estimating functions and, as such, encodes effi-
ciency loss. Specifically, note that the efficient score becomes 0 when the IV-M,
T , is uncorrelated with the observed exposure, and hence that ψ∗ is not root-n
estimable in that case. By the same token, instruments for the measurement er-
ror that are weakly correlated with observed exposure may yield unstable effect
estimates.

2.3. Bias-variance trade-off

The anticipated loss of efficiency of the error-adjusted estimator raises the
question of whether the bias correction developed so far is useful. To this end,
we investigate the bias-variance trade-off for the error-adjusted and the stan-
dard unadjusted estimator for the causal effect ψ∗, in a specific case. Tractable
expressions for the mean-squared error of both estimators, are obtained when
Z ∼ N(µz, σ

2
z), T |Z ∼ N(ν0 + ν1Z, σ2

t|z), Y0|Z, T ∼ N(α0 + α1Z + α2T, σ2
0) and

Y = Y0 + (ψ + ε)RZ with ε|Y0, Z, T ∼ N(0, σ2).
Under the working assumption of no systematic measurement error (i.e.,

fixing δ∗ = 0 in equation (2.7) and not estimating it), the efficient score for ψ∗

is Uu(ψ) = (0.5 − R)E(W |T,R = 1){Y − ψRW − E(Y |R = 0, T )} in model
A with Xi = Ti under the above data-generating mechanism. It follows after
some algebra that the solution ψ̂u to

∑n
i=1 Uui(ψ) = 0 has bias which can be

approximated with

E−1

(
∂Uu(ψ)

∂ψ

)
E{Uu(ψ)} =

ψδ(µz + δ)
σ2

z − σ2
z|t + (µz + δ)2

,

where σ2
z|t = σ2

zσ
2
t|z/(ν2

1σ2
z + σ2

t|z) is the conditional variance of Z given T , and
asymptotic variance given by

1
n

[
4σ2

0 + 4α2
1σ

2
z|t + 2ψ2σ2

u + ψ2δ2

σ2
z − σ2

z|t + (µz + δ)2
+

ψ2δ2(σ2
z − σ2

z|t)

{σ2
z − σ2

z|t + (µz + δ)2}2

]
.

Allowing for systematic measurement error, the efficient estimator ψ̂c for ψ∗

under model A has no asymptotic bias and asymptotic variance

1
n

σ2
0 + α2

1σ
2
z|t + 0.5ψ2σ2

u

0.52(σ2
z − σ2

z|t)
.

Note that the bias of the unadjusted estimator and the asymptotic variance of
both estimators is inversely proportional to the multiple correlation coefficient for
the regression of Z on T . The variance of the error-adjusted estimator becomes
infinite when Z and T are uncorrelated.



1232 STIJN VANSTEELANDT, MANOOCHEHR BABANEZHAD AND ELS GOETGHEBEUR

Figure 1. Curves indicating the tuples (R, δ) where the standard SMM
estimator and the error-adjusted instrumental variable estimator have the
same mean squared error, for R equalling the correlation between Z and
T , for different sample sizes n = 105, 1, 000 and 5,000 and with µz = 0.85,
σ2

z = 0.11, ν0 = 0.75, ν1 = 0.12, σ2
t|z = 0.012, α0 = −4.4, α1 = 6.8,

α2 = −13.7, σ2
0 = 53.2, σ2

u = 0, ψ = −7.5 and σ2 = 0. Left: for R from 0 to
1; Right: for R from 0.5 to 1.

Figure 1 shows the range of values δ for the average error under which the
standard estimator, which ignores measurement error, has smaller mean squared
error than the error-adjusted estimator. This is displayed as a function of the
sample size and the correlation between Z and T . Specifically, the values of
δ between the solid lines indicate data-generating mechanisms under which the
standard estimator outperforms the error-adjusted estimator in terms of mean
squared error. The figure was constructed using parameter values which are
reflective of the hypertension study that we analyze in Section 4. It shows that at
small sample sizes (n = 105), correction for systematic measurement error leads
to smaller mean squared error, but only when the systematic error component is
substantial (i.e., of about the size of the average exposure µz) and, at the same
time, the IV-M, T , is strongly correlated with Z. Figure 1 indicates further that
bias correction using the error-adjusted estimator is only helpful at moderate
degrees of error and moderate correlations between T and Z when sample sizes
are very large.
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3. Incorporating Prior Information

The previous results demonstrate the poor performance of the error-adjusted
estimator, even in settings where the sample size is moderate and good (pre-
exposure) predictors of exposure are available. In particular, tests of the causal
null hypothesis can lose substantial power by using this approach rather than the
standard test of the causal null (i.e., that R and Y are conditionally independent,
given Xi), which is immune to measurement error on the exposure (Goetghebeur
and Vansteelandt (2005)). This is surprising, considering that the score test
of ψ∗ = 0 under model A does not involve δ∗ and, hence, does not need to
correct for measurement error when testing the causal null hypothesis. Curiously,
it follows that one can validly and efficiently test the causal null hypothesis
without correction for measurement error, but that a score test of ψ∗ = ψ0

with ψ0 arbitrarily close to (but different from) 0, would require correcting for
measurement error and hence could imply a serious and sudden loss of power.

The root cause of this apparent discontinuity is the fact that, as shown in
Part 2 of Theorem 1, δ∗ is not root-n estimable at ψ∗ = 0, so that estimation of δ∗

affects the distribution of the score test statistic even though it gets multiplied by
ψ∗ = 0 in the test statistic (i.e., even at the causal null hypothesis). In particular,
it follows from the proof of Theorem 1 that

√
n{δ̂(d, q)− δ∗}ψ∗, with δ̂(d, q) the

solution for δ to (2.7), is bounded in probability with strictly positive variance for
each value of ψ∗, suggesting that δ̂(d, q)ψ∗ varies around 0, even when ψ∗ = 0.
This happens with decreasing variance as the sample size increases.

Similar problems of inestimability at a local point in the parameter space
have been noted in other measurement error problems (Gustafson (2005)). More
general problems of inferring a parameter ψ∗ when a nuisance parameter δ∗

disappears under the null (ψ∗ = 0) have been discussed mainly in the economet-
rics literature (Davies (1977, 1987), Hansen (1992), and Andrews and Ploberger
(1994)). To the best of our knowledge, attention has only been given to test-
ing problems in which the test statistic involves a nuisance parameter which is
unidentified at the null. Some of these approaches assume that the nuisance
parameter lies within a known open set, and base inference on the supremum of
a score or likelihood ratio test statistic taken over all values of the nuisance pa-
rameters in the chosen set (Davies (1977, 1987)). Andrews and Ploberger (1994)
postulate a prior distribution for the nuisance parameter and base inference on
the average of a score or likelihood ratio test statistic over the chosen prior dis-
tribution. Our problem is different in that our main focus is on estimation rather
than testing, and that a score test for the causal null hypothesis does not involve
the nuisance parameter. Nonetheless, inspired by the work of Davies (1977, 1987)
and by sensitivity analyses for IV-estimators with measurement error (Goetghe-
beur and Vansteelandt (2005)), we proceed by considering estimation under the
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assumption that the average error δ∗ lies within a known open set ∆. This strat-
egy is further motivated by the fact that (a) subject-matter experts often have a
good sense of the extent of expected mismeasurement (Gustafson (2005)); (b) it
forces the estimate for δ∗ to have bounded variation around the truth, contrary
to what happens under the approach of Section 2.2.

3.1. Improved error adjustment

Our first approach under the assumption that δ∗ ∈ ∆ =]∆l,∆u[ is to solve
equations (2.7) with δ replaced by {I(λ < 0)∆l + I(λ > 0)∆u}λ/(1 + |λ|) and
λ unknown. This guarantees estimates δ∗(λ̂) within the set ∆ and thus greatly
improves the stability of estimators for the causal effect ψ∗. A drawback that
becomes apparent in the simulation study of Section 5, is that tests of the causal
null hypothesis may still lose substantial power under this approach due to the
fact that also λ is not root-n estimable at ψ∗ = 0. To accommodate this, we de-
velop a second, recommended approach which trades bias for precision by solving
a weighted average of the estimating functions for the standard SMM estimator
and for the error-adjusted estimator of Section 2.3. Estimating functions for
the standard estimator are weighted proportionally to the estimated probability
that δ∗ falls outside the chosen set ∆. The philosophy behind this choice is that
estimates for δ∗ will not likely fall within the set ∆ in situations where little
information on the error mean is available. Hence more weight will be given to
the standard unadjusted estimator in those cases.

For pedagogic purposes, we explain our proposal for the case γ(Xi; ψ) = ψ,
and with Assumption A5 modified to E(Wi−Zi|Xi, Ri) = δ∗Ri, so as to represent
the setting of our application in Section 4. We further delete reference to the
index functions (d, q) in the estimators. For each value ψ in a chosen grid,
we calculate an estimator δ̂(ψ) for δ∗ that solves (2.7) for the given ψ with
dδ(Ri,Xi) in place of d(Ri,Xi). Next, we consider a weighted average of the
estimating function Uψi(ψ, δ) for ψ∗ (as defined in (2.7) with dψ(Ri,Xi) in place of
d(Ri,Xi)), evaluated at the profile estimator δ = δ̂(ψ) and at δ = 0, respectively,

1√
n

n∑
i=1

Ũi(ψ) ≡ 1√
n

n∑
i=1

P̂{δ̂(ψ) ∈ ∆}Uψi{ψ, δ̂(ψ)}

+P̂{δ̂(ψ) /∈ ∆}Uψi(ψ, 0). (3.1)

In this expression, the weights involve the estimated probability P̂{δ̂(ψ) /∈ ∆}
that δ̂(ψ) falls outside the chosen interval ∆ =]∆l, ∆u[. Using a similar devel-
opment as in the proof of Theorem 1, this probability can be approximated by

P{δ̂(ψ) /∈ ∆} = 1 + Φ
(

∆l − δ

σ(ψ)/(
√

n|ψ|)

)
− Φ

(
∆u − δ

σ(ψ)/(
√

n|ψ|)

)
, (3.2)
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with Φ(.) the cumulative standard normal distribution function, and where δ may
be replaced by a consistent estimator (for instance, min[∆u,max{∆l, δ̂(ψ)}]) and
σ(ψ) by a consistent estimator σ̂(ψ) for the standard deviation of the scaled
estimating function E−1[dδ(R, T,X)R]Uiδ(ψ, δ) for δ∗. We define the improved
error-adjusted estimator ψ̃ for ψ∗ as the value of ψ at which the score test (3.1)
becomes zero. Curiously, this estimator assigns much weight to the standard
estimating equations (which do not adjust for measurement error) when the error
mean is estimated to be large. This is (a) because the philosophy behind the
estimator is that such large values for the error mean are indicative of imprecision;
and (b) because the estimating functions are designed to equal the unadjusted
estimating functions at the causal null hypothesis (see further).

Theorem 2. Suppose that γ(Xi; ψ) = ψ, Zi = ZiRi and E(Wi − Zi|Xi, Ri) =
δ∗Ri. Then, under regularity conditions stated in the Appendix and for any fixed
ψ, (1/

√
n)

∑n
i=1 Ũi(ψ) → N(0, Σ(ψ)) in distribution, where Σ(ψ) is the variance

of

P{δ̂(ψ) ∈ ∆}Uiψ(ψ, δ) + P{δ̂(ψ) /∈ ∆}Uiψ(ψ, 0)

−

[
P{δ̂(ψ) ∈ ∆} +

{
ϕ

(
∆l − δ

σ(ψ)/(
√

n|ψ|)

)

−ϕ

(
∆u − δ

σ(ψ)/(
√

n|ψ|)

)}√
n|ψ|δ
σ(ψ)

]
E{dψ(R,X)R}
E{dδ(R,X)R}

Uiδ(ψ, δ)

with ϕ(.) the standard normal density function.

Theorem 2 (whose proof is given in the Supplementary Materials) can be
used to construct (1 − α)100% confidence intervals for ψ∗ as the range of values
ψ0 for ψ such that the two-sided score test based on (3.1) does not reject the
null hypothesis H0 : ψ∗ = ψ0 at the α100% significance level. To evaluate this
score test, one may replace the variance of the score test statistic by the sample
variance with P{δ̂(ψ) ∈ ∆} replaced by P̂{δ̂(ψ) ∈ ∆}, δ by δ̂(ψ), and σ(ψ) by
σ̂(ψ). The resulting confidence intervals have the desirable feature that they
exclude 0 if and only if the standard test of the causal null hypothesis (i.e., that
Y ⊥⊥R|X) rejects. Indeed, at the null hypothesis P̂{δ̂(0) /∈ ∆} = 1, and hence
the score test statistic becomes

1√
n

n∑
i=1

Uψi(ψ, 0) =
1√
n

n∑
i=1

dψ(Ri,Xi){Yi − q(Xi)}

for an arbitrary function dψ(Ri,Xi) with conditional mean zero, given Xi. When
δ̂(ψ) in Uψi(ψ, δ̂(ψ)) is restricted to ∆ as described in the first paragraph of this
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section, this statistic is a score test statistic of the causal null hypothesis under
the observed data model defined by restriction (2.5).

Unfortunately, the suggested confidence intervals are not uniform asymptotic
confidence intervals. The reason is that, at each sample size, there exists a ψ∗

depending on n which is sufficiently close to zero that the score test statistic
(3.1) is significantly biased as a result of bias in the estimating functions of the
standard unadjusted SMM estimator. Specifically, it follows from the proof of
Theorem 2 that the improved error-adjusted estimator ψ̃ is asymptotically biased
within root-n shrinking neighbourhoods of zero (i.e., when ψ∗ = k/

√
n for some

constant k) and may not converge to a normal distribution along such sequences.
Curiously, ψ̃ is asymptotically unbiased and normally distributed along faster
converging sequences (i.e., when ψ∗ = kn−a for some constant k and a > 1/2)
and, in particular, at ψ∗ = 0. The reason is that, although the probability that
δ̂(ψ) ∈ ∆ now converges to 0 and hence ψ̃ is asymptotically equivalent to the
standard unadjusted SMM estimator, ψ∗ is sufficiently close to zero to make
any bias in the estimator negligible. Likewise, ψ̃ is asymptotically unbiased and
normally distributed along slower converging sequences (i.e., when ψ∗ = kn−a for
some constant k and 0 ≤ a < 1/2). The reason is that the estimated probability
of δ̂(ψ) ∈ ∆ now converges to 1 so that the improved error-adjusted estimator is
asymptotically equivalent to the error-adjusted estimator of Section 2.2, which
is asymptotically unbiased.

The practical implication of the foregoing discussion is that the improved
error-adjusted estimator ψ̃ and confidence intervals have no guaranteed perfor-
mance in finite samples in the sense that, for each sample size, one can find a
causal effect ψ∗ which is close, but not too close, to zero so that ψ̃ is significantly
biased and that confidence intervals for ψ∗ do not cover ψ∗ at the nominal level.
This local bias is the price we pay for estimators with smaller variability and
limited loss of power for testing the causal null hypothesis. Because this problem
only appears within n−1/2 distances from zero and not within larger or shorter
distances, we expect adequate performance in many practical situations. How-
ever, to be conservative we develop uniform asymptotic confidence intervals in
the next section.

3.2. Uniform asymptotic confidence intervals

Uniform asymptotic (1 − α)100% confidence intervals are expected to have
better finite-sample properties than the intervals of the previous section because
they guarantee the existence of a minimal sample size such that, at larger sample
sizes, they cover ψ∗ with at least (1 − α)100% chance regardless of the value
of ψ∗. Following ideas in Robins (2005), we construct such intervals by first
constructing, for each ψ, an asymptotic uniform (1− ε)100% confidence interval
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C(ψ) for δ∗, where the choice of ε < α will be discussed later. Because we assume
the parameter space for δ∗ to be ∆, a conservative asymptotic interval C(ψ) may
be obtained as {

δ̂(ψ) ± zε/2
σ̂(ψ)
|ψ|

√
n

}
∩ ∆.

Using Theorem 5.1 in Robins (2005), an asymptotic uniform (1 − α)100% confi-
dence interval for ψ∗ may be obtained as the set of ψ-values for which

inf
δ∈C(ψ)

∣∣∣∣Var−1/2{Uψi(ψ, δ)} 1√
n

n∑
i=1

Uψi(ψ, δ)
∣∣∣∣ < z(α−ε)/2.

The optimal choice of ε that leads to confidence intervals of minimum length is
difficult to determine (Robins (2005)). We propose to choose ε in function of ψ as
0.5α|ψ|/(1+ |ψ|). This choice guarantees that C(ψ) will equal ∆ for ψ∗ = 0, and
be a (1−α/2)100% confidence interval for δ∗ at causal effects ψ∗ far from 0. The
philosophy behind this choice is that estimates for δ∗ will be highly imprecise
at causal effects close to zero and hence, given that the parameter space for
δ∗ is bounded, we expect no difference between 100% confidence intervals and
(1−α)100% confidence intervals for δ∗ at ψ∗ = 0. As such, we need not offer the
significance level for ψ∗ at small causal effects and will thus get narrower intervals
in return. Specifically, the proposed confidence intervals have the feature that
they involve no correction for measurement error at ψ∗ = 0; this is desirable
because there is no bias due to measurement error at ψ∗ = 0.

4. Application

We analyze data from a placebo-controlled randomized hypertension trial
which enrolled some 300 hypertensive patients (Goetghebeur and Lapp (1997)).
After a run-in period of four weeks where all patients received placebo tablets,
they were randomized to four weeks of one of two active treatments (A or B) or
placebo. All treatments were prescribed at one tablet per day. Here we analyze
the subset of 105 patients randomized to A or placebo, for whom treatment
compliance was electronically measured, ignoring 5 patients with missing diastolic
blood pressure or compliance.

An intent-to-treat analysis reveals an average difference in blood pressure
reduction over the active four week study period of 7.5 mmHg (95% CI 4.0; 11.0)
without adjustment. This reveals the effect of assignment to treatment A (instead
of placebo) on expected diastolic blood pressure reduction from baseline (i.e., the
time of randomization). Primary interest lies however in the effect of received
treatment on average blood pressure reduction. We therefore fit model (2.3) with
Yi the blood pressure reduction over the active study period, Ri the randomiza-
tion indicator as the IV-C (which is 1 if assigned to experimental treatment and 0
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if assigned placebo), Zi the average number of prescribed pills taken, and Xi the
age of patient i. Assuming that compliance measurements are free of systematic
error, we estimate that the average blood pressure reduction would have been
9.6 mmHg (95% CI 3.5; 11.8) smaller over the study period among those who
chose to take on average one pill per day, had they not taken the exposure. Note
that this estimand averages the effect over patients with different compliance
patterns, but with the same average pill intake. Distinguishing between these
patients would require more detailed compliance measures, but would suffer from
identifiability problems (Vansteelandt and Goetghebeur (2005)).

In reality, there are concerns that electronic compliance measurements carry
systematic errors and thus that the above estimate may be biased. Because this
study was not designed to correct for measurement error, no natural IV’s for
the measurement error have been recorded. Our analysis is hence for illustrative
purposes only, and will use age as an IV-M (i.e., Ti = Xi equals age). Age was
chosen because effect modification through age is not anticipated (nor observed)
in this study population, which consists of middle aged hypertensive patients
(5th, 95th percentiles: 41 and 69 years), and thus Assumption A4 is anticipated to
be approximately true. A more adequate analysis would use placebo compliance
during the run-in period (where no electronic adherence measures were taken) as
an IV-M. Using the error-adjusted estimator of Section 2.2, we estimate a larger
treatment effect of 27.0 mmHg (95% CI -91.2; 145.2). To improve this imprecise
result, we impose the weak assumption that the average error is smaller than 0.25.
We believe this assumption to be reasonable, given that the observed percentage
of assigned dose taken (i.e., the observed exposure) is 0.85 (i.e., 85%) on average.
Choosing ∆ = [−0.25, 0.25] thus allows for 30% of the observed average exposure
to be due to systematic error. Using the improved error-adjusted estimator for
inference, we estimate a slightly smaller effect of 9.0 mmHg (95% CI 4.4; 17.4)
as compared to the standard analysis. As predicted by the theory, the estimate
is less precise than the unadjusted estimator, but still significantly different from
0 at the 5% significance level. The uniform asymptotic 95% confidence interval
(2.7; 16.8) has a more guaranteed performance in finite samples.

To investigate the sensitivity of our result to the choice of ∆, Figure 2 shows
the improved error-adjusted estimate, along with uniform 95% confidence inter-
vals as a function of the assumed maximum error mean ∆u, with ∆ = [−∆u, ∆u].
It reveals reasonable stability. Comparison with the sensitivity analysis results of
Goetghebeur and Vansteelandt (2005) shows that the error-adjustment described
in this article reduces uncertainty.

Note that our analysis is limited to a linear dose-response relationship. Be-
cause this linearity assumption is untestable, sensitivity analyses can be under-
taken, as illustrated for these data in Vansteelandt and Goetghebeur (2005).
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Figure 2. Improved error-adjusted estimate, along with uniform 95% con-
fidence intervals as functions of the maximum error mean ∆u, with ∆ =
[−∆u,∆u].

Note also that we a priori assume age to be a valid IV-M because tests for effect
modification by age are underpowered when age is used as an IV for estimating
the error mean (see Section 4 in Vansteelandt and Goetghebeur (2004) for related
remarks).

5. Simulation Study

To investigate the behaviour of the error-adjusted estimators in finite samples
with ψ∗ possibly close to zero, we conducted simulation experiments. Each ex-
periment was based on 5,000 replications of random samples of size 105 (i.e., the
sample size of the blood pressure study) or 1,000, generated as follows. In each ex-
periment, the instrument T for the measurement error was normal with mean 0.83
and standard deviation 0.14, and R was independently generated from a Bernoulli
distribution with success probability 0.5. The true exposure Z and exposure-free
response were generated as Z = T + 0.32εZ and Y0 = −4.4 + 6.8Z − 7.3T + 7.3ε0
for independent standard normal variates εZ , ε0. Finally, we generated Y as
Y0+ψRZ, and the observed exposure W as W = (Z+U)R where U ∼ N(δ, 0.01).

Table 1 summarizes the results for estimation of ψ using (i) the standard
IV estimator which ignores systematic measurement error (STD); (ii) the error-
adjusted estimator of Section 3.1 (IV1); (iii) the error-adjusted estimator of
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Section 3.3 which guarantees estimates for δ to stay within ∆ = [∆l, ∆u] with
∆u = −∆l equal to 0.5, 0.25 or 0.05, by defining δ = {I(λ < 0)∆l + I(λ >

0)∆u}λ/(1+ |λ|) for unknown λ (IV2); the improved error-adjusted estimator of
Section 3.3 with the same choices for ∆ (IV3). In addition, the table shows uni-
form asymptotic 95% confidence intervals (UI) corresponding to these choices.
The results for the different estimators were as predicted by the theory. The
error-adjusted estimator (IV1) was extremely variable at small sample sizes, but
performed adequately at larger sample sizes, even at ψ = 0. Estimator (IV2)
was less variable, although still substantially less precise than the standard un-
adjusted estimator. Figures 3 and 4 show that estimator (IV1) was normally
distributed in moderate sample sizes, even at ψ = 0, but not in small sam-
ples. It also shows that the improved error-adjusted estimator (IV3) was much
less variable than the error-adjusted estimator (IV1). While the former followed
a normal distribution in small samples, deviations from normality appeared in
larger sample sizes as a result of convergence to a normal distribution not be-
ing uniform in ψ. By the same token, the improved error-adjusted estimator
was more biased than the error-adjusted estimator in larger samples, and even
than the standard IV estimator in some scenarios. Informally, this happened
because data sets which carry evidence for causal effects close to zero, yielded
estimated probabilities of δ̂(ψ) ∈ ∆ close to zero. The bias then arose because
the small estimated causal effects in such data sets were more attracted toward
the estimates obtained from a standard structural mean analysis (which ignores
measurement error) than large estimated causal effects. Additional simulations
(not displayed) have shown that, as predicted by the theory, this bias and devi-
ation from normality disappears again in larger sample sizes. Furthermore, note
that the confidence intervals for the improved error-adjusted estimator retained
their coverage despite these deviations, although there was a tendency for the
approach to be conservative. Finally, as predicted by the theory, the uniform con-
fidence intervals were conservative and also wider on average than those obtained
via the improved error-adjusted estimator.

The impact of narrower intervals ∆ = [−0.25, 0.25] was large at small sample
sizes, but moderate at large sample sizes. For instance, confidence intervals based
on the improved error-adjusted estimator had an average length of 8.42 (instead
of 13.3) and coverage of 97.0% (instead of 97.7%) in the small samples, and
4.35 (instead of 4.83) and 98.0% (instead of 97.8%), respectively, in the large
samples. The impact of ∆ = [−0.05, 0.05] not including the error mean was
to induce bias of the order of magnitude of the standard unadjusted estimator.
The 95% confidence intervals based on the improved error-adjusted estimator
and uniform 95% confidence intervals then no longer cover at the nominal rate.
Coverage of those intervals was still better than the coverage of 95% confidence
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Figure 3. QQ-plots for n = 105 and ∆ = [−0.5, 0.5]. Row 1: error-adjusted
estimator IV1; Row 2: improved error-adjusted estimator IV3.

intervals based on the standard unadjusted estimator, but at the expense of being
wider.

6. Conclusions

We have proposed a general procedure to correct IV estimators for system-
atic error in the exposure when an additional IV for the measurement error
is available. This procedure complements the sensitivity analysis approach of
Goetghebeur and Vansteelandt (2005) and is especially attractive when the IV-
M assumption (A4) is likely to be met. This is the case in placebo-controlled
randomized trials with noncompliance, where measurements Ti on run-in placebo
compliance may very well meet assumption (A4). With concern for compliance
mismeasurement, recording run-in compliance may thus be favourable. More
generally, causal IV’s can be used as IV’s for the measurement error.

On theoretical grounds and on the basis of simulation experiments, we rec-
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Figure 4. QQ-plots for n = 1, 000 and ∆ = [−0.5, 0.5]. Row 1: error-adjusted
estimator IV1; Row 2: improved error-adjusted estimator IV3.

ommend the improved error-adjusted estimator of Section 3.1. This estimator
was designed so that adjustment for measurement error does not compromise the
power of tests of the causal null. This is attractive, knowing that standard tests
of the causal null hypothesis (i.e., that the causal instrument R is independent
of outcome) ignore exposure measurements and are thus valid in the presence
of measurement error. Because the proposed estimator does not converge uni-
formly to a normal distribution, we recommend the uniform confidence intervals
of Section 2.3.

For illustrative purposes, we have developed this work under structural mean
models that assume linear exposure effects that are not modified by pre-exposure
covariates. Extensions to linear structural mean models that allow for effect mod-
ification by baseline covariates are methodologically straightforward, but compu-
tationally more demanding. Finally, we believe our results to be more broadly
useful from a theoretical perspective as they suggest, in line with Gustafson
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(2005), that incorporating some prior information on a weakly identified nui-
sance parameter may yield substantial efficiency improvements for the target
parameter. Similar ideas may therefore prove useful in related settings (Vanstee-
landt and Goetghebeur (2004), Fischer and Goetghebeur (2004), and Ten Have
et al. (2007)) with weak identification. In addition, our results indicate how such
prior information may be adopted in a frequentist analysis.
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