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Supplementary Material

This note contains the proofs of Theorems 1 and 2.
S1. Proof of Theorem 1:

The technical tools for model combination in the literature on mean regression (e.g., Catoni
2004; Yang 2004a) are not applicable due to the nature of the check loss. To overcome the
difficulty, we introduce a surrogate loss L, q(€) = L. (€) + a&? with a > 0, which serves as an
intermediate quantity in our analysis. This surrogate loss satisfies Condition 7 in Yang (2004a).
Let h(z) = exp (~AL, () and ¢"" = £ S TT0 b (g = oy (@), where gr.4() is
the estimator from the ;" candidate based on {(yi, ) }i_;.

For any j, we have log (l/qnfno) < log(M) + )\Z;;”L(H'l L: (ys — Gr,j,i(x:)). It can be
verified that ¢" "0 = H:'L:noJrl Zjle W;ih (yi — Gr,5,i(xi)). Therefore

n n

log (1/¢""°) = — Z log <Z Wj,ih (yi — (jT,]-,i(m,-))) = - Z log (E”h (yi — Gr,04(24))) ,

it=ng+1 i=ng+1
(1)

where E” is defined as the expectation with respect to J under discrete distribution P(J =
j) = Wj; for fixed .
By Lemma 3.6.1 of Catoni (2004, p. 85), we have

log (E”h (yi = Gr.1.i(2:))) < =AE" L (yi — Gr.a.il@i)) + 1, (2)
where
Az J N J N 2
I = ?E [L-r (yi - QT,J,i(-'Ei)) —E"L; (yz - qT,J,i(lii))]

X exp (C)\QQ <|y1 —m;| + (1 + sup |Gr,j,i(w:) — mz>>> .
j>1

As in the proof of Theorem 5 in Yang (2004a), with 3 = 1, we get

E” [Lr (yi = Gr0i(2:)) = B Lr (yi = Gr,0(22))] ’

26
< et (yi —m;]*? + (1 + sup |Gr,j,i (i) —mz‘|> )
i>1
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< BT (dr,7:(2i) — B (4r.4(2:)))”

Let bo = yi — Gr,..s(i) = yi — EJ(cjﬂJ,i(xi)) and b = y; — §rj,i(x;). For the surrogate loss
function L 4, we can show that Va > 0,

Lra(b) = (2abo + 7 — 1py<0) (b — bo) — L4 (bo)
= ab® 4 (7 — 1p<0)b — abg — (T — 1py<0)bo — 2abbo + 2abg — 7 + Tbo + blyy<o — bolp, <o
= a(b—1bo)® +7b—Tho — bly<o + bolpy<o — Tb + Tbo + blpy <0 — bolpy<o
= a(b—bo)® + blpy<o — blyp<o
—b ifbo>0and b<0
= alb—bo)>+< b ifbp<0andb>0

0 otherwise,

> a(b—bo)>

Taking expectation under E” and notice that E”7 (Gr,5,i(xi) = Gr,.i(x3)) = E‘](b —bo) =0,

we have
B Lra (i — Gro0,i(23)) = Lesa (Ys — G i(20)) > aB7 (Gr,gi(25) — Gr,ei(20))? (3)

With the notations in Condition 7 of Yang (2004a), it can be verified that when a is chosen
such that a < min(7,1 — 7), we have ¢ = a, 8 = 1 and ¢ = max(r,1 — 7). Let E; denote the
expectation with respect to the random error ¢; given the previous observations and x;.

Under the following two constraints on A:

% > A% (14 (4 41)%) H(eA2%) (4)
a2’ <, (5)

we have N
Ei(I) £ SE: [B'Lra(Yi = Gr.0i(2:)) = Lra(Ys = Gr,-i(2))] - (6)

Let B()\) = 2 max(n1=m)(A+1) (1 + A+ 1)2) H(2XAmax(7,1—7)). It is easy to see that when a
and A are chosen such that A < m and a > 2X (max(7,1 — 7))? B()), the constraints

are met. Let ay = 2\ (max(7,1 — 7))? B(to). Then under such a choice of (), a), we have

E; [log E” exp(—AL.(Yi — @r,J,z‘(Xi)))]

< B [Le(Yi = i (X)) + AEi [Lr (Yi = Gr.oi(X0)) = B Le (Yi = Gr0i(X0)) ]
$ D (B Lo Vi~ ro0a(X0) = Lea (Vi = dr,i(X0)]

= B Lo (Y~ i (X0 — S (BT L (Vi — rna(X0)) = Lo (Y — (X))
+¥E¢ (B (Yi = 4r,04(X))°] - ?E [(Yi = Gr.-i(X0))?]

< SAB:[L(Y: = ra(X0)] + 5 (Ca+ O,
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The first inequality above holds because of (2) and (6), provided that constraints (4) and (5)
hold; the equality above holds because E7q,,7:(2) = Gr,.:(x) by definition, Vz; the second
inequality holds because of Condition 3.

to 3 with a = ax, since j is arbitrary, we get

From all above, for A < 5—r5—3

n—"mn q
o) 4 Z EL:(Yi — §r,;,:(X3))

i=ng+1
(7)

The constraints on A imply A = O(a), this leads to an optimal choice of A (and a) when
log(M) __ ax(Ca+C3F)(n—no) log(M)
A - 2 (m'dX(T,177))23(750)(02“”0%)(n*’ﬂ

(4) and (5) are satisfied when n — ng is large enough. Under this optimal choice of A = Aope,

> BL(Yi—gr,i(X.)) < inf

J
i1=ng-+1

log (M) | ax(C2 4 CF)(
{ o 2

. This gives Aopt = oE It is clear that

we have

> BLi(Yi— Gri(X)) < inf {C’\/log (M) x Vn=no+ »  EL.(Yi~ q;,j,i(xi))} :

i=ng+1 i=ng+1
(8)

where C is a constant that depends on 7, C1, Cs. By convexity of L, (-) in its argument, we also
have
) o)~ Jog (M) 1 - )
EL-(Y —§r,..(X)) <inf — 4 —— EL(Y: —G-;:(X;) p.
(¥ = 4. (X)) < in {0 et = > BL(Yi—dru(X) . ()

i=ng+1

This completes the proof.

S2. Proof of Theorem 2:

We only provide a sketched proof of Theorem 2 here. Define hq(z) = exp (—ALra(2))
and ¢"7"° = Z]M:1 [Tis 41 ha (yi = drj.i(24)), where grj.i() is the §™ candidate estimator
based on {(yi, 1) }i_1-

With L, replaced by L. ., we also similarly update I with Io, ¢r.; with ¢ , and g,
with 2. Following the proof of Theorem 1, when a < min(7,1 — 7), with ¢ = a, 8 = 1 and

¢ = max(7,1 — 7), we have

log (B ha (i — Gr,0.1(2:))) < —AE” Lo (4i — Gr,0,6(22)) + L, (10)
where
N g 5 J R 2
I, = 7E [LT,a (yi - QT,J,i(in)) —E' L (yi — qT,J,i(l'i))]

B8
X exp (c/\225 <|yZ - mi\ﬁ + <1 + sup |Gr,j,: (1) —mi|> >> .
j=>1

Since L, o satisfies Condition 7 in Yang (2004a), under the constraints on a and X, we have

E;(I,) <

| >

By [B? Lra(Yi — Graa(@0) — Lo (Vi — @2 o(20)] - (11)

} |
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Then

FE; [log EJ EXP(—)\LT,a(Y;’ - (jT,J,i (Xl)))]
B [Lra(Yi = 670 (X0)] + AB: [Lra(Vi = 7,(X0) = B L (Y = dr,0.(X0)]

IA

+%E1 [EJLT’Q(Y;- — qAT’in(Xi)) — Lr,a()/i - d?,,z(xl))]
< =AE; [Lra(Yi — G i(X0)]

Consequently, we get
= a lo N
> BLea(Yi— (X)) < in f{ g (M) | Z ELqa(Y; qT,j,i(Xi))}. (12)
i=ng+1 I i=ng-+1

Since Lr,q (&) = L, (€) + a&?, the above inequality implies that

ta Y EYi—dra(X) —a Y Em—q:,.,xxnf}.

i=ng+1 i=ng+1
Under Conditions 1 and 3, we conclude that

Z EL-(Y: - ¢}, 4(X))) < ‘Jf{log + Z EL-(Y: = Grj.i(X:)

i=ng+1 i=ng+1

+4a(n — no)(Ca + CF + AQ)} .

The rest of the proof follows as before. This completes the proof.



