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Abstract: Model selection for quantile regression is a challenging problem. In ad-

dition to the well-known general difficulty of model selection uncertainty, when

quantiles at multiple probability levels are of interest, typically a single candidate

does not serve all of them simultaneously. In this paper, we propose methods to

combine quantile estimators. Oracle inequalities show that, at each given probabil-

ity level, the combined estimators automatically perform nearly as well as the best

candidate. Simulation and examples show that the proposed model combination

approach often leads to a substantial gain in accuracy under global measures of

performance.
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1. Introduction

Conditional quantile estimation has been used for a long time in various
contexts, including agriculture, economics, and finance. Numerous methods have
been proposed under different settings, including the classical linear regression,
nonlinear regression, time series, and longitudinal experiment (see He, Ng and
Portnoy (1998), Yu, Lu, and Stander (2003), and Koenker (2005) for some recent
developments and references). In what follows, we first give a brief review of the
general problem of conditional quantile estimation and model selection, and then
set up our specific problem.

1.1. A background on conditional quantile estimation (CQE)

In regression, besides the conditional mean, we are often interested in other
summary measures of the conditional distribution of Y given the input X. Quan-
tile regression is used to obtain an estimate of the conditional quantile function at
a given probability level τ (τ ∈ (0, 1)). When a range of τ values is considered, the
quantile profile provides information much beyond the conditional mean. Condi-
tional quantile estimation may also be used to produce confidence bands for the
distribution of Y given X (see Zhou and Portnoy (1996) and Koenker (2005) for
some applications). Quantile estimation also gets attention due to its robustness
property, compared to the conditional mean, in case of strong skewness in the
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true conditional distribution (see, e.g., Yu, Lu, and Stander (2003) and Geraci
and Bottai (2007)).

Koenker and Bassett (1978) introduced regression quantile estimation by
minimizing an asymmetric loss function Lτ (ξ) = {τ − I{ξ<0}}ξ for 0 < τ < 1,
known as the check or the pinball loss. It is not hard to verify that the minimizer
c(x) of ELτ (Y − c(X)|X = x) is the lower-τ conditional quantile of Y given
X = x. They considered c(x) of the form x′β with β estimated by minimizing∑

i Lτ (yi − x′
iβ). This method is commonly known as linear quantile regression

(LQR). A slightly more general loss, called lin-lin loss, was considered in Granger
(1969).

To reduce the impact of parametric assumptions, nonparametric and semi-
parametric methods have also been developed for quantile regression. For ex-
ample, one might assume that the quantile function is of the semi-parametric
form qτ (X,T ) = X ′β + g(T ), where both X and T are vectors of explana-
tory variables, β denotes a vector of unknown regression coefficients, and g

represents an unparameterized smooth function to be estimated. Analogous
to semiparametric mean regression, we can estimate β and g by minimizing∑n

i=1 Lτ (yi−x′
iβ−g(t))+α

∫
g′′2dt, where α is a smoothing parameter to control

the amount of penalty on the roughness of g. Interested readers are referred to
Yu, Lu, and Stander (2003) and Koenker (2005), and the references therein for
more details.

More recently, Meinshausen (2006) proposed a nonparametric method called
quantile regression forests (QRF), inspired by the random forests of Breiman
(2001). As in the random forests algorithm, for each tree, one selects a random
subset of all predictors to split nodes, and a large number of (random) trees are
obtained in this fashion. The conditional quantile of Y given X = x is then
approximated by the average prediction from the collection of random trees.
This method was shown to be consistent and numerical results demonstrated its
good performance in problems with high-dimensional predictors, particularly at
extreme values of τ (τ near zero or one).

Regression quantile is also important in areas of application other than the
conventional i.i.d. setting. In longitudinal studies, Geraci and Bottai (2007)
used the loss function L0.5 to construct the Normal-Laplace joint likelihood in
a mixed effect model; an interesting quantile autoregression theory is given in
Koenker and Xiao (2006); Wei and He (2006) proposed a useful semi-parametric
quantile regression method for constructing conditional growth charts based on
longitudinal observations.

Besides the check loss, other asymmetric loss functions have also been inves-
tigated (see, e.g., Hall, Wolff and Yao (1999)), although they are used less often
in the statistical literature.



COMBINING REGRESSION QUANTILE ESTIMATORS 1173

1.2. Model selection and combination in CQE

The issue of model selection has been studied in connection with quantile
regression. Ronchetti (1985) introduced a robust version of AIC, called AICR,
which takes the form of the observed check loss plus a multiple of model size (see
also Cade, Noon and Flather (2005)). Machado (1993) proposed a generalized
Schwarz Information Criterion, similar to BIC except that the squared error loss
is replaced by a more robust loss function. Some other model selection criteria
can be found in Burman and Nolan (1995) and Ronchetti, Field and Blanchard
(1997).

In an effort to combine different methods, if q̂A
τ (x) and q̂B

τ (x) are two es-
timates of the conditional lower-τ quantile of Y given X = x, Granger (1989)
proposed the use of weights from minα,βA,βB

∑
i Lτ (yi−α−βAq̂A

τ (xi)−βB q̂B
τ (xi)).

Taylor and Bunn (1998) extended this linear combination methodology by con-
sidering a number of constraints on the coefficients α, βA, βB, such as zero
intercept, convex coefficients on the predictors, and so on. To our knowledge,
theoretical results on combining quantile regression estimators have not appeared
in the literature.

When the quantile profile is of interest, it is particularly important to con-
sider model combination methods. A main reason is that the different quantile
regression estimators typically have distinct relative performances that depend
on the value of τ (as seen in our numerical results). Integrating the advantages
of the candidates for potential global improvement is a worthy task.

A recent focus on combining or aggregating models (procedures) is the con-
struction of methods that adaptively share the strengths of a list of arbitrary
estimators (Nemirovski (2000), Yang (2001, 2004b), Catoni (2004) and Tsybakov
(2003)), which allows the integration of powers of different methodologies. See
Leung and Barron (2006), Birgé (2006), Bunea and Nobel (2005), Bunea, Tsy-
bakov and Wegkamp (2006), Audibert (2006) and Lecué (2006) for some recent
results in the area. We follow this spirit and present both theoretical and nu-
merical results on combining quantile estimators.

1.3. Problem of interest

We observe (Yi, Xi), i = 1, . . . , n, where Xi = (Xi1, . . . , Xip) is a p-dimen-
sional predictor. Assume that the true underlying relationship between Y and
X is:

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,

where εi are i.i.d. from a distribution with mean zero and variance one, and are
independent of the predictors. A time series setting which does not require that
Yi, i = 1, . . . , n are independent will be considered as well.
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Based on this model, the conditional quantile of Y given X = x has the form

qτ (x) = m(x) + σ(x)F−1(τ), (1.1)

where F is the cumulative distribution function of the error. This provides one
method for estimating qτ (x), namely, by first obtaining m̂(x), σ̂(x) and F̂−1(τ)
(if F needs to be estimated).

Based on (1.1), it can be observed that if m(·) is a linear function of x and
σ(·) is constant, linear quantile regression (LQR) is expected to perform well.
However, if either the mean function is nonlinear or the scale function is non-
constant in the predictors, bias is involved and may lead to poor performance
of LQR. Also, in applications, the performance of LQR on extreme quantiles is
usually impaired by insufficient extreme observations.

Now suppose we have a pool of M candidate estimators of the conditional
quantile function qτ (x), denoted by {q̂τ,j(x)}M

j=1. Our goal is to combine these
estimators for an optimal performance. Specifically, at each given τ , we hope
that the combined estimator performs as well as the best candidate. Since the
best candidate often depends on τ , our combining approach can improve over all
of the candidate procedures in terms of global performance measures over τ , as
will be seen in our simulations and examples.

In the context of conditional mean regression, Yang (2001) proposed the
adaptive regression by mixing (ARM) method, in which a set of weights is adap-
tively calculated from the data under a specified likelihood function, such as
Gaussian. Alternatively, risk bounds that relate the performance of the com-
bined estimator to that of the best candidate (typically unknown, of course)
under certain quadratic-type of loss functions are given in Catoni (2004) and
Yang (2004a), without specifying the error distribution. This latter approach is
useful when no obvious choice of error density is available and/or when variance
estimation is difficult.

In the current context, instead of a quadratic loss, the check loss function
is naturally oriented toward quantile estimation and is used in our weight con-
struction. However, the distinct natures of the absolute-type and quadratic-type
of losses present real impediments to the derivation of an oracle inequality for
our quantile regression problem. Risk bounds in terms of the check loss function,
under both i.i.d. and a time series settings without any assumption on the form
of the error density nor requiring boundedness of the response variable, are ob-
tained, which indeed show that at each fixed τ our combined estimator performs
almost as well as the best candidate. A potential application of our method is
to conditional growth chart construction (Wei and He (2006)), where different
semi-parameter models can be explored.
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The rest of the paper is organized as follows. In Section 2, our model com-
bining methods for regression with i.i.d. observations are presented and oracle
inequalities that show their optimal performance are given. In Section 3, model
combination is considered for a time series framework. Simulation and examples
that demonstrate advantages of our methods are presented in Sections 4 and 5,
respectively. Concluding remarks are given in Section 6. Proofs of the theoretical
results are in an appendix.

2. Adaptive Quantile Regression by Mixing (AQRM)

In this section, we consider the framework in Section 1.3 with i.i.d. observa-
tions, and take two weighting approaches, one directly based on the cumulative
check loss and the other on a mixture of the check and squared losses.

2.1. Weighting based on check loss

The AQRM algorithm for conditional quantile estimation is as follows. Fix
a probability level 0 < τ < 1/ Let 1 ≤ n0 ≤ n − 1 be an integer (typically n0 is
of the same order as or slightly larger order than n − n0).

1. Randomly partition the data into two parts: Z(1) = {yl, xl}n0
l=1 for training,

and Z(2) = {yl, xl}n
l=n0+1 for evaluation.

2. Based on Z(1), obtain candidate estimates of the conditional quantile func-
tion qτ (x) as q̂τ,j,n0(x) = q̂τ,j,n0(x; Z(1)). Use q̂τ,j,n0 to obtain the predicted
quantiles from the jth candidate procedure for Z(2), for each j = 1, . . . ,M .

3. Compute the candidate weights as

Wj =

∏n
l=n0+1 exp{−λLτ (yl − q̂τ,j,n0(xl))}∑M

k=1

∏n
l=n0+1 exp{−λLτ (yl − q̂τ,k,n0(xl))}

,

where λ > 0 is a tuning parameter.

4. Repeat Steps 1−3 a total of B − 1 more times and average the weights Wj

over B random permutations. Denote them by W̃j . The final estimator of the
conditional quantile function of Y at X = x is q̂τ,.,n(x) =

∑M
j=1 W̃j q̂τ,j,n(x).

Remark. The tuning parameter λ controls how much the weights rely on the
check loss performance. In the extreme case when λ ↓ 0, simple averaging results;
when λ → ∞, the candidate with the best historic check loss is selected.

In certain problems such as online estimation/prediction, a sequential up-
dating mechanism is also of interest. Here, we obtain q̂τ,j,n0 from {(yl, xl)}n0

l=1

(the initial set of observations) and update the weights sequentially once an ad-
ditional observation is made. In such a setting, we define sequential weight Wj,i
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as

Wj,i =

∏i−1
l=n0+1 exp{−λLτ (yl − q̂τ,j,l(xl))}∑M

k=1

∏i−1
l=n0+1 exp{−λLτ (yl − q̂τ,k,l(xl))}

,

and the combined estimate of qτ (x) at time i is q̂τ,.,i(x) =
∑M

j=1 Wj,iq̂τ,j,i(x).
Also of interest is an overall convex combination

q̂τ,·,·(x) =
1

n − n0

M∑
j=1

n∑
i=n0+1

Wj,iq̂τ,j,i(x)

that estimates qτ (x) in a way that utilizes the online estimates at different sample
sizes; it has a nice risk property as will be seen shortly. Note that in numerical
implementation for batch learning, since a sequential updating algorithm can
be much more time-consuming when the sample size is not small, we follow
the earlier algorithm, and candidate quantile estimators are not updated in the
weight construction.

2.2. Oracle inequalities on performance

Condition 0. The observed vectors (Yi, Xi), i ≥ 1 are i.i.d..

Condition 1. The quantile estimators satisfy supj≥1,i≥1 |q̂τ,j,i(xi)−qτ (xi)| ≤ Aτ ,
for some positive constant Aτ with probability one. In what follows, we omit the
subscript τ to simplify notation.

Condition 2. There exist a positive constant t0 and a monotone function 0 <

H(t) < ∞ on [−t0, t0] such that for all n ≥ 1 and −t0 ≤ t ≤ t0,

E(|εn|2 + 1) exp(t|εn|) ≤ H(t),

where εn is the unobservable true error for the nth observation.

Condition 3. There exist positive constants C1 (that depends on τ) and C2

such that |m(X) − qτ (X)| ≤ C1 and |σ2(X)| ≤ C2 with probability one.

Condition 1 requires that no candidate estimators are too far away from
the true conditional quantile. This is a mild technical condition, weaker than
assuming Y is bounded, and is typically assumed in the literature on combin-
ing estimators. Condition 2 is satisfied by error distributions with well-defined
moment generating functions, such as the normal, shifted gamma and double ex-
ponential distributions. These error distributions are considered in our numerical
study. Condition 3 requires some regularity of the underlying conditional distri-
bution of Y given the predictors, but neither constant is required to be known
for application.
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Let B(λ) = e2λ max(τ,1−τ)(A+1)(1 + (A + 1)2)H(2λmax(τ, 1 − τ)) and, in
Theorem 1 below, let aλ = 2λ(max(τ, 1 − τ))2B(t0).

Theorem 1. Under Conditions 0-3, when the tuning parameter λ ≤ λ0 =
(t0)/[2max(τ, 1 − τ)], we have

1
n − n0

n∑
i=n0+1

ELτ (Yi − q̂τ,·,i(Xi))

≤ inf
j

{
1

n − n0

n∑
n0+1

ELτ (Yi − q̂τ,j,i(Xi)) +
log(M)

λ(n − n0)
+

aλ(C2 + C2
1)

2

}
.

In particular, when λ = {[log(M)]/[(max(τ, 1 − τ))2B(t0)(C2 + C2
1)(n −

n0)]1/2, we have

1
n − n0

n∑
i=n0+1

ELτ (Yi − q̂τ,·,i(Xi))

≤ inf
j

{
1

n − n0

n∑
i=n0+1

ELτ (Yi − q̂τ,j,i(Xi)) + C̃

√
log(M)
n − n0

}
, (2.1)

and

ELτ (Y − q̂τ,·,·(X)) ≤ inf
j

{
1

n − n0

n∑
i=n0+1

ELτ (Yi − q̂τ,j,i(Xi)) + C̃

√
log(M)
n − n0

}
,

where C̃ is a constant that depends on τ , A, C1, C2.

Remarks.

1. For the third display in the theorem, the risk of the combined estimator at
sample size n is upper bounded in terms of the best averaged risk at different
sample sizes, plus a penalty. Ideally, one would want to replace the averaged
risk by the risk of the candidate at the full sample size n, but this is not
obtained in this work.

2. Note that the unboundedness of the response variable makes the derivation of
oracle inequalities substantially different from the earlier work on combining
predictions in the machine learning literature, which typically requires that
Y have a bounded support (or the loss is bounded). See Bunea and Nobel
(2005) for a different way to address the issue of unbounded response under
squared error loss.

The inequalities above say that the risks of the combined prediction are
automatically close to the risks of the best individual, with the difference being
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of order (n − n0)−1/2 when λ is chosen properly. Note that for the L1 type
of risk for regression estimation, the rate of convergence typically is n−1/2 for
parametric cases, and is slower than n−1/2 for nonparametric cases (e.g., Yang
and Barron (1999)). Therefore, with a choice of n0 and n−n0 of the same order,
the risk bounds show that the combined quantile predictions adaptively converge
at the best rate offered by the candidate procedures for both parametric and
nonparametric situations. Furthermore, for nonparametric quantile regression,
since the extra term in the risk bound is asymptotically negligible relative to the
risk of estimating qτ (x), under some regularity conditions AQRM yields combined
predictions that perform asymptotically as well as the best procedure among the
candidates.

Although at each given probability level τ , our approach of combining the
quantile estimators does not necessarily lead to performance improvement over
the best individual candidate estimator, the results are useful for three reasons.
First, for various situations (e.g., one of the candidate procedures is based on the
true model), the best individual procedure simply cannot be improved upon and
thus the combined estimator can only perform optimally or near optimally. Sec-
ond, since the best procedure is unknown, and as is well-known, one often pays
a high price in trying to find it (see, e.g., Yuan and Yang (2005) for references
and simulation results on reducing model selection uncertainty by model combi-
nation), it is important to show that the combining approach, as an alternative,
indeed leads to optimal performance. Third, because conditional quantile func-
tions over a range of probability levels are often of interest while the candidate
quantile estimators typically have different performance ranks, the combined es-
timators have the potential to beat each of the candidates in terms of global
performance, as will be seen later.

2.3. Weighting using a mixture of check and squared losses

Define a surrogate loss function Lτ,a(ξ) = Lτ (ξ) + aξ2 for a given a > 0
(see Figure 1) and use it in the construction of weights of the candidate quantile
regression procedures. The new weight is

W a
j =

∏n
l=n0+1 exp{−λLτ,a(yl − q̂τ,j,n0(xl))}∑M

k=1

∏n
l=n0+1 exp{−λLτ,a(yl − q̂τ,k,n0(xl))}

.

We can then derive a similar risk upper bound for the corresponding combined
estimator q̂a

τ,·,n0
.

Theorem 2. Under the same assumptions in Theorem 1, when λ is chosen as
for (2.1) and a = 2λ(max(τ, 1 − τ))2B(t0), we have

ELτ (Y − q̂a
τ,·,·(X)) ≤ inf

j

{
1

n − n0

n∑
i=n0+1

ELτ (Yi − q̂a
τ,j,i(Xi)) + C ′

√
log(M)
n − n0

}
,



COMBINING REGRESSION QUANTILE ESTIMATORS 1179

‘Check’ loss and its surrogate

Figure 1. Check loss function with τ = 0.9 and its surrogates.

where C ′ is a constant that depends on τ , A, C1, C2.

3. Combining Quantile Estimators for Time Series

For time series data, we typically have autocorrelation between observations.
Consider the model

Yt = mt(Xt) + σt(Xt)εt,

where Xt is the explanatory variable (which may include the past values of the
response variable) at time t. We assume that the errors εt are i.i.d. from a
distribution with mean zero and variance one, and that εt is independent of
{(Ys, Xs) : s < t} and Xt. Our goal is to derive a combined (conditional) quantile
estimator q̂τ,·,t(xt) =

∑M
j=1 Wj,tq̂τ,j,t(xt).

We follow an online setting which means that data come in sequentially and
the candidate estimators are updated sequentially with each incoming observa-
tion. Let T be the length of the whole series. Here is the combining algorithm
AQRM for the time series setting.

1. Start with T0 observations and let t1 = T0.
2. Denote the first t1 observations in the series by Z(1) = (yt, xt)t1

t=1.
3. Based on Z(1), construct the candidate estimates of the conditional quantile

function qτ (x) as q̂τ,j,t1(x) = q̂τ,j,t1(x; Z(1)).
4. For each j, update the candidate weight sequentially as

Wj,t1+1 =
Wj,t1 exp{−λLτ (yt1 − q̂τ,j,t1(xt1))}∑M

k=1 Wk,t1 exp{−λLτ (yt1 − q̂τ,k,t1(xt1))}
,

where Wj,T0+1 = 1/M .
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5. Increase t1 by 1 and repeat steps 2−4, until t1 = T .

Since in the time series setting, the conditional quantiles, conditional means
and conditional variances of Yt usually depend on both the predictor and time,
Conditions 1-3 need to be modified accordingly.

Theorem 3. Under Conditions 1−3 on the conditional quantiles, conditional
means and conditional variances, when the tuning parameter λ is chosen as for
(2.1),

T∑
t=T0+1

ELτ (Yt − q̂τ,·,t(Xt))

≤ inf
j

{
T∑

t=T0+1

ELτ (Yi − q̂τ,j,t(Xt)) + C̃
√

log(M) ×
√

T − T0

}
,

where C̃ is a constant that depends on τ , A, C1, C2.

4. Simulation Results

In this section, four cases are considered for investigating the performance of
AQRM. Together with the examples in the next section, we intend to gain some
insight on the differences of behaviors of the methods involved that may be more
helpful than giving one or two favorable examples.

4.1. Candidate procedures and performance measures

We consider LQR (Koenker and Bassett (1978)) and QRF (Meinshausen
(2006)), using R packages quantreg and quantregForest.

In the literature, performance of quantile regression is usually measured by
the coverage probability at some fixed τ value(s), such as the 90% and 95% levels
(Koenker and Bassett (1978) and Taylor and Bunn (1998). For a given quantile
estimator at a given τ , its empirical coverage probability is defined as the fraction
of observations which fall on or below the estimated quantile function in a new
(unused) evaluation set.

Here, we focus on the overall performance of a quantile regression procedure
over the full range of τ in (0, 1). One reason is that quantiles at multiple levels
are often of interest at the same time (e.g., for growth charts) and global mea-
sures over a range of τ are naturally relevant. Another related motivation is the
fact that different regression quantile estimators often have distinct relative per-
formances according to the value of τ , and therefore the consideration of a range
of τ values yields an overall comparison of different methods. We introduce two
overall performance measures below.
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Let g denote a weighting function on τ ∈ (0, 1) such that g ≥ 0 and∫ 1
0 g(τ)dτ = 1, used to differentiate the importance of τ values in different re-

gions. We choose two different g functions here, one being the uniform weight
and the other being the Beta(0.8, 0.8) density, which emphasizes extreme τ ′s.

In simulations, considering the integrated absolute difference between the
true qτ (·) and an estimator q̂τ (·), under a given weight function, we define
Weighted Integrated Absolute Error (WIAE) as the expectation of

∫∫
|q̂τ (x) −

qτ (x)|g(τ)dτP (dx). For data, since we do not know the true conditional quantile
function, obviously we cannot compute WIAE. Instead, we consider the discrep-
ancy between the nominal level τ and the empirical coverage probability τ̂ , and
define Weighted Integrated Coverage Error (WICE) as

∫ 1
0 |τ̂−τ |g(τ)dτ . In imple-

menting this, we use random data splitting, which reserves part of the given data
as an (artificial) evaluation set. This random partition of data is repeated 100
times and the average performance measure over these repetitions is reported.

To approximate the integrals in the definitions of WIAE and WICE, we
selected a number of discrete τ values, τ ∈ {0.01, 0.05 × k, 0.99}19

k=1. We also
calculated, for each fixed τ , the simulation standard errors of both the candidate
methods and AQRM.

In our investigation, we also assessed the role of λ on the performance of
AQRM (automatic selection of λ will not be addressed). We define the optimal
λ as the one that yields the smallest WICE (or WIAE) among all λ considered,
and define the risk ratio of AQRM over the best individual candidate as

RR =
WICE (or WIAE) of AQRM under the optimal λ

WICE (or WIAE) of the best individual candidate
.

The simulation results in this section were based on 100 runs in each case.
The sample size was 200, with equal training-testing data splitting randomly
done 50 times. To compute the absolute error or coverage error loss defined
above, an independent evaluation set of size 1,900 was used.

The tuning parameter λ was taken of the form λτ = λ×min(τ, 1− τ), where
τ ∈ {0.01, 0.05 × k, 0.99}19

k=1. Empirical evidence suggests that our combined
estimator performs better with λτ than using a constant value for all τ . In what
follows, we omit the subscript τ in λτ to simplify notation.

4.2. Simulation models

We considered four cases, the last two with randomly generated coefficients
to reduce the reliance of the simulation results on specific choice of parameter
values.

Case 1. The first model, an example used in the R-package quantreg, was

Y = Z + log(X) + 0.1 × (log(X))2 + 0.25 × log(X) × ε2,
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where X ∼ χ2
4, ε1 ∼ N(0, 1), Z = X + ε1, ε2 ∼ f , with µf = 0 and σf =

σ, and X, ε1, ε2 generated independently of each other. Besides N(0, 1), the
shifted gamma distribution was also considered to allow asymmetric error, and
the error standard deviation took 6 values: σ = 0.316, 0.717, 1, 2, 3, 4. In this
and other simulations in Section 4.3, unless stated otherwise, shifted gamma
errors were generated from a gamma distribution with shape parameter three
and scale parameter σ/3, then shifted to have zero mean. We observed two
predictors X and Z, as well as the response Y . Nine λ values were considered:
min(τ, 1 − τ) × {0, 0.01, 0.1, 1, 5, 8, 10, 50, 100}.

We considered three candidate procedures: LQR with predictors X and Z;
QRF with predictors X and Z; linear regression quantile with predictors X, Z

and
√

X.

Case 2. Based on Case 1, to allow more complexity, we modified the scale
function from σf (x, z) ≡ σ to σf (x, z) = σ

√
x.

Case 3. To avoid “picking the best parameter setting to favor one’s own
method”, we randomly generated coefficients β = (β1, · · · , β6), with βi

i.i.d.∼
Unif[0.5, 2.5] for i = 1, . . . , 6, for each data set. The true model was Y = β′X+σε,
where X = (X1, . . . , X6) has independent N(0, 1) components, and ε was either
from a standard normal distribution or a shifted gamma with mean zero and
variance one. Two hundred sets of coefficients were generated this way for each
of which the losses of the competing procedures were calculated.

Case 4. The model was Y = β′X + 2 exp(−0.35X2 − 1.1X3) + σε
√

X2
2 + 0.8X2

4

and the other aspects were the same as in Case 3.

4.3. Results

We give graphical summaries of the overall performance of the combined
estimator relative to the best candidate under the two loss functions. Here the
best candidate refers to the one which has the smallest mean WICE (or WIAE)
under the corresponding weighting function. The plots are in Figures 2 and 3.

We are also interested in performance at fixed values of τ . We compute the
L1 risks in estimating qτ (along with the simulation standard errors) for several
values of τ . The results are given in Table 1 for Case 1 (as an example). Note
that the optimal λ given in the tables is τ -dependent.

The results are summarized as follows (although some are not given in this
paper due to space limitation).

1. For the σ and error distributions considered, when τ was near either zero or
one, QRF had observed coverage probability closer to the nominal level τ than
LQR. But LQR performed better in the middle range of τ .
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(Case 1 and Case 2) The plots give risk ratios of AQRM to that of the best candidate.

Figure 2. Summary plot for Case 1 and Case 2.

2. The L1 risk of QRF for estimating qτ (x) was often the largest, compared
to the other two candidates, when σ was small (σ ≤ 0.707), and often the
smallest when σ was large (σ ≥ 2). This and the item above indicate that it
is unwise to use a single quantile regression estimator for all τ values.

3. AQRM performed well. For the error distributions considered and almost all
τ , when σ ≥ 2, AQRM basically tied with or performed better than the best
candidate, both in terms of observed coverage probability and in L1 risks (see
Table 1).

4. The two performance measures are quite different. For example, the best
candidate estimator under the coverage error was not the same as that under
the L1 error. Also, AQRM did not improve over the candidates under the L1

error, but did so significantly under the coverage error when σ was not small.

5. The random coefficient cases reveal substantial advantages of AQRM. At the
noise levels considered, the coverage errors of AQRM were consistently smaller
than those of the candidates. Because the coefficients were randomly gener-
ated, the ranking of LQR versus QRF changed as well, in such cases the
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(Case 3 and Case 4) The plots give the risk ratios of AQRM to that of the best candidate.

Figure 3. Summary plot for Case 3 and Case 4.

Table 1. L1 risks at fixed τ for Case 1 under normal errors.

σ = 2 τ = 0.05 τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.95

Best candidate 1.1594(0.0136) 0.9566(0.0130) 0.6845(0.0081) 1.0022(0.0153) 1.2619(0.0048)

Combined with optimal λ 0.8132(0.0055) 0.8077(0.0042) 0.8149(0.0026) 0.8683(0.0041) 0.9216(0.0088)

combined estimator can be much better than any fixed choice of the candi-
dates.

5. Examples

5.1. Two regression data sets

The data set Autoprice is from the UCI machine learning repository. There
are n = 159 observations with 14 continuous variables and one nominal variable.
After inspecting the data, we decided to take logarithmic transformation on the
response variable price and removed three outliers: #149, #151 and #153. The
two candidate quantile regression methods were the LQR and QRF. In LQR, the
best submodel selected by AIC via backward elimination was used.

In Table 2, we choose six distinct values of λ to assess its influence. To
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Table 2. Weighted Integrated Coverage Errors (×10−2) for Autoprice data.

Method LQR QRF λ = 0 λ = 0.5 λ = 1 λ = 3 λ = 6 λ = 10

Uniform 6.20 1.40 1.03 1.05 1.00 1.11 1.41 1.56

Beta(0.8,0.8) 7.09 1.36 1.09 1.11 1.06 1.15 1.44 1.56

Table 3. Mis-coverages at fixed τ for Autoprice data.
τ 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Best candidate 0.001(0.003) 0.021(0.003) 0.024(0.006) 0.009(0.006) 0.011(0.005) 0.038(0.003) 0.019(0.002)

Combined with λ = 1 0.007(0.003) 0.011(0.004) 0.001(0.006) 0.014(0.006) 0.001(0.005) 0.009(0.003) 0.007(0.003)

Table 4. Weighted Integrated Coverage Errors (×10−2) for Landrent data.

Method LQR QRF Plug-in λ = 0 λ = 0.5 λ = 1 λ = 3 λ = 6 λ = 10

Uniform 2.88 2.44 2.11 2.96 2.03 1.83 1.61 1.62 1.64

Beta(0.8,0.8) 3.32 2.29 2.05 2.78 1.96 1.75 1.53 1.54 1.57

Table 5. Mis-coverage at fixed τ for Landrent data.
τ 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Best candidate 0.008(0.004) 0.016(0.007) 0.012(0.009) 0.009(0.010) 0.029(0.008) 0.001(0.006) 0.007(0.005)

Combined with λ = 3 0.008(0.004) 0.011(0.006) 0.002(0.009) 0.014(0.010) 0.013(0.008) 0.010(0.006) 0.005(0.005)

compare the quantile regression procedures, we randomly chose 75% of all data
for training (including weight construction for combining the procedures), and
the remaining 25% for final performance evaluation. This was repeated another
199 times through random partitioning of the data, and the final coverage per-
formance (WICE) in Table 2 is the average over all 200 repetitions.

We also report mis-coverages along with permutation standard errors for
several τ values in Table 3. The numerical results are summarized below.

1. QRF performed better than LQR under both weighting functions, although
LQR was slightly more accurate in terms of coverage probability than QRF
when τ was near 0.5 (see Figure 4).

2. The combined estimators achieved better accuracy under both weighting func-
tions as long as λ was not too large.

3. AQRM had good performance under almost all τ .

Our second data set, Landrent (see Weisberg (2005)), has 67 observations.
The response Y is the average rent per acre planted to alfalfa. There are four
predictors.

Besides LQR and QRF, we also included a plug-in estimate (see, e.g., Cai
(2002)), which is based on linear regression of Y on X1, . . . , X4, with step-
wise selection of the variables based on AIC. We used an estimate of the form
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Coverage performance comparison for Autoprice data

Mis-coverages for AQRM and candidate estimators at different probability levels for Autoprice data.

Figure 4. Summary plot for Autoprice data.

Coverage performance comparison for Landrent data

Mis-coverages for AQRM and candidate estimators at different probability levels for Landrent data.

Figure 5. Summary plot for Landrent data.

q̂τ (x) = m̂(x) + Φ−1(τ) × σ̂, where both m̂(x) and σ̂ were obtained from the se-
lected model. The graphical diagnostics on the residuals did not provide strong
evidence against the normality assumption. We used 80% of all data for training
(including weight construction), and the remaining 20% was reserved for per-
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formance evaluation. The final coverage performance (WICE) in Table 4 is the
average over 200 repetitions.

We reach the conclusions that follow:

1. Among the candidates, the plug-in method performed the best under both
weighting functions, possibly because the normal linear model describes the
data very well.

2. LQR performed the best only when high weights were put on moderate τ

values (results are not presented here), where it has an advantage over the
other two competing methods.

3. The combined estimators achieved better estimation accuracy under both
weighting functions for all λ′s that were not too small.

4. Simple averaging did not produce better coverage probability over the best
candidate under either weighting function.

Figures 4 and 5 present the coverage performance for each candidate and
our combined estimator as a function of τ for the two data sets. They show that
our method had good performance under most τ , especially under very large or
very small values of τ .

5.2. A time series

Consider the following methods (for details, see e.g., Allen, Boudoukh and
Saunders (2004)).

1. The standard GARCH(p, q) model with Gaussian innovations:

yt = β0 + εt, εt = σtzt, zt
i.i.d.∼ N(0, 1),

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

θjσ
2
t−j .

2. The “historical simulation” method that simply uses the sample quantile of a
given number (such as 100 or 500) of the most recent observations. A critique
on this method can be found in Pritsker (2001).

In the financial markets, Value-at-Risk (VaR) is defined as the predicted
worst-case loss with a specific confidence level (for example, 95%) over a period
of time (for example, 1 day). Here we consider VaR estimation of the daily index
distribution for the S&P500 energy sector with data from January 3, 2000 to
November 10, 2006 (available at http://www.globalfinancialdata.com). By
examining the autocorrelation plot of this series, we decided to apply our can-
didate procedures to the differenced series. The candidates were the GARCH(1,

http://www.globalfinancialdata.com
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Table 6. Observed coverage probabilities for S&P500 energy series.

GARCH(1,1) HS(100) HS(250) λ = 0

τ = .01 0.029 0.012 0.000 0.000

τ = .05 0.070 0.029 0.000 0.000

τ = .10 0.116 0.047 0.000 0.006

τ = .90 0.872 0.761 0.552 0.720

τ = .95 0.953 0.837 0.727 0.855

τ = .99 0.988 0.930 0.901 0.971

Avg mis-coverage 0.0147 0.0645 0.1366 0.0746

λ = 0.5 λ = 1 λ = 3 λ = 6 λ = 10

τ = .01 0.000 0.000 0.000 0.006 0.006

τ = .05 0.058 0.058 0.064 0.070 0.070

τ = .10 0.110 0.110 0.110 0.116 0.116

τ = .90 0.890 0.883 0.878 0.884 0.884

τ = .95 0.959 0.953 0.953 0.953 0.953

τ = .99 0.971 0.983 0.988 0.988 0.988

Avg mis-coverage 0.0112 0.0093 0.0102 0.0103 0.0103

1) model, historical simulation with up to 100 (HS100) and 250 (HS250) most
recent observations. The historical simulation method with more than 250 obser-
vations was tried (not shown here), but gave much worse coverage performance.
For constructing the combined estimate, we initialized the estimation of the can-
didate methods with T0 = 200, and updated both the estimators and weights
sequentially. We estimated VaR at τ = 0.01, 0.05, 0.1, 0.9, 0.95, 0.99, since VaR
with moderate τ is of little interest to the market analysts. We used the last 10%
of the series for evaluation.

In Table 6, we report the observed coverage probabilities at each chosen τ

value for all procedures.

1. HS100 performed the best at 1% but, for all other quantiles, GARCH(1, 1)
performed the best among the candidates.

2. Our combined estimate with a tuning parameter of min(τ, 1− τ) achieved the
best overall performance at the elected τ values.

3. Simple average (i.e., λ = 0) performed rather poorly, suggesting the need for
intelligent model combining methods such as AQRM.

6. Concluding Remarks

A lot of work has been done on the estimation of conditional quantiles.
Although many of the proposed parametric methods work well asymptotically,
for any realized data with a moderate sample size, insufficient extreme observa-
tions typically impair their estimation accuracy at high/low quantiles even if the
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assumed underlying model (e.g., linear quantile functions) is proper. Nonpara-
metric methods can improve in some aspects, especially for extreme quantiles (as
is seen in this work).

Choosing a model (or procedure) from a list for quantile regression can be
very challenging. As in other contexts, model selection instability, which can
substantially affect estimation/prediction accuracy, is a major issue that should
not be ignored. The simulation and examples in this paper show that the candi-
date procedures performed very differently (relatively speaking) at moderate and
extreme quantiles. Thus, selecting a single model based on a traditional model
selection criterion is not a good idea for estimating multiple quantiles.

A good approach to address the aforementioned difficulties is the use of
model (or procedure) combining as an alternative to choosing one. Under mild
regularity conditions, we showed that our proposed estimator performs as well
as the best individual candidate in terms of the asymmetric linear risk, with a
cost that vanishes at O(n−1/2) rate. Simulation examples clearly demonstrated
that our method yields improved performance in terms of better overall coverage
probability when error standard deviation is not small. The example of the
financial series S&P500 energy demonstrates that our approach can be very useful
for Value-at-Risk estimation.

In summary, for the reasons of model selection uncertainty and the typical
dependence of the best candidate quantile regression method on the probability
level, model combination methods have a great potential for reliable performance.
Our proposed method AQRM can integrate the advantages of general candidate
procedures that occur at different probability levels, and thus globally improve
over them.
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