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Abstract: In this paper, we extend to generalized linear models the robust model

selection methodology of Müller and Welsh (2005). As in Müller and Welsh (2005),

we combine a robust penalized measure of fit to the sample with a robust measure of

out of sample predictive ability that is estimated using a post-stratified m-out-of-n

bootstrap. The method can be used to compare different estimators (robust and

nonrobust) as well as different models. Specialized to linear models, the present

methodology improves on Müller and Welsh (2005): we use a new bias-adjusted

bootstrap estimator which avoids the need to include an intercept in every model

and we establish an essential monotonicity condition more generally.

Key words and phrases: Bootstrap model selection, generalized linear models,

paired bootstrap, robust estimation, robust model selection, stratified bootstrap.

1. Introduction

Model selection is fundamental to the practical application of statistics and
there is a substantial literature on the selection of linear regression models. A
growing part of this literature is concerned with robust approaches to selecting
linear regression models: see Müller and Welsh (2005) for references. The litera-
ture on the selection of generalized linear models (GLM; McCullagh and Nelder
(1989)) and related marginal models fitted by generalized estimating equations
(GEE; Liang and Zeger (1986)) is much smaller and has only recently incorpo-
rated robustness considerations. Hurvich and Tsai (1995) and Pan (2001) devel-
oped Akaike information criteria (AIC) based on the quasi-likelihood, Cantoni,
Mills Flemming and Ronchetti (2005) presented a generalized version of Mallows’
Cp, and Pan and Le (2001) and Cantoni, Field, Mills Flemming and Ronchetti
(2007) presented approaches based on the bootstrap and cross-validation, re-
spectively. Our purpose in this paper is to generalize the robust bootstrap model
selection criterion of Müller and Welsh (2005) to generalized linear models.

The extension of the methodology of Müller and Welsh (2005) from linear
regression to generalized linear models is less straightforward than we expected
and, as a result, the present paper differs from Müller and Welsh (2005) in
two important respects. First, the bias-adjusted m-out-of-n bootstrap estimator
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β̂c∗
α,m−E ∗(β̂c∗

α,m− β̂c
α) rather than β̂c∗

α,m is used in estimating the expected predic-

tion loss M
(2)
n (α) (definitions are given in Section 2). As discussed in Section 3.2,

this avoids having to include an intercept in every model. Second, we present
a simpler, more general method than that used in Müller and Welsh (2005) for
showing that the consistency result applies to particular robust estimators of the
regression parameter. As discussed in Section 3.3, we use generalized inverse ma-
trices to decompose the asymptotic variance of the estimator into terms that are
easier to handle, write the trace as a simple sum, and show that the terms in this
sum have the required properties. Both of these changes were necessitated by
the more complicated structure of generalized linear models but they also apply
to regression models where they represent improvements to the methodology of
Müller and Welsh (2005).

Suppose that we have n independent observations y = (y1, . . . , yn)T and
an n × p matrix X whose columns we index by {1, . . . , p}. Let α denote any
subset of pα distinct elements from {1, . . . , p}, let Xα denote the n × pα matrix
with columns given by the columns of X whose indices appear in α and let xT

αi

denote the ith row of Xα. Then a generalized linear regression model α for the
relationship between the response y and explanatory variables X is specified by

E (yi) = h(ηi), and Var (yi) = σ2v2(ηi) with ηi = xT
αiβα, i = 1, . . . , n, (1.1)

where βα is an unknown pα-vector of regression parameters and σ is an unknown
scale parameter. Here h is the inverse of the usual link function and, for simplic-
ity, we have absorbed h into the variance function v. Both h and v are assumed
known. Let A denote a set of generalized linear regression models (1.1). The pur-
pose of model selection is to choose one or more models α from A with specified
desirable properties.

Our perspective on model selection is that a useful model should (i) parsi-
moniously describe the relationship between the sample data y and X, and (ii)
be able to predict independent new observations. The ability to parsimoniously
describe the relationship between the sample data can be measured by apply-
ing a penalised loss function to the observed residuals and we use the expected
variance-weighted prediction loss to measure the ability to predict new observa-
tions. Müller and Welsh (2005) showed there are practical (as well as philosoph-
ical) benefits to using both criteria. In addition, we encourage consideration of
different types of estimator of each of the models. Possible estimators include
the nonrobust maximum likelihood (see Künsch, Stefanski and Carroll (1989),
Cantoni and Ronchetti (2001) and Ruckstuhl and Welsh (2001)) and maximum
quasi–likelihood estimators (see McCullagh and Nelder (1989)), and the robust
estimators of Preisser and Qaqish (1999), Cantoni and Ronchetti (2001), and
Cantoni (2004).
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We define a class of robust model selection criteria in Section 2, present our
theoretical results in Section 3, report the results of a simulation study in Section
4, present a data example in Section 5, and conclude with a short discussion in
Section 6. The proof of the main theorem and some additional theoretical results
are presented in the online supplement available at http://www.stat.sinica.

edu.tw/statistica.

2. Robust Model Selection Criterion

Let C denote a set of estimators, let β̂c
α denote an estimator of type c ∈ C of

βα under (1.1), let ρ be a nonnegative loss function, let δ be a specified function
of the sample size n, and let ỹ be a vector of future observations at X that are
independent of y. Then, we choose models α from a set A fitted by method c ∈ C
for which the criterion function

M(α) =
σ2

n

{
E

n∑
i=1

wαiρ
[yi − h(xT

αiβ̂
c
α)

σv(ηi)

]
+ δ(n)pα

+E
( n∑

i=1

wαiρ
[ ỹi − h(xT

αiβ̂
c
α)

σv(ηi)

] ∣∣∣ y,X

)}
(2.1)

is small. In practice, we often supplement this criterion with graphical diagnostic
methods that explore the quality of the model in ways that are not amenable to
simple mathematical description.

As in Müller and Welsh (2005) we separate the estimators β̂c
α and ρ because

we want to compare different estimators, and linking ρ to any one of these esti-
mators may favour that estimator. We are interested in fitting the core data and
predicting core observations rather than those in the tail of the distribution, so
take ρ to be constant for sufficiently large |x|. The simplest such function (and
the one we use in all our computations) is

ρ(z) = min(z2, b2); (2.2)

as in Müller and Welsh (2005), we use b = 2. Smoother versions of ρ such as are
required for theoretical results are easily defined and we can, when appropriate
to the problem, use asymmetric ρ functions. The weights wαi are Mallows’ type
weights which may be included for robustness in the X space, but can and often
will be constant. The only restrictions on the function δ are that δ(n) → ∞ and
δ(n)/n → 0 as n → ∞. A common choice is δ(n) = 2 log(n) (e.g. Schwarz (1978)
and Müller and Welsh (2005)). When we us the penalized loss function alone, δ

has to be of higher order than O(log log n), as shown in Qian and Field (2002,
Thms. 1−3) for logistic regression models.

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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When needed, σ is estimated from the Pearson residuals {yi − h(xT
αf iβ̂

c
αf

)}/
v(xT

αf iβ̂
c
αf

), i = 1, . . . , n, from a “full” model αf . A “full” model is a large
model (often assumed to be the model {1, . . . , p}) which produces a valid measure
of residual spread (but hopefully not so large that we incur a high cost from
overfitting). We omit the subscript αf and denote the estimator of σ by σ̂c

for notational simplicity. Then we estimate the penalized in-sample term in the
criterion function (2.1) by σ̂c2{M (1)

n (α) + n−1δ(n)pα}, where

M (1)
n (α) = n−1

n∑
i=1

wc
αiρ

{
yi − h(xT

αiβ̂
c
α)

σ̂cv(xT
αf iβ̂

c
αf

)

}
. (2.3)

Next, we implement a proportionally allocated, stratified m-out-of-n bootstrap of
rows of (y,X) in which we (i) compute and order the Pearson residuals, (ii) set the
number of strata K at between 3 and 8 depending on the sample size n, (iii) set
stratum boundaries at the K−1, 2K−1, . . . , (K − 1)K−1 quantiles of the Pearson
residuals, (iv) allocate observations to the strata in which the Pearson residuals
lie, (v) sample #(observations in stratum k)m/n (rounded as necessary) rows of
(y,X) independently with replacement from stratum k so that the total sample
size is m, (vi) use these data to construct the estimator β̂c∗

α,m, repeat steps (v) and
(vi) B independent times and then estimate the conditional expected prediction
loss by σ̂c2M

(2)
n (α), where

M (2)
n (α) = n−1E ∗

n∑
i=1

wc
αiρ

(
yi − h[xT

αi{β̂c∗
α,m − E ∗(β̂c∗

α,m − β̂c
α)}]

σ̂cv(xT
αf iβ̂

c
αf

)

)
(2.4)

and E ∗ denotes expectation with respect to the bootstrap distribution. Combin-
ing (2.3) and (2.4), we estimate the criterion function (2.1) by

Mn(α) = σ̂c2{M (1)
n (α) + n−1δ(n)pα + M (2)

n (α)}. (2.5)

The stratified bootstrap ensures that we obtain bootstrap samples that are
similar to the sample data (observations in the tails of the residual distribution
and outliers or, with categorical data, groups of categories are represented in each
bootstrap sample; this makes computation faster and more stable). The optimal
m depends on the true model; as in Müller and Welsh (2005), we suggest using
n/4 ≤ m ≤ n/2 for moderate n (50 ≤ n ≤ 200). If n is small, m is small and the
parameter estimators do not converge for some bootstrap samples (though this
problem is reduced by the stratified bootstrap); if n is large, m can be smaller
than n/4. Choosing 3 ≤ K ≤ 8 is suggested for sample surveys (e.g., Cochran
(1977, pp. 132-134)) and seems to work well in practice. The estimated variance
function is estimated from a “full” model so does not change with the model α.
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This simplifies and makes the procedure more stable. Finally, we use the bias-
adjusted bootstrap estimator β̂c∗

α,m − E ∗(β̂c∗
α,m − β̂c

α) rather than the bootstrap

estimator β̂c∗
α,m in M

(2)
n (α).

The computational burden of model selection is reduced by using the strat-
ified bootstrap and can be reduced further by limiting the number of different
estimators we consider, and by reducing the number of models in A. We use
an eclectic mix of methods including robust versions of deviance-tests, search
schemes, diagnostics, etc., to produce a relatively small set A of competing mod-
els which we then compare using (2.5). We present a backward search algorithm
in Section 3.4 that substantially reduces the number of models to be considered
in practice.

3. Theoretical Results

Our procedure is intended to identify useful models that make Mn(α) small
whether or not a true model exists. If (i) a true model α0 exists and (ii)
α0 ⊆ {1, . . . , p}, then consistency in the sense that a procedure identifies α0

with probability tending to one is a desirable property. In this section, we show
that choosing the model which minimises Mn(α) is consistent. Specifically, for
c ∈ C, we define

α̂c
m,n = argmin

α∈A
Mn(α), (3.1)

and develop conditions under which, for each c ∈ C,

lim
n→∞

P{α̂c
m,n = α0} = 1. (3.2)

3.1. Conditions

Define the subset of correct models Ac to be the set of models α ∈ A such
that α0 ⊆ α; all other models are called incorrect models. For any correct model
α ∈ Ac, the errors εαi = yi − h(xT

αiβα) satisfy εαi = εα0i for i = 1, · · · , n, and
the components of βα corresponding to columns of Xα which are not also in α0

equal zero. To simplify stating the conditions and the proof of the main result,
write

hαi = h(xT
αiβα), h′

αi = h′(xT
αiβα), h

′′
αi = h′′(xT

αiβα),
σi = σv(xT

αf iβαf
), εα0i = εi,

ψ(x) = ρ′(x), ψi = ψ(εi/σi), and ψ′
i = ψ′(εi/σi).

Then we require the following conditions.

(i) The pα × pα matrix n−1XT
α WΓαXα → Γα, where WΓα = (1/2) diag(σ−2

1 wα1

(h
′2
α1Eψ′

1−h
′′
α1Eψ1), . . . , σ−2

n wαn(h
′2
αnE ψ′

n−h
′′
αnEψn)) and Γc

α is of full rank.
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(ii) For all models α ∈ A (including the full model), the estimators β̂c
α − βα =

Op(n−1/2), σ̂c − σ = Op(n−1/2) with σ > 0. For all correct models α ∈ Ac,
nVar (β̂c

α) = Σα + op(1), where Σα is of full rank, and for any two correct
models α1, α2 ∈ Ac such that α1 ⊂ α2,

trace(Σα2Γα2) − trace(Σα1Γα1) > 0. (3.3)

(iii)For all models α ∈ A, the bootstrap estimator β̂c∗
αm → βα in probability. For

all correct models α ∈ Ac, mVar ∗(β̂c∗
αm) = nκcVar (β̂c

α) + op(1).

(iv) The sequence δ(n) = o(n/m) and m = o(n).

(v) The derivatives ψ = ρ′ and ψ′ exist, are uniformly continuous, bounded,
Var (εiψi) < ∞, and Eψ′(εi) > 0, i = 1, . . . , n.

(vi) The weights are bounded, h and its first two derivatives are continuous, σ

and v are both positive, and v′ is bounded.

(vii)The xi are bounded.

(viii)For any incorrect model α, lim infn→∞ M
(1)
n (α) > limn→∞ M

(1)
n (α0) a.s..

Condition (i) is a generalization of a standard condition for fitting regression
models that we require for generalized linear models. Condition (ii) is satisfied by
many estimators; the monotonicity condition (3.3) restricts the estimators we can
consider in C but allows us to include maximum likelihood and other estimators
such as the Cantoni and Ronchetti (2001) estimator. Condition (iii) specifies the
required properties of the bootstrap parameter estimator. In contrast to Müller
and Welsh (2005), we do not have to impose conditions on the asymptotic bias
of the bootstrap estimator. Combining (ii) and (iii), we obtain Var ∗(β̂c∗

αm) =
m−1κcΣα + op(m−1). Conditions (v)-(vii) enable us to make various two-term
Taylor expansions and to control the remainder terms. We require a higher
level of smoothness than exhibited by the ρ-function (2.2), but there are many
functions satisfying these properties. We do not require Eψi = 0 in (v) (and it
is not implied by (ii)) because ρ is not linked to any estimator in C. Condition
(viii) is a generalisation of Condition (C4) of Shao (1996) to allow a more general
choice of ρ(·).

We have specified a simple set of sufficient conditions (particularly in condi-
tions (v)-(vii)) that are appropriate for a robust ρ function and generalized linear
models. However, we note that we can specify alternative and simpler conditions
for particular cases. For example, we obtain alternative conditions if we allow
the xi to be stochastic; see for example Shao (1996, Condition C3. b.). We can
simplify our conditions if we use the nonrobust function ρ(x) = x2; again see
Shao (1996, p.661). Even in the robust case, simpler conditions can be given for



ROBUST MODEL SELECTION 1161

homoscedastic linear models because h(x) = x, v(x) = 1. These possibilities are
tangential to our main purpose so we do not pursue them here.

Theorem 3.1. Under conditions (i)−(viii), the consistency result (3.2) holds.

The proof is given in the on-line supplement at http://www.stat.sinica.
edu.tw/statistica.

3.2. The elimination of bias

One of the main difficulties in constructing model selection criteria like
Mn(α) is removing the bias (equivalently the linear term) in the expansion of
M

(2)
n (α). Suppose that instead of the bias-adjusted bootstrap estimator β̂c∗

α,m −
E ∗(β̂c∗

α,m − β̂c
α), we use the bootstrap estimator β̂c∗

α,m in M
(2)
n (α). Then when

we expand M
(2)
n (α) as in Shao (1996), Müller and Welsh (2005), or the proof of

Theorem 3.1, we obtain the linear term

E ∗(β̂∗
α,m − β̂α)T 1

n

n∑
i=1

σ̂−1
i wαixαih

′(xT
αiβ̂α)ψ

(yi − h(xT
αiβ̂α)

σ̂i

)
. (3.4)

As shown in Müller and Welsh (2005), the bias term E ∗(β̂∗
α,m − β̂α) is typically

a function of α with leading term Op(m−1), the same as the quadratic term in
the expansion. Since the quadratic term governs the selection of correct models,
it is crucial that the linear term be at least of smaller order.

There are various ways to make (3.4) of order op(m−1). Ordinarily, the mean
in (3.4) is asymptotic to n−1

∑n
i=1 σ−1

i wαixαih
′
αiEψi which is O(1). However, if

Eψi = 0 (as in Shao (1996)), then it can be Op(n−1/2) which can be made
op(m−1). It holds when ψ(x) = x, but this is a nonrobust choice and hence
unappealing in general. Müller and Welsh (2005) made each model contain an
intercept and centered the explanatory variables to have mean zero so the bias
would be forced into the intercept. The intercept can be eliminated by replacing
the intercept of the bootstrap estimator by that of the estimator β̂α, or by fixing
the intercept at that estimated under a “full” model. This approach is much less
attractive here because the centering vector has to include estimates of σi, E ψi

and h′
αi so is stochastic, and the centered explanatory variables cannot be simply

conditioned on. Even if we overcome these difficulties, the arguments in the next
subsection do not apply unless the model is fitted with the same covariates as
the model selection criterion uses, so this approach is not attractive.

A different approach would be to require as in Müller and Welsh (2005)
that E ∗(β̂∗

α,m − β̂α) = m−1Bα + op(m−1), estimate Bα, and then adjust the
criterion by subtracting off an estimate of (3.4). Although this would remove the
bias, it would contribute to the quadratic term and affect the consistency proof.

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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Moreover, the new criterion would lack natural interpretability. It is better to
adjust the bootstrap estimator β̂∗

α,m for bias. We only need the leading term
but we would need to derive and estimate Bα for each estimator we consider.
Fortunately, we have the bias in the natural form E ∗(β̂∗

α,m − β̂α) so we can

remove it entirely. This is the solution we have adopted in M
(2)
n (α).

3.3. The monotonicity of trace(ΣαΓα)

The assumption (ii) that trace(ΣαΓα) is monotone in pα does not hold in
general for arbitrary positive semi–definite matrices Σα and Γα. However Müller
and Welsh (2005) proved that, for linear regression models, the condition holds for
the class of Mallows type M–estimators or one–step Mallows type M–estimators
etc., because of the relationship between Var (β̂α) and Γα. For generalized linear
models, the maximum likelihood estimator β̂α satisfies

nVar (β̂α) = (XT
α WΣαXα)−1 + op(1),

where WΣα = diag(h
′2
α1/σ2

1, . . . , h
′2
αn/σ2

n) (McCullagh and Nelder (1989, p.43)) so
to establish (3.3) we have to show that

trace
{

(XT
α WΣαXα)−1XT

α WΓαXα

}
is strictly monotone increasing in pα. Reorder the rows of Xα if necessary so
that the top pα × pα submatrix Cα is nonsingular. Then the pα × n matrix
X−

α = (C−1
α , 0) is a generalized inverse of Xα, so XαX−

α = blockdiag(Ipα , 0) and

trace
{

(XT
α WΣαXα)−1XT

α WΓαXα

}
= trace

(
XαX−

α W−1
Σα

XαX−
α WΓα

)
=

1
2

pα∑
i=1

wαi
h

′2
αiEψ′

i − h
′′
αiEψi

h
′2
i

.

Since h
′2
αiEψ′

i > 0, the simplest sufficient condition for monotonicity is

h
′′
αiEψi ≤ 0, i = 1, . . . , n. (3.5)

We show in the supplementary on-line material (http:www.stat.sinica.edu.
tw/statistica) that (3.5) is also a sufficient condition for monotonicity of the
Mallows quasi–likelihood estimator of Cantoni and Ronchetti (2001, Sec. 2.2).

Condition (3.5) holds if E ψi = 0 or h
′′
αi = 0. The first case occurs when

(i) ρ(x) = x2 or (ii) the εi = yi − hαi have a distribution which is symmetric
about zero and ψ is antisymmetric, and the second when we use the identity
link so h(x) = x. Shao (1996) exploited (i), but this choice favours least squares
estimation and is non-robust so we prefer not to use it; (ii) applies to Gaussian

http:www.stat.sinica.edu.tw/statistica
http:www.stat.sinica.edu.tw/statistica
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models but not to models with asymmetric distributions. Similarly, the identity
link is widely used in Gaussian models and may be used in gamma models, but
is not useful in binomial and Poisson models. In these cases, we need to examine
(3.5) more carefully. We show in the on-line supplementary material that (3.5)
holds for the binomial distribution with the logistic link, and for right skewed
distributions with the log or reciprocal link provided b in (2.2) is large enough.

3.4. The reduction of models

For any incorrect model α ∈ A \Ac it follows from condition (vi) in Section
3.1 and the proof of the theorem, that for fixed pαf

we have

lim inf
n→∞

min
α∈A\Ac

Mn(α) > lim
n→∞

max
α∈Ac

Mn(α0) a.s.. (3.6)

Equation (3.6) ensures that backward model selection schemes based on Mn(α)
are consistent for the true model if A is the set of all possible 2pαf submodels.
We therefore suggest using the following backward selection algorithm if pαf

is
large.

1. Calculate Mn(α) for the full model αf = {1, . . . , pαf
} and αf,−i = {1, . . . , pαf

}
\{i}, i = 1, . . . , pαf

, resulting in {Mn(α) : #α ≥ pαf
− 1}.

2. Set αf = argmin{#α≥pαf
−1} Mn(α) and repeat 1. if αf ≥ 2.

3. Estimate α by argmin Mn(α) over all 1 +
∑pαf

i=1 i = 1 + k(k + 1)/2 considered
models.

An example of the solution paths of all submodels and of the backward selected
submodels is given in Figure 1 in Section 5.

4. Simulation Study

In this section we present simulation results for Poisson regression models

yi ∼ Poi(µi), ηi =log µi =β1 + β2x2i + β3x3i + β4x4i + β5x5i + β6x6i, i=1, . . . , n,

(4.1)
which compared the proposed robust model selection criterion with the maximum
likelihood (β̂ML) and Cantoni and Ronchetti (2001) estimators (β̂CR) computed
using the R functions glm.fit and glmrob, respectively. All the simulations
used b = 2 in (2.2), δ(n) = 2 log(n), and were based on 500 simulation runs so
the standard errors of the estimated model selection probabilities were less than
0.023.

We first considered 4-parameter cases with n = 64 observations generated
with parameter vectors (1, 0, 0, 0), (−1, 2, 0, 0), and (−1, 1, 1, 0). The explanatory
variables were generated from the multivariate normal distribution with mean
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Table 1. Estimated selection probabilities with no outlying points.

β̂ML β̂CR

true βT model type AIC BIC α̂s8
m,n α̂s8

m,n

(1, 0, 0, 0) (β1, 0, 0, 0) α0 0.58 0.60 0.90 0.89
(β1, β2, 0, 0) Ac 0.10 0.10 0.02 0.03
(β1, 0, β3, 0) Ac 0.13 0.13 0.04 0.05
(β1, 0, 0, β4) Ac 0.13 0.12 0.03 0.03
(β1, β2, β3, 0) Ac 0.03 0.02 0.00 0.00
(β1, β2, 0, β4) Ac 0.02 0.02 0.00 0.00
(β1, 0, β3, β4) Ac 0.02 0.02 0.00 0.00
(β1, β2, β3, β4) Ac 0.00 0.00 0.00 0.00

(−1, 2, 0, 0) (β1, 0, 0, 0) – 0.00 0.00 0.00 0.00
(β1, β2, 0, 0) α0 0.65 0.67 0.94 0.93
(β1, 0, β3, 0) – 0.00 0.00 0.00 0.00
(β1, 0, 0, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, 0) Ac 0.15 0.15 0.03 0.03
(β1, β2, 0, β4) Ac 0.17 0.16 0.03 0.03
(β1, 0, β3, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, β4) Ac 0.03 0.02 0.00 0.00

(−1, 1, 1, 0) (β1, 0, 0, 0) – 0.00 0.00 0.00 0.00
(β1, β2, 0, 0) – 0.00 0.00 0.00 0.00
(β1, 0, β3, 0) – 0.00 0.00 0.05 0.07
(β1, 0, 0, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, 0) α0 0.81 0.82 0.91 0.89
(β1, β2, 0, β4) – 0.00 0.00 0.00 0.00
(β1, 0, β3, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, β4) Ac 0.19 0.18 0.03 0.04

(1, 1, 1) and identity covariance matrix. For the criterion α̂, we used m = 24
with K = 8 equal-sized strata based on the Pearson residuals from the full model
and B = 50 bootstrap samples. Selection probabilities are presented in Table
1. Without outliers, the overall performance of the selection criterion α̂ was
superior to classical criteria such as the AIC and BIC criterion independently
of the chosen estimation procedure. For example, for (1, 0, 0, 0), the selection
probabilities of the true model using β̂ML are 0.58 for AIC, 0.60 for BIC, 0.90
for α̂, and using β̂CR the estimated probability was 0.89 for α̂.

Although the results are not reported here, we repeated the experiment with
random explanatory variables (i.e. different in each simulation run) and obtained
essentially indistinguishable results from those in Table 1. This suggests that our
procedure works as well with random explanatory variables as with fixed ones.
In both cases, we also repeated the simulation with m = 16 and m = 32, and
confirmed that the results were insensitive to the choice of m in the recommended
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Table 2. Estimated selection probabilities with eight moderately outlying points.

β̂ML β̂CR

true βT model type AIC BIC α̂s8
m,n α̂s8

m,n

(1, 0, 0, 0) (β1, 0, 0, 0) α0 0.41 0.42 0.94 0.94
(β1, β2, 0, 0) Ac 0.12 0.12 0.02 0.02
(β1, 0, β3, 0) Ac 0.07 0.07 0.02 0.02
(β1, 0, 0, β4) Ac 0.25 0.24 0.03 0.02
(β1, β2, β3, 0) Ac 0.04 0.04 0.00 0.00
(β1, β2, 0, β4) Ac 0.06 0.05 0.00 0.00
(β1, 0, β3, β4) Ac 0.05 0.05 0.00 0.00
(β1, β2, β3, β4) Ac 0.01 0.01 0.00 0.00

(−1, 2, 0, 0) (β1, 0, 0, 0) – 0.00 0.00 0.00 0.00
(β1, β2, 0, 0) α0 0.01 0.01 0.66 0.78
(β1, 0, β3, 0) – 0.00 0.00 0.00 0.00
(β1, 0, 0, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, 0) Ac 0.00 0.00 0.01 0.02
(β1, β2, 0, β4) Ac 0.79 0.80 0.33 0.20
(β1, 0, β3, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, β4) Ac 0.20 0.19 0.01 0.01

(−1, 1, 1, 0) (β1, 0, 0, 0) – 0.00 0.00 0.00 0.00
(β1, β2, 0, 0) – 0.00 0.00 0.01 0.01
(β1, 0, β3, 0) – 0.00 0.00 0.02 0.07
(β1, 0, 0, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, 0) α0 0.00 0.00 0.55 0.73
(β1, β2, 0, β4) – 0.00 0.00 0.04 0.02
(β1, 0, β3, β4) – 0.00 0.00 0.05 0.03
(β1, β2, β3, β4) Ac 0.99 0.99 0.34 0.13

range.
Next we generated data from the same model (4.1), but added moderate

outliers in the response to the eight observations with largest explanatory vari-
able x4. That is, if rank(x4i) :=

∑n
k=1 1(x4k ≤ x4i) ≥ 57, then yi ∼ Poi(10),

i = 1, . . . , n. The selection probabilities are presented in Table 2. We see that
the proposed selection criterion used with the robust estimator from Cantoni
and Ronchetti (2001) performed outstandingly well. Used with the maximum
likelihood estimator, it still performed very well compared to AIC and BIC. For
example, for (−1, 2, 0, 0), the selection probabilities of the true model using β̂ML

were 0.01 for AIC, 0.01 for BIC, 0.66 for α̂, and using β̂CR the selection proba-
bility was 0.78 for α̂.

For a more severe test, we generated data from (4.1) but added two influential
outliers to the response variable according to the condition that if rank(x4i) ≤ 2
then yi ∼ Poi(100), i = 1, . . . , n. The selection probabilities presented in Table 3
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Table 3. Estimated selection probabilities with two strongly outlying points.

β̂ML β̂CR

true βT model type AIC BIC α̂s8
m,n α̂s8

m,n

(1, 0, 0, 0) (β1, 0, 0, 0) α0 0.00 0.00 0.03 0.97
(β1, β2, 0, 0) Ac 0.00 0.00 0.00 0.01
(β1, 0, β3, 0) Ac 0.00 0.00 0.02 0.01
(β1, 0, 0, β4) Ac 0.00 0.00 0.04 0.00
(β1, β2, β3, 0) Ac 0.00 0.00 0.00 0.00
(β1, β2, 0, β4) Ac 0.00 0.00 0.00 0.00
(β1, 0, β3, β4) Ac 0.05 0.05 0.88 0.00
(β1, β2, β3, β4) Ac 0.95 0.95 0.04 0.00

(−1, 2, 0, 0) (β1, 0, 0, 0) – 0.00 0.00 0.00 0.00
(β1, β2, 0, 0) α0 0.00 0.00 0.17 0.99
(β1, 0, β3, 0) – 0.00 0.00 0.00 0.00
(β1, 0, 0, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, 0) Ac 0.00 0.00 0.04 0.01
(β1, β2, 0, β4) Ac 0.00 0.00 0.15 0.00
(β1, 0, β3, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, β4) Ac 1.00 1.00 0.63 0.00

(−1, 1, 1, 0) (β1, 0, 0, 0) – 0.00 0.00 0.00 0.01
(β1, β2, 0, 0) – 0.00 0.00 0.05 0.06
(β1, 0, β3, 0) – 0.00 0.00 0.00 0.22
(β1, 0, 0, β4) – 0.00 0.00 0.04 0.00
(β1, β2, β3, 0) α0 0.00 0.00 0.00 0.71
(β1, β2, 0, β4) – 0.02 0.02 0.88 0.00
(β1, 0, β3, β4) – 0.00 0.00 0.00 0.00
(β1, β2, β3, β4) Ac 0.98 0.98 0.03 0.00

show that the robust model selection criterion can break down if it is used with
β̂ML but still perform well with robust parameter estimators. For example, for
(−1, 1, 1, 0), the selection probabilities of the true model using β̂ML were 0 for
AIC, BIC, and α̂, but using β̂CR the estimated probability was 0.71 for α̂. The
methods AIC, BIC, and α̂ using β̂ML that use the nonrobust maximum likelihood
estimator all break down in this case. The fact that AIC and BIC essentially
always choose the full model (regardless of the true model) is not desirable and
implies that no model selection is occurring. The poor performance of α̂ using
β̂ML shows that robust model selection requires both a robust criterion and a
robust estimator.

Finally, to explore the effect of correlation in the explanatory variables in
an example more like that considered in the next Section (the largest models
selected have 6 parameters with low correlation between the explanatory vari-
ables), we considered a 6-parameter case with n = 128 observations generated
with parameter vectors (−1, 1, 1, 0, 0, 0), (−2, 1, 1, 1, 0, 0), and (−1, 1, 1,−1, 1, 0),
and the explanatory variables assigned correlation 0.5. For the criterion α̂, we
used m = 32 with K = 8 equal-sized strata and B = 50 bootstrap samples. We
considered all 32 possible models with an intercept but, to save space, report
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Table 4. Estimated selection probabilities with correlated explanatory variables.

β̂ML β̂CR

true βT model type AIC BIC α̂s8
m,n α̂s8

m,n

(−1, 1, 1, 0, 0, 0) (β1, β2, β3, 0, 0, 0) α0 0.63 0.72 0.98 0.98
(β1, β2, β3, β4, 0, 0) Ac 0.13 0.10 0.00 0.01
(β1, β2, β3, 0, β5, 0) Ac 0.10 0.09 0.01 0.01
(β1, β2, β3, 0, 0, β6) Ac 0.09 0.06 0.01 0.01
(β1, β2, β3, β4, β5, 0) Ac 0.02 0.02 0.00 0.00
(β1, β2, β3, β4, 0, β6) Ac 0.02 0.06 0.00 0.00
(β1, β2, β3, 0, β5, β6) Ac 0.01 0.01 0.00 0.00

(−2, 1, 1, 1, 0, 0) (β1, β2, β3, 0, 0, 0) – 0.00 0.00 0.00 0.01
(β1, 0, β3, β4, 0, 0) – 0.00 0.00 0.00 0.00
(β1, β2, β3, β4, 0, 0) α0 0.69 0.76 0.97 0.97
(β1, β2, β3, β4, β5, 0) Ac 0.13 0.12 0.01 0.01
(β1, β2, β3, β4, 0, β6) Ac 0.15 0.11 0.01 0.01
(β1, β2, β3, β4, β5, β6) Ac 0.03 0.02 0.00 0.00

(−1, 1, 1,−1, 1, 0) (β1, 0, β3, 0, β5, 0) – 0.00 0.00 0.02 0.02
(β1, β2, β3, β4, 0, 0) – 0.00 0.00 0.02 0.03
(β1, β2, β3, 0, β5, 0) – 0.00 0.00 0.01 0.02
(β1, 0, β3, β4, β5, 0) – 0.00 0.00 0.01 0.01
(β1, β2, β3, β4, β5, 0) α0 0.84 0.88 0.93 0.91
(β1, β2, β3, β4, β5, β6) Ac 0.16 0.12 0.01 0.01

only those models which at least one method selected three or more times (out
of 500 simulations). The results in Table 4 indicate that the performance of α̂ is
not affected by this level of correlation.

In further simulations (not reported here), we compared the performance
of (2.3) and (2.4) applied separately with that of (2.5). The results confirmed
the finding of Müller and Welsh (2005) that the combined criterion captures the
strengths of the two separate criteria and, over a range of examples, leads to a
better criterion.

5. Data Example

In this section, we analyse data on the diversity of arboreal marsupials (pos-
sums) in montane ash forest (Australia). The dataset described by Lindenmayer
et al. (1991, 1990) is part of the robustbase package in R (possumDiv.rda). The
response is the number of different species (diversity) observed on n = 151
sites. The explanatory variables describe the sites in terms of the number of
shrubs (shrubs), number of cut stumps from past logging operations (stumps),
the number of stags (stags), a bark index (bark, 30 levels), the basal area of aca-
cia species (acacia, 11 levels), a habitat score (habitat, 40 levels), the species of
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Table 5. Selected best model for the Lindenmayer et al. (1990, 1991) data
using a range of model selection procedures.

selection criterion β̂ selected variables in the best model
α̂ β̂CR stags, habitat
α̂ β̂ML stags, habitat

AIC β̂ML stags, bark, acacia, habitat, aspect
BIC β̂ML stags, bark, acacia, aspect

p-value forward stepwise β̂CR stags, bark, acacia, habitat, aspect
p-value forward stepwise β̂ML stags, bark, acacia, habitat, aspect

eucalypt with the greatest stand basal area (eucalypt, 3 nominal levels), and the
aspect of the site (aspect, 4 nominal levels). We calculate α̂ based on β̂CR with
the same specifications as in the simulation study, but because n is larger than
64 we use m = 40 ≈ 0.26n. Table 5 presents a summary of selected best models
which includes also the results of Cantoni and Ronchetti (2001, Sec. 5.2). The
best model according to our criterion Mn(α) includes stags and habitat, which
are also selected if the backward selection algorithm in Section 3.4 is applied.
The solution path of Mn(α) is given in Figure 1 which shows the minimal value
of Mn(α) for all considered models with the same number of variables. Cantoni
and Ronchetti (2001) found four potentially influential data points, namely ob-
servations 59, 110, 133, and 139. Based on the construction of our criterion, its
consistency and the results of our simulation study, we consider α̂ with β̂CR to
be superior to AIC, BIC, and α̂ with β̂ML.

6. Discussion and Conclusions

We have proposed a bootstrap criterion for robustly selecting generalized
linear models. The criterion is a generalization of that developed for regression
models by Müller and Welsh (2005) and has its strengths while still improving
on that criterion. In particular, the criterion (i) combines a robust penalised
criterion (which reflects goodness-of-fit to the data) with an estimate of a robust
measure of the conditional expected prediction error (which measures the ability
to predict as yet unobserved observations), (ii) separates the comparison of mod-
els from any particular method of estimating them, and (iii) uses the stratified
bootstrap to make the criterion more stable. The improvement is achieved by
using the bootstrap to estimate the bias of the bootstrap estimator of the regres-
sion parameter, and then using the bias-adjusted bootstrap estimator instead of
the raw bootstrap estimator in the criterion. This step widens the applicability
of the method by removing the requirement of Müller and Welsh (2005) that the
models under consideration include an intercept. We have also developed a more
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Figure 1. Solution path for argminMn(α) given a fixed number of non zero
slope parameters for all (asm) and backward selected (bsm) submodels.

widely applicable method than that given in Müller and Welsh (2005) for estab-
lishing that the criterion can be applied with particular robust estimators of the
regression parameters. Our main theoretical result establishes the asymptotic
consistency of the method and a simulation study shows that the model selection
method works very well in finite samples.
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1170 SAMUEL MÜLLER AND A. H. WELSH
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