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Supplementary Material

This supplement contains technical details in proving Theorem 1.

Lemma S1. Denote θ = (λ, β, x, t, c) and let Θ = Ωτ

⊗
B
⊗
X
⊗

[0, 1]2 be the product

parameter space for θ. If Assumptions 2-8 hold and hn → 0 and nhn → ∞, the following

expansions hold

sup
λ∈Ωτ ,x∈X ,t,c∈[0,1]

‖Rn(x, λ, β̃n(λ; t))−Rn(x, λ, β(λ, t); t)‖ = op(1), (S1.1)

and

sup
θ∈Θ

Rn(x, λ, β; t) = Op(1). (S1.2)

Proof.

We first establish the following uniform expansion

sup
(λ,β,x,t,c)∈Θ

|Rn(x, λ, β; t)−Rn(x, λ, β(λ, t); t)−E[Rn(x, λ, β; t)]+E[Rn(x, λ, β(λ, t); t)]| = op(1).

(S1.3)

For a fixed θ = (λ, β, x, t, c), denote Zi = {(Xij, Yij), j = 1, . . . .ni} and

ψi(zi, θ) =

ni∑
j=1

I{tij ∈ In,c(t)}I{xij ≤ x}
[
τ − I{y(λ)

ij − xTijβ ≤ 0}
]
.

Define u(zi, θ, d) = sup|θ1−θ2|≤d |ψi(zi, θ1)− ψi(zi, θ2)|, where | · | is taken to be the sup norm

of vectors. With some work one can show

u2(zi, θ, d) = { sup
|θ1−θ|≤d

|ψi(zi, θ1)− ψi(zi, θ2)|}2

≤ ni

ni∑
j=1

{
sup
|θ1−θ|≤d

∣∣∣I{tij ∈ In,c1(t)}I{xij ≤ x1}
[
τ − I{y(λ1)

ij − xTijβ1 ≤ 0}
]

− I{tij ∈ In,c(t)}I{xij ≤ x}
[
τ − I{y(λ)

ij − xTijβ ≤ 0}
]∣∣∣}2

. (S1.4)
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Observing (S1.4), (S1.3) can be proven similarly as Lemma 1 of Mu (2005) under Assump-

tions 2-8. Applying a Taylor expansion, it is easy to show, for any ‖β − β(λ, t)‖ = o(1),

E[Rn(x, λ, β)] = E[Rn(x, λ, β(λ, t))](1 + o(1)).

Substitute this into (S1.3), we obtain

Rn(x, λ, β; t)−Rn(x, λ, β(λ, t); t) = op(1), (S1.5)

where the remainder term in (S1.5) is uniform in (λ, x, t, c) and β : ||β − β(λ, t)|| = o(1).

Thus to verify (S1.1), it suffices to show ‖β̃n(λ; t)−β(λ, t)‖ = op(1). For this purpose, define

β∗n(λ, t) = argminbE{h−1
n I{T ∈ In,c(t)} ·ρτ (Y (T )(λ)−X(T )T b)}. Following similar argument

of Lemma 4 of Mu (2005), we can demonstrate under Assumptions 2-8 that

sup
λ∈Ωτ ,t,c∈[0,1]

∥∥∥β̃n(λ; t)− β∗n(λ, t)
∥∥∥ = Op((nhn)−1/2(log(nhn))1/2).

Denote ϕ(λ, b, t) = E{ρτ (Y (T )(λ) − X(T )T b)|T = t} and recall β(λ, t) = argminbϕ(λ, b, t).

Note that

E{h−1
n I{T ∈ In,c(t)} · ρτ (Y (T )(λ) −X(T )T b)} = E{h−1

n I{T ∈ In,c(t)}ϕ(λ, b, T )},

and by Taylor’s expansion

ϕ(λ, b, t′) = ϕ(λ, b, t) +O(hn) whenever |t′ − t| ≤ hn.

Hence

E{h−1
n I{T ∈ In,c(t)} · ρτ (Y (T )(λ) −X(T )T b)} = h−1

n ϕ(λ, b, t)P (T ∈ In,c(t))(1 +O(hn))

= ϕ(λ, b, t)gT (t)(1 +O(hn)). (S1.6)

It can easily be proved by some elementary arguments that the minimizer β∗n(λ, t) of E{I{T ∈

In,c(t)} · ρτ (Y (T )(λ) −X(T )T b)} approaches the minimizer β(λ, t) of the right-hand side of

(S1.6):

sup
λ∈Ωτ ,t,c∈[0,1]

‖β̃n(λ; t)− β(λ, t)‖ = O(hn). (S1.7)
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(S1.5) and (S1.7) proves (S1.1). To verify (S1.2), it suffices to prove E {supθ∈ΘRn(x, λ, β; t)} =

O(1). But supθ∈ΘRn(x, λ, β; t) = supθ∈Θ |E {Rn(x, λ, β; t)} |+op(1) = Op(1) as a consequence

of (S1.3). This completes the proof of Lemma S1.

Lemma S2. Under the same assumptions for Lemma S1 and Assumption 10, if hn → 0 and

nhn →∞, then (S1.21) and (S1.22) hold.

Proof. As an immediate result of (S1.3), the following expansion holds

Rn(x, λ, β; t)− E[Rn(x, λ, β(λ, t); t)] = op(1), (S1.8)

where the remainder term in (S1.8) is uniform in (λ, x, t, c) and β : ||β− β(λ, t)|| = o(1). As

a consequence of (S1.7) we have

Rn(x, λ, β̃n(λ; t); t)− E[Rn(x, λ, β(λ, t); t)] = op(1), (S1.9)

Recall φ(x, λ, β, tij) = E
{

I{xij ≤ x}
[
τ − F (xTij(β − β(λ, tij)); tij, xij, λ)

]
|tij
}

. Due to As-

sumption 10, φ(x, λ, β, tij) = φ(λ, β, x, t) +O(hn) for any tij ∈ In,c(t). Thus

E[Rn(x, λ, β; t)] =
1

nhn

∑
i,j

E
{

I{tij ∈ In,c(t)}I{xij ≤ x}
[
τ − I{y(λ)

ij − xTijβ ≤ 0}
]}

=
1

nhn

∑
i,j

E {I{tij ∈ In,c(t)}φ(λ, β, x, tij)}

=
1

nhn

∑
i,j

E {I{tij ∈ In,cc(t)}φ(λ, β, x, t) +O(hn)}

= dT (t)φ(x, λ, β, t)(1 +O(hn))) +O(hn), (S1.10)

where Assumption 5 has been applied in the last step of (S1.10). From (S1.9), we obtain

V 0
n (λ; t) =

1

nhn

m∑
i=1

ni∑
j=1

I{tij ∈ In,c(t)} · {E [Rn(xij, λ, β(λ; t); t)] + op(1)}2.

=
1

nhn

m∑
i=1

ni∑
j=1

I{tij ∈ In,c(t)} · {E [Rn(xij, λ, β(λ; t); t)]}2 + op(1). (S1.11)
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We insert (S1.10) into (S1.11) to obtain

V 0
n (λ; t) =

1

nhn

m∑
i=1

ni∑
j=1

I{Tij ∈ In,c(t)} · d2
T (t)φ2(Xij, λ, β(λ, t), t)(1 +O(hn)) +Op(hn) + op(1)

=
d2
T (t)

nhn

m∑
i=1

ni∑
j=1

I{Tij ∈ In,c(t)} · φ2(Xij, λ, β(λ, t), t)(1 +O(hn)) + op(1) (S1.12)

Due to Assumption 10, by similar arguments of Lemma S1, we can demonstrate that

1

nhn

∑
i,j

I{Tij ∈ In,c(t)} · φ2(Xij, λ, β(λ, t), t)

− 1

nhn

∑
i,j

E
{

I{Tij ∈ In,c(t)} · φ2(Xij, λ, β(λ, t), t)
}

= op(1), (S1.13)

where the remainder term is uniform in (λ, t). To avoid repetition, we skip a proof here.

(S1.12) and (S1.13) implies

V 0
n (λ; t) =

d2
T (t)

nhn

m∑
i=1

ni∑
j=1

E
{

I{Tij ∈ In,c(t)} · φ2(Xij, λ, β(λ, t), t)
}

(1 +O(hn))

+ op(hn) + op(1). (S1.14)

Now consider

E
{

I{Tij ∈ In,c(t)} · φ2(Xij, λ, β(λ, t), t)
}

= E
{

I{Tij ∈ In,c(t)} · E
[
φ2(Xi(T ), λ, β(λ, t), t)|T = tij

]}
(S1.15)

Using a Taylor expansion, it is easy to show E [φ2(X(T ), λ, β(λ, t), t)|T = tij] = E [φ2(X(T ), λ, β(λ, t), t)|T = t]+

op(1). This, (S1.14) and (S1.15) implies

V 0
n (λ; t) = d3

T (t)E
[
φ2(X(T ), λ, β(λ, t), t)|T = t

]
(1 +O(hn))

Denote Vτ (λ, t) = d3
T (t)E [φ2(X(T ), λ, β(λ, t), t)|T = t] and we have shown (S1.21). Let

X1(t) and X2(t) denote two independent realizations from the process X(t). Note that

Vτ (λ, t) = d3
T (t)E

{
E2
[
I{X2(t) ≤ X1(T )}

(
τ − F (0; t,XT

2 (t), λ)
)
|X1(T )

]
|T = t

}
.

First Vτ (λ, t) is continuous at all (t, λ) ∈ [0, 1]
⊗

Ωτ due to Assumption 9. Under Assump-

tions 3 and 4, the identifiability conditions of Mu & He (2007) are satisfied for λτ (t) at every
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t ∈ [0, 1]. Note that Vτ (λ, t) ≥ 0 at all t and λ, and V (λτ (t), t) = 0 almost surely in t. Thus

λτ (t) minimizes Vτ (λ, t) almost surely in t ∈ [0, 1]. Now we demonstrate the uniqueness of

λτ (t). Suppose that λ∗(t) 6= λτ (t) also minimizes Vτ (λ, t), then we must have Vτ (λ
∗(t), t) = 0

almost surely in t. As a consequence, E
{
E2
[
I{X2(t) ≤ X1(t)}

(
τ − F (0; t,XT

2 (t), λ∗(t))
)
|X1(t)

]}
=

0 almost surely in t ∈ [0, 1]. This further implies that E
[
I{X2(t) ≤ x}

(
τ − F (0; t,XT

2 (t), λ∗(t))
)]

=

0, or, τ = F (0; t, x, λ∗(t)) almost surely in x and t. But this would contradict Assumption

the identifiability of λτ (t). This proves the uniqueness of λτ (t) and completes the proof of

Lemma S2.

Lemma S3. Let Qn(θ, t) be a random real-valued function with a parameters θ ∈ Θ ⊆ R

and t ∈ T ⊆ R, and Qn(θ, t) converges to a non-stochastic function Q(θ, t) for each t ∈ T .

Denote θ0(t) = argminθ∈ΘQ(θ, t) and θ̂n(t) = argminθ∈ΘQn(θ, t). Assume the following

assumptions

C1. The parameter space Θ
⊗
T is a compact subset of R2.

C2. Q(θ, t) attains a unique global minimum at θ0(t) for all t ∈ T .

C3. Q(θ, t) is continuous at every (θ, t) ∈ Θ
⊗
T .

C4. Qn(θ, t) converges in probability to Q(θ, t) uniformly in θ ∈ Θ and in t ∈ T as n→∞.

Under assumptions C1-C4, we have

sup
t∈T
|θ̂(t)− θ0(t)| = op(1)

Proof. For any δ > 0, denote Nt = {θ; |θ − θ0(t)| < δ}, and N c
t be the complement

of Nt, N c
t = R − Nt. Then Θ ∩ N c

t is compact, so that minθ∈Θ∩N ct Q(θ, t) exists. The

minimum of a continuous function always exist on a compact set. Denote εδ(t) = Q(θ0(t), t)−

minθ∈Θ∩N ct Q(θ, t). Assumption C2 implies that εδ(t) > 0 for all t ∈ T . Then Assumption

C3 guarantees that there exists a constant εδ > 0 such that mint∈T εδ(t) = εδ > 0. Let En
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be the event

|Qn(θ, t)−Q(θ, t)| < 1

3
εδ for all θ ∈ Θ, t ∈ [0, 1]

Then

En ⇒ Q(θ̂(t), t) < Qn(θ̂(t), t) +
1

3
εδ (S1.16)

and

En ⇒ Qn(θ0(t), t) < Q(θ0(t), t) +
1

3
εδ (S1.17)

But

Qn(θ̂(t), t) = min
θ∈Θ

Qn(θ, t) ≤ Qn(θ0(t), t), (S1.18)

and we can use (S1.18) to rewrite (S1.16) as,

En ⇒ Q(θ̂(t), t) < Qn(θ0(t), t) +
1

3
εδ. (S1.19)

Combine (S1.17) and (S1.19) to get

En ⇒ Q(θ̂(t), t) < Q(θ0(t), t) +
2

3
εδ.

This and our definition of εδ implies

En ⇒ θ̂(t) ∈ Nt for all t ∈ [0, 1],

which in turn implies

En ⇒ sup
t∈[0,1]

|θ̂(t)− θ0(t)| < δ,

so that P (En) ≤ P (supt∈[0,1] |θ̂(t) − θ0(t)| < δ). However Assumption C4 implies that

limn→∞ P (En) = 1, so that we have

1 ≥ lim
n→∞

P ( sup
t∈[0,1]

|θ̂(t)− θ0(t)| < δ) ≥ lim
n→∞

P (En) = 1

Proof of Theorem 1: We sketch the proof here. Major steps of the argument include

(i) sup
λ∈Ωτ ,t,c∈[0,1]

|Vn(λ; t)− V 0
n (λ; t)| = op(1), (S1.20)

(ii)There exists a deterministic function Vτ (λ, t) such that

sup
λ∈Ωτ ,t,c∈[0,1]

|V 0
n (λ; t)− Vτ (λ, t)]| = op(1), (S1.21)

(iii)Vτ (λ, t) is uniquely minimized at λτ (t) for every t ∈ [0, 1]. (S1.22)
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Note that (S1.20) is a direct result of Lemma S1. We have shown (S1.21) and (S1.22) in

Lemma S2. By Lemma S3, λ̃n(t) converges in probability to λτ (t) uniformly in t ∈ [0, 1].

Thus we have shown that if hn → 0 and nhn →∞

sup
t∈[0,1]

|λ̃n(t)− λτ (t)| = op(1).

To verify the uniform consistency of λ̂n(t), we notice that the smoothing spline estimator

λ̂n(t) is linear in the observations λ̃n(tl), in the sense that there exists a weight function

H(s, t; γ) such that

λ̂n(t) = k−1
n

kn∑
l=1

H(t, tl; γ) · λ̃n(tl) = k−1
n

kn∑
l=1

H(t, tl; γ) · (λτ (tl) + op(1)).

Under suitable restrictions on the rate that γ converges to zero and the smoothness assump-

tion of λτ (t), Lemma 6.1 of Nychika (1995) shows that k−1
n

∑kn
l=1H(t, tl; γ) ·(λτ (tl)+op(1)) =

λτ (tl) + op(1) uniformly in t ∈ [0, 1]. The proof of (1) in Theorem 1 is complete.

Now we prove (2) in Theorem 1. The result follows from the continuity of quantiles as a

set-valued solution and the consistency property of the coefficient functions assuming λτ (t)

as known. Let Λλ(y) denote the first derivative of Λ(y) = yλ−1
λ

with respect to λ, then

Λλ(y) = yλ ln y
λ
− yλ

λ2 + 1
λ2 . Due to the boundedness of X and the robustness property of

quantiles, it suffices to consider y in a compact set, i.e., c ≤ y ≤ C. Note that Λλ(y) is

continuous and hence bounded on Ωτ

⊗
[c, C]. This implies that y

(λ̂n(ti))
i = y

(λτ (ti))
i + op(1),

where op(1) is independent of yi and ti. Let β̌n,j(t) denote the B-spline estimator of βτ,j(t)

assuming the true transformation function λτ (t) is given. With a slight modification of

the arguments in Kim (2007), one can demonstrate the consistency of β̌n,k(·) in the case of

longitudinal data under our stated assumptions, i.e.,

1

n

m∑
i=1

ni∑
j=1

(β̌n,k(tij)− βτ,k(tij))2 = op(1), k = 1, · · · , p.

To save space, we do not present a proof here. Then (2) in Theorem 1 is a consequence

of the continuity of quantile estimator. We refer to Portnoy S. and Mizera I. (1998) for a

discussion of continuity of LAD estimator as set-valued solutions on nonsingular designs.
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