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Supplementary Material

This supplement contains technical details in proving Theorem 1.

Lemma S1. Denote § = (\,3,z,t,¢) and let © = Q, @ B X ®[0,1]> be the product
parameter space for 6. If Assumptions 2-8 hold and h,, — 0 and nh, — oo, the following

expansions hold

sup | Rn(z, N, B (X 1)) — Ru(z, A, BN 1);1)]] = 0,(1), (S1.1)
XEQ,zEX t,c€[0,1]
and
sup R, (z, A, B;t) = O,(1). (S1.2)
€0
Proof.

We first establish the following uniform expansion

sup  |Rn(z, A, B5t) =Ry, A, BN 1) 8) = E[Ry(, A, B5 1)+ B[Ry (2, A, B(A, )5 1)]] = 0p(1).
(\,B,x,t,c)EO
(S1.3)

For a fixed 6 = (A, B, 2,t,¢), denote Z; = {(X;;,Y;),7=1,....n;} and

ng

Uilz2.0) = > Uty € Lyo(t) My < ) [T 1Y — g <0}
j=1

Define u(z;, 0, d) = supjg, _g,<q |%i(2i, 01) — (2, 02)], where | - | is taken to be the sup norm

of vectors. With some work one can show

u2(zi,l9,d) = { sup Wi(zuel) - ¢i(2ia92)|}2

|61—0]<d
<n; Z { sup ’I{tij € e () {zi; <1} [7’ - I{yg\l) — asgﬂl <0}
— | 101-6<a
7=1

{1y € Lo}y < 2} [ 1) — a5 < 0}] }2 | (S1.4)




Observing (S1.4), (S1.3) can be proven similarly as Lemma 1 of Mu (2005) under Assump-

tions 2-8. Applying a Taylor expansion, it is easy to show, for any ||3 — B(\, t)|| = o(1),
E[R,(x, A, B)] = E[Ry(z, A, (A, 1))](1 + o(1)).
Substitute this into (S1.3), we obtain
R, (xz, N, B5t) — Ru(z, A, BN 1)) = 0,(1), (S1.5)

where the remainder term in (S1.5) is uniform in (A, z,¢,¢) and 3 : ||5 — B\, t)]| = o(1).
Thus to verify (S1.1), it suffices to show ||3,(\;t) — B(A, )] = 0,(1). For this purpose, define
B5 (A t) = argmin, E{h'I{T € I, .(t)} - p,(Y(T)™ — X (T)"b)}. Following similar argument

of Lemma 4 of Mu (2005), we can demonstrate under Assumptions 2-8 that

sup 3,0 ) = 820, 0) | = Opl(nhn) /2 (log(n)) ).

XEQ, t,ce[0,1]
Denote p(\,b,t) = E{p.(Y(T)® — X(T)b)|T = t} and recall 3(\,t) = argmin,p(\, b, t).

Note that
E{h,"HT € Lc(t)} - pr (Y (1) = X(T)T0)} = E{h,"HT € Lio(t) }o(\. b, T)},
and by Taylor’s expansion
oAb, 1) = (N, b, t) + O(hy,) whenever |t' — t]| < h,.
Hence

E{h;'YT € L,.(t)} - p,(Y(T)N — X(T)Tb)} = b, (X, b, t) P(T € I,,..(t))(1 4+ O(hy,))

=\, 0,)gr(t)(1 + O(hy)). (S1.6)

It can easily be proved by some elementary arguments that the minimizer 3 (), t) of E{I{T €
L®)} - pr(Y(T)® — X(T)Th)} approaches the minimizer 3(\,t) of the right-hand side of
(S1.6):

sup [|Ba(Ait) = BN 1) = O(hy). (SL.7)

AEQ - t,ce[0,1]



(S1.5) and (S1.7) proves (S1.1). To verify (S1.2), it suffices to prove E {supycg Rn(z, A, B;1)} =
O(1). But supyeg Ru(z, A, ;1) = supgee | E {Rn(x, A, B; 1)} |[40,(1) = O,(1) as a consequence

of (S1.3). This completes the proof of Lemma S1.

Lemma S2. Under the same assumptions for Lemma S1 and Assumption 10, if A, — 0 and
nhy, — oo, then (S1.21) and (S1.22) hold.

Proof. As an immediate result of (S1.3), the following expansion holds
Ry (x, A, B;t) = B[R (z, A, BA, 1) 1)] = 0p(1), (51.8)

where the remainder term in (S1.8) is uniform in (A, z,%,¢) and 8 : || — B(A, t)|| = o(1). As

a consequence of (S1.7) we have
R (2, X, (i )5 ) = E[Rn(, A, BN, 1);)] = 0,(1), (51.9)

Recall ¢<$, /\,5, tzg) =F {I{IU < ZL’} [T - F(Iz;(ﬂ - 6(/\, tl]))’ tija Tij, )\)] |tl]} Due to As-
sumption 10, ¢(z, A, B, t;;) = ¢(A, 5, z,t) + O(h,,) for any t;; € I,,.(t). Thus

Bl 8:0) = - S B {1ty € Lo}y < 2} [r = 10 ~ a3 < 0)]}
1 »J

= — Y E{l{t;; € L (t)}o(\, B, 2, 1)}

nh, “—

= LS E{I{ty € Luc(t)}6(\ B, 2,1) + Olha)}

nh,, “—

=dr(t)o(x, A, B,t)(1 + O(hy))) + O(hy), (S1.10)

where Assumption 5 has been applied in the last step of (S1.10). From (S1.9), we obtain

1

nh,

Z ZZ:I{tij € In,c(t)} AE [Rn(xij, A BN t)5t)] + Op(l)}2'

i=1 j=1

VO(At) =

- Zzil{fij € Lne(t)} - {E[Ru(xij, X, BN 1); 1))} + 0,(1). (S1.11)

nh,

i=1 j=1



We insert (S1.10) into (S1.11) to obtain

2 Zil{Tij € Lno(t)} - di(t)9* (Xig, A, BN 1), 8) (1 + O(hn)) + Op(hn) + 0p(1)

niljl

—nh DSSSOUT, € L) - 6 B 0.0(L+ O(h)) +o,(1)  (S1.12)

i=1 j=1

Due to Assumption 10, by similar arguments of Lemma S1, we can demonstrate that

niL ZI{Tij € ]n,c<t)} ’ ¢2<Xij> A:ﬁ()‘vt)7t)

i € Le(D)} - *(Xij, A\, BN 1), t)} = 0,(1), (S1.13)

where the remainder term is uniform in (A,¢). To avoid repetition, we skip a proof here.
(S1.12) and (S1.13) implies

d

VO(At) =

ne(O)} - 0" (Xiz, X, BN ), 6) } (1 + O(hn))

ij
=1 j=1

+ op(hn) +0,(1). (S1.14)
Now consider
E{{T; € L(t)} - ¢* (X, X, BN 1), 1)}
= E{l{T}; € L, (t)} - E [¢°(Xi(T),\, BN 1), 6)|T =t;5] } (S1.15)

Using a Taylor expansion, it is easy to show E [¢*(X (T), \, B(A, ), 0)|T = t;;] = E[¢*(X(T), \, B(A\, 1), 6)|T
0p(1). This, (S1.14) and (S1.15) implies

VI t) = dH()E [¢*(X(T), N, B\ 1), 1)|T =t] (1+ O(hy))

Denote V; (A, t) = da(t)E [¢*(X(T), A, B(\,t),t)|T =t] and we have shown (S1.21). Let

X;(t) and X5(t) denote two independent realizations from the process X (¢). Note that
VA1) = d(0F B [{Xa() < Xu(T)} (r — F(0;t, XE (1), ) [ X (T)] T = £}

First V,(\,t) is continuous at all (¢, \) € [0,1] @ 2, due to Assumption 9. Under Assump-

tions 3 and 4, the identifiability conditions of Mu & He (2007) are satisfied for \.(t) at every

4



t € [0,1]. Note that V(A t) > 0 at all t and A, and V(A,(t),t) = 0 almost surely in ¢. Thus
A-(t) minimizes V;(A,t) almost surely in ¢ € [0,1]. Now we demonstrate the uniqueness of
Ar(t). Suppose that A*(t) # A, (t) also minimizes V, (A, t), then we must have V. (A*(¢),t) = 0
almost surely in t. As a consequence, E { E? [[{X,(t) < X1(t)} (7 — F(0;¢, X7 (£), A*(1))) | X1 (t)] } =
0 almost surely in ¢ € [0, 1]. This further implies that E [I{X(t) < z} (1 — F(0;¢, X7 (t), \*(¢)))] =
0, or, 7 = F(0;t,z, A*(t)) almost surely in x and ¢. But this would contradict Assumption
the identifiability of A, (¢). This proves the uniqueness of A, () and completes the proof of

Lemma S2.

Lemma S3. Let Q,(0,t) be a random real-valued function with a parameters § € © C R
and t € T C R, and Q,(6,t) converges to a non-stochastic function Q(6,t) for each t € 7.
Denote 6y(t) = argming oQ(0,t) and 6,(t) = argming.o@,(0,t). Assume the following

assumptions

C1. The parameter space © ®) 7 is a compact subset of R?.

C2. Q(0,t) attains a unique global minimum at 6y(t) for all t € 7.

C3. Q(0,t) is continuous at every (0,t) € © Q7.

C4. Q,(0,t) converges in probability to Q(6,t) uniformly in §# € © and int € T as n — oc.

Under assumptions C1-C4, we have

sup 10(t) — 8o(t)] = 0,(1)

Proof.  For any § > 0, denote N; = {0;]0 — 0y(t)| < ¢}, and N be the complement
of My, Nf = R —N;. Then © NN is compact, so that mingegnne Q(0,1) exists. The
minimum of a continuous function always exist on a compact set. Denote e5(t) = Q(6o(t),t)—
mingeonye Q(0,1). Assumption C2 implies that 5(t) > 0 for all ¢ € 7. Then Assumption

C3 guarantees that there exists a constant €5 > 0 such that mine7e5(t) = €5 > 0. Let E,



be the event

1
|Qn(0,t) — Q(0,1)] < 36 for alld € ©,¢ € [0, 1]

Then

Bu = QU(1),1) < Qu(0(t),0) + 35
and

B, = Qulta(t),0) < QUo(t), 1) + 5
But

Qu(0(t),t) = min Qu(6, 1) < Qu(6o(t). 1),

0co
and we can use (S1.18) to rewrite (S1.16) as,

B, = QU0 1) < Qulbo(0). 1) + 3¢5

Combine (S1.17) and (S1.19) to get

By = Q((1), 1) < Q(6o(t), ) + geé.

This and our definition of €5 implies
E, = 0(t) € N, for allt € [0,1],

which in turn implies

E, = sup [0(t) — 6p(t)] < 6,
te(0,1]

(S1.16)

(S1.17)

(S1.18)

(S1.19)

so that P(E,) < P(sup,e 0(t) — 65(t)] < &). However Assumption C4 implies that

lim, .., P(E,) = 1, so that we have

1> lim P(sup |(t) — 6o(t)| < 0) > lim P(E,) =1

oo tel0,1] n—oo

Proof of Theorem 1:  We sketch the proof here. Major steps of the argument include

()  sup  [Va(nit) = V(A1) = 0,(1),

AEQ, t,ce[0,1]
(77) There exists a deterministic function V,(A,t) such that
sup V(A1) = Ve(A 1)) = 0,(1),
AEQ t,c€[0,1]
(143) V(A t) is uniquely minimized at A,(t) for every ¢ € [0, 1].

(S1.20)

(S1.21)

(S1.22)



Note that (S1.20) is a direct result of Lemma S1. We have shown (S1.21) and (S1.22) in
Lemma S2. By Lemma S3, \,(t) converges in probability to A.(t) uniformly in ¢ € [0, 1].

Thus we have shown that if h,, — 0 and nh,, — oo
sup [3u(t) = Ar(8)] = 0p(1).
tel0,1]
To verify the uniform consistency of S\n(t), we notice that the smoothing spline estimator

An(t) is linear in the observations S\n(tl), in the sense that there exists a weight function

H (s, t;7y) such that

Slt) = Kt ST H (L t59) - alt) = kS H(E ) - O lt) + 0y(1).

Under suitable restrictions on the rate that v converges to zero and the smoothness assump-
tion of A-(t), Lemma 6.1 of Nychika (1995) shows that k' S5 H(t, ;) - (A (t;) +0,(1)) =
A-(t1) + 0p(1) uniformly in ¢ € [0, 1]. The proof of (1) in Theorem 1 is complete.

Now we prove (2) in Theorem 1. The result follows from the continuity of quantiles as a
set-valued solution and the consistency property of the coefficient functions assuming A, ()
as known. Let A,(y) denote the first derivative of A(y) = % with respect to A, then
A(y) = yk% - f’\—; + 32. Due to the boundedness of X and the robustness property of
quantiles, it suffices to consider y in a compact set, i.e., ¢ < y < C. Note that A,(y) is
continuous and hence bounded on €2, @ |c, C]. This implies that yl(;\”(t") ) = yg’\T(t")) + 0,(1),
where 0,(1) is independent of y; and ¢;. Let /3, ;(t) denote the B-spline estimator of 3, ()
assuming the true transformation function A (¢) is given. With a slight modification of
the arguments in Kim (2007), one can demonstrate the consistency of (3, (-) in the case of
longitudinal data under our stated assumptions, i.e.,

%Z;Z;(Bmk(tij) = Braltiy)? = 0p(1), k=1, ,p.
i=1 j=
To save space, we do not present a proof here. Then (2) in Theorem 1 is a consequence

of the continuity of quantile estimator. We refer to Portnoy S. and Mizera I. (1998) for a

discussion of continuity of LAD estimator as set-valued solutions on nonsingular designs.



