MODEL FREE MULTIVARIATE REDUCED-RANK REGRESSION WITH CATEGORICAL PREDICTORS

C. Messan Setodji and Lexin Li
RAND Corporation and North Carolina State University

Supplementary Material

This note contains proofs for Corollary 1 and Propositions 3 and 4.

S1. Proof of Proposition 3

With i.i.d. observations $\left\{\left(\boldsymbol{Y}_{i_{w}}, \boldsymbol{X}_{i_{w}}\right): i=1, \ldots, n_{w}\right\}$ and $n=\sum_{w=1}^{c} n_{w}$, the sample estimates of the quantities in $\boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\beta}^{*} \boldsymbol{\Omega}^{-1 / 2}$ can be expressed as follows.

$$
\begin{aligned}
\hat{\boldsymbol{\Sigma}}_{w} & =n_{w}^{-1} \sum_{i_{w}=1}^{n_{w}}\left(\boldsymbol{X}_{i_{w}}-\overline{\boldsymbol{X}}_{w}\right)\left(\boldsymbol{X}_{i_{w}}-\overline{\boldsymbol{X}}_{w}\right)^{\top}, \\
\hat{\boldsymbol{\sigma}}_{k_{w}} & =n_{w}^{-1} \sum_{i_{w}=1}^{n_{w}}\left(\boldsymbol{X}_{i_{w}}-\overline{\boldsymbol{X}}_{w}\right)\left(Y_{i k_{w}}-\bar{Y}_{\bullet k_{w}}\right), \\
\hat{\varepsilon}_{i k_{w}} & =\left(Y_{i k_{w}}-\bar{Y}_{\bullet k_{w}}\right)-\hat{\boldsymbol{\beta}}_{i k_{w}}^{\top}\left(\boldsymbol{X}_{i_{w}}-\overline{\boldsymbol{X}}_{w}\right), \\
\hat{\boldsymbol{\varepsilon}}_{i w} & =\left(\hat{\varepsilon}_{i 1 w_{w}}, \hat{\varepsilon}_{i 2_{w}}, \cdots, \hat{\varepsilon}_{i r_{w}}\right)^{\top}, \\
\hat{\boldsymbol{\Sigma}}_{\bullet} & =\sum_{w=1}^{c} \hat{a}_{w}^{2} \hat{\boldsymbol{\Sigma}}_{w}=\frac{1}{n} \sum_{w=1}^{c} n_{w} \hat{\boldsymbol{\Sigma}}_{w}, \\
\hat{\boldsymbol{\Omega}}_{w} & =n_{w}^{-1} \sum_{i_{w}=1}^{n_{w}} \hat{\boldsymbol{\varepsilon}}_{i w} \hat{\varepsilon}_{i w}^{\top},
\end{aligned}
$$

where $\overline{\boldsymbol{X}}_{w}$ and $\bar{Y}_{\boldsymbol{o}_{w}}$ are the sample average of $\boldsymbol{X}_{i_{w}}$ and $Y_{i k_{w}}, i=1,2, \cdots, n_{w}$, and $\hat{\boldsymbol{\beta}}_{k_{w}}=\hat{\boldsymbol{\Sigma}}_{w}^{-1} \hat{\boldsymbol{\sigma}}_{k_{w}}, \hat{\boldsymbol{\beta}}_{w}=\left(\hat{\boldsymbol{\beta}}_{1_{w}}, \ldots, \hat{\boldsymbol{\beta}}_{r_{w}}\right), \hat{a}_{w}=\left(n_{w} / n\right)^{1 / 2}$, and $\hat{\boldsymbol{\beta}}^{*}=\left(\hat{a}_{1} \hat{\boldsymbol{\beta}}_{1}, \ldots, \hat{a}_{c} \hat{\boldsymbol{\beta}}_{c}\right)$.

It follows from Eaton and Tyler (1994) that the asymptotic distribution of $\hat{\Lambda}_{d}$ is the same as that of $\Lambda_{d}=\operatorname{trace}\left(\boldsymbol{U} \boldsymbol{U}^{\top}\right)=\operatorname{vec}(\boldsymbol{U})^{\top} \operatorname{vec}(\boldsymbol{U})$, where

$$
\boldsymbol{U}=\sqrt{n} \boldsymbol{\Gamma}^{\top}\left(\hat{\boldsymbol{\Sigma}}_{\bullet}^{1 / 2} \hat{\boldsymbol{\beta}}^{*} \hat{\boldsymbol{\Omega}}^{-1 / 2}-\boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\beta}^{*} \boldsymbol{\Omega}^{-1 / 2}\right) \boldsymbol{\Psi}
$$

(Here \boldsymbol{U} and $\boldsymbol{\Sigma}_{\boldsymbol{\bullet}}^{1 / 2} \boldsymbol{\beta}^{*} \boldsymbol{\Omega}^{-1 / 2}$ correspond to Eaton and Tyler's \boldsymbol{Z}_{n} and \boldsymbol{B}, respectively, in their equations (4.4) and (4.1).) Consequently, it is sufficient to prove that $\operatorname{vec}(\boldsymbol{U})$ is asymptotically normally distributed, with mean 0 and covariance matrix $\boldsymbol{\Delta}$. Note that

$$
\begin{equation*}
\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\beta}^{*}=0 \quad \text { and } \quad \boldsymbol{\beta}^{*} \boldsymbol{\Omega}^{-1 / 2} \boldsymbol{\Psi}=0 . \tag{S1.1}
\end{equation*}
$$

The matrix \boldsymbol{U} can be expanded as

$$
\begin{aligned}
\boldsymbol{U}= & \sqrt{n} \boldsymbol{\Gamma}^{\top}\left\{\boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\beta}^{*}\left(\hat{\boldsymbol{\Omega}}^{-1 / 2}-\boldsymbol{\Omega}^{-1 / 2}\right)+\left(\hat{\boldsymbol{\Sigma}}_{\bullet}^{1 / 2}-\boldsymbol{\Sigma}_{\bullet}^{1 / 2}\right) \boldsymbol{\beta}^{*} \boldsymbol{\Omega}^{-1 / 2}\right. \\
& \left.+\boldsymbol{\Sigma}_{\bullet}^{1 / 2}\left(\hat{\boldsymbol{\beta}}^{*}-\boldsymbol{\beta}^{*}\right) \boldsymbol{\Omega}^{-1 / 2}\right\} \boldsymbol{\Psi}+O_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

By (S1.1) the first and second terms are 0 , so we have

$$
\begin{equation*}
\boldsymbol{U}=\sqrt{n} \boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2}\left(\hat{\boldsymbol{\beta}}^{*}-\boldsymbol{\beta}^{*}\right) \boldsymbol{\Omega}^{-1 / 2} \boldsymbol{\Psi}+O_{p}\left(n^{-1 / 2}\right) \tag{S1.2}
\end{equation*}
$$

and the limiting distribution of \boldsymbol{U} is the same as that of $\boldsymbol{U}_{0}=\sqrt{n} \boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}^{1 / 2}\left(\hat{\boldsymbol{\beta}}^{*}-\right.$
 proved that

$$
\hat{a}_{w} \sqrt{n}\left(\hat{\boldsymbol{\beta}}_{j_{w}}-\boldsymbol{\beta}_{j_{w}}\right)=\sqrt{n_{w}}\left(\hat{\boldsymbol{\beta}}_{j_{w}}-\boldsymbol{\beta}_{j_{w}}\right)=n_{w}^{-1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2} \sum_{i=1}^{n_{w}} \boldsymbol{Z}_{i_{w}} \varepsilon_{i j_{w}}+O_{p}\left(n_{w}^{-1 / 2}\right) .
$$

Consequently,

$$
\begin{aligned}
\sqrt{n_{w}}\left(\hat{\boldsymbol{\beta}}_{j_{w}}-\boldsymbol{\beta}_{j_{w}}\right) & =n_{w}^{-1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2} \sum_{i=1}^{n_{w}} \boldsymbol{Z}_{i_{w}} \varepsilon_{i j_{w}}+O_{p}\left(n_{w}^{-1 / 2}\right), \\
\sqrt{n_{w}}\left(\hat{\boldsymbol{\beta}}_{w}-\boldsymbol{\beta}_{w}\right) & =n_{w}^{-1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2} \sum_{i=1}^{n_{w}}\left(\boldsymbol{Z}_{i_{w}} \varepsilon_{i 1_{w}}, \boldsymbol{Z}_{i_{w}} \varepsilon_{2 j_{w}}, \ldots, \boldsymbol{Z}_{i_{w}} \varepsilon_{i r_{w}}\right)+O_{p}\left(n_{w}^{-1 / 2}\right), \\
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) & =\left(\sqrt{n_{1}}\left(\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}\right), \sqrt{n_{2}}\left(\hat{\boldsymbol{\beta}}_{2}-\boldsymbol{\beta}_{2}\right), \ldots, \sqrt{n_{c}}\left(\hat{\boldsymbol{\beta}}_{c}-\boldsymbol{\beta}_{c}\right)\right) .
\end{aligned}
$$

Defining $\boldsymbol{R}_{w}=n_{w}^{-1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2} \sum_{i=1}^{n_{w}}\left(\boldsymbol{Z}_{i_{w}} \varepsilon_{i 1_{w}}, \boldsymbol{Z}_{i_{w}} \varepsilon_{2 j_{w}}, \ldots, \boldsymbol{Z}_{i_{w}} \varepsilon_{i r_{w}}\right)$ and $\boldsymbol{R}=\left(\boldsymbol{R}_{1}\right.$, $\left.\boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{c}\right)$, so that $\boldsymbol{U}_{0}=\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{R} \boldsymbol{\Omega}^{-1 / 2} \boldsymbol{\Psi}$, and

$$
\operatorname{vec}\left(\boldsymbol{U}_{0}\right)=\left[\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Omega}^{-1 / 2}\right) \otimes\left(\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2}\right)\right] \operatorname{vec}(\boldsymbol{R}),
$$

By the central limit theorem, we then have

$$
\operatorname{vec}\left(\boldsymbol{U}_{0}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \boldsymbol{\Delta})
$$

where

$$
\boldsymbol{\Delta}=\sum_{w=1}^{c}\left[\left(\Psi_{w}^{\top} \Omega_{w}^{-1 / 2}\right) \otimes\left(\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2}\right)\right]\left(\operatorname{Var}\left(\boldsymbol{T}_{w}\right)\right)\left[\left(\Omega_{w}^{-1 / 2} \Psi_{w}\right) \otimes\left(\boldsymbol{\Sigma}_{w}^{-1 / 2} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Gamma}\right)\right]
$$

Note that $\operatorname{Var}\left(\boldsymbol{T}_{w}\right)=\mathrm{E}\left(\boldsymbol{T}_{w} \boldsymbol{T}_{w}^{\top}\right)-\mathrm{E}\left(\boldsymbol{T}_{w}\right) \mathrm{E}\left(\boldsymbol{T}_{w}\right)^{\top}$. Because $\boldsymbol{\varepsilon}_{w}$ is an OLS residual of the regression within the subgroup w, we have $\operatorname{Cov}\left(\boldsymbol{\varepsilon}_{w}, \boldsymbol{Z}_{w}\right)=0$ and so $\mathrm{E}\left(\boldsymbol{T}_{w}\right)=0$. From this we can write $\operatorname{Var}\left(\boldsymbol{T}_{w}\right)=\mathrm{E}\left(\boldsymbol{T}_{w} \boldsymbol{T}_{w}^{\top}\right)$ and

$$
\boldsymbol{\Delta}=\sum_{w=1}^{c}\left[\left(\Psi_{w}^{\top} \Omega_{w}^{-1 / 2}\right) \otimes\left(\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2}\right)\right]\left(\mathrm{E}\left(\boldsymbol{T}_{w} \boldsymbol{T}_{w}^{\top}\right)\right)\left[\left(\Omega_{w}^{-1 / 2} \Psi_{w}\right) \otimes\left(\boldsymbol{\Sigma}_{w}^{-1 / 2} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Gamma}\right)\right]
$$

The conclusion then follows.

S2. Proof of Corollary 1

With either assumptions (a) or (b), we have $\operatorname{Var}\left(\boldsymbol{T}_{w}\right)=\Omega_{w} \otimes \mathbf{I}_{p}$, and thus,

$$
\begin{aligned}
\boldsymbol{\Delta} & =\sum_{w=1}^{c}\left[\left(\Psi_{w}^{\top} \Omega_{w}^{-1 / 2}\right) \otimes\left(\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2}\right)\right]\left(\operatorname{Var}\left(\boldsymbol{T}_{w}\right)\right)\left[\left(\Omega_{w}^{-1 / 2} \Psi_{w}\right) \otimes\left(\boldsymbol{\Sigma}_{w}^{-1 / 2} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Gamma}\right)\right] \\
& =\sum_{w=1}^{c}\left[\left(\Psi_{w}^{\top} \Omega_{w}^{-1 / 2}\right) \otimes\left(\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2}\right)\right]\left(\Omega_{w} \otimes \mathbf{I}_{p}\right)\left[\left(\Omega_{w}^{-1 / 2} \Psi_{w}\right) \otimes\left(\boldsymbol{\Sigma}_{w}^{-1 / 2} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Gamma}\right)\right] \\
& =\sum_{w=1}^{c}\left[\left(\Psi_{w}^{\top} \Omega_{w}^{-1 / 2} \Omega_{w}\right) \otimes\left(\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2} \mathbf{I}_{p}\right)\right]\left[\left(\Omega_{w}^{-1 / 2} \Psi_{w}\right) \otimes\left(\boldsymbol{\Sigma}_{w}^{-1 / 2} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Gamma}\right)\right] \\
& =\sum_{w=1}^{c}\left[\left(\Psi_{w}^{\top} \Omega_{w}^{1 / 2}\right) \otimes\left(\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2}\right)\right]\left[\left(\Omega_{w}^{-1 / 2} \Psi_{w}\right) \otimes\left(\boldsymbol{\Sigma}_{w}^{-1 / 2} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Gamma}\right)\right] \\
& =\sum_{w=1}^{c}\left[\left(\Psi_{w}^{\top} \Omega_{w}^{1 / 2}\right)\left(\Omega_{w}^{-1 / 2} \Psi_{w}\right)\right] \otimes\left[\left(\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Sigma}_{w}^{-1 / 2}\right)\left(\boldsymbol{\Sigma}_{w}^{-1 / 2} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Gamma}\right)\right] \\
& =\sum_{w=1}^{c}\left[\Psi_{w}^{\top} \Psi_{w}\right] \otimes\left[\boldsymbol{\Gamma}^{\top} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Sigma}_{w}^{-1} \boldsymbol{\Sigma}_{\bullet}^{1 / 2} \boldsymbol{\Gamma}\right] .
\end{aligned}
$$

If in addition $\boldsymbol{\Sigma}_{\bullet}=\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}=\ldots=\boldsymbol{\Sigma}_{c}$, then we have $\boldsymbol{\Delta}=\mathbf{I}_{(p-d)(r c-d)}$, and consequently $\hat{\Lambda}_{d}$ converges to a chi-squared distribution with $(p-d)(r c-d)$ degrees of freedom.

S3. Proof of Propostion 4

The joint asymptotic distribution of the $p-d$ smallest singular values of $\sqrt{n} \boldsymbol{M}$ is the same as the distribution of the singular values of the matrix $\boldsymbol{V}=$ $\sqrt{n} \tilde{\boldsymbol{\Gamma}}^{\top}(\hat{\boldsymbol{M}}-\boldsymbol{M}) \tilde{\Psi}$ (Eaton and Tyler, 1994). This implies that the asymptotic distribution of $\tilde{\Lambda}_{d}$ is the same as that of $\operatorname{vec}(\boldsymbol{V})^{\top} \operatorname{vec}(\boldsymbol{V})$, i.e., the sum of the squared elements of \boldsymbol{V}. Consequently, it is sufficient to show that $\operatorname{vec}(\boldsymbol{V})$ is asymptotically normally distributed with mean 0 and covariance matrix $\tilde{\boldsymbol{\Delta}}$.

Let $\boldsymbol{N}_{w}=\left(\boldsymbol{M}_{1_{w}}, \ldots, \boldsymbol{M}_{r_{w}}\right)$. Since $\tilde{\boldsymbol{\Gamma}}^{\top} \boldsymbol{M}_{k_{w}}=0$ for any k and w,

$$
\boldsymbol{V}=\sqrt{n} \tilde{\boldsymbol{\Gamma}}^{\top}(\hat{\boldsymbol{M}}-\boldsymbol{M}) \tilde{\boldsymbol{\Psi}}=\sum_{w=1}^{c} \sqrt{n_{w}} \tilde{\boldsymbol{\Gamma}}^{\top}\left(\hat{\boldsymbol{N}}_{w}-\boldsymbol{N}_{w}\right) \tilde{\boldsymbol{\Psi}}_{w} \equiv \sum_{w=1}^{c} \sqrt{n_{w}} \boldsymbol{V}_{w}
$$

where $\hat{\boldsymbol{N}}_{w}$ is the sample estimate of \boldsymbol{N}_{w}. This implies $\operatorname{vec}(\boldsymbol{V})=\sum_{w=1}^{c} \operatorname{vec}\left(\boldsymbol{V}_{w}\right)$. Since the \boldsymbol{V}_{w} 's are mutually independent, we can determine the limiting distribution of just one $\operatorname{vec}\left(\boldsymbol{V}_{w}\right)$, and then add them to obtain our desired result.

Note that $\operatorname{vec}\left(\boldsymbol{V}_{w}\right)$ can be rewritten as $\operatorname{vec}\left(\boldsymbol{V}_{w}\right)=\left(\tilde{\boldsymbol{\Psi}}_{w}^{\top} \otimes \tilde{\boldsymbol{\Gamma}}^{\top}\right) \operatorname{vec}(\hat{\boldsymbol{N}}-\boldsymbol{N})$. Cook and $\operatorname{Li}(2004)$ showed that, with $\xi_{k_{w}}^{(i)}$ and $\xi_{w}^{(i)}$ denoting the i th observation of the random variable $\xi_{k_{w}} \in \mathbb{R}^{p^{2}}$ and $\xi_{w} \in \mathbb{R}^{r p^{2}}$ respectively,

$$
\operatorname{vec}\left(\hat{\boldsymbol{M}}_{k_{w}}-\boldsymbol{M}_{k_{w}}\right)=\boldsymbol{G}_{k_{w}} \times\left(\frac{1}{n_{w}} \sum_{i=1}^{n_{w}} \xi_{k_{w}}^{(i)}\right)+O_{p}\left(n_{w}^{-1}\right) .
$$

In the multivariate setting, this leads to

$$
\operatorname{vec}\left(\hat{\boldsymbol{N}}_{w}-\boldsymbol{N}_{w}\right)=\boldsymbol{G}_{w} \times\left(\frac{1}{n_{w}} \sum_{i=1}^{n_{w}} \xi_{w}^{(i)}\right)+O_{p}\left(n_{w}^{-1}\right)
$$

Since each \boldsymbol{G}_{w} is a $r p^{2} \times r p^{2}$ constant matrix, $\sqrt{n} \operatorname{vec}\left(\hat{\boldsymbol{N}}_{w}-\boldsymbol{N}_{w}\right)$ converges in distribution to a $r p^{2}$-dimensional multivariate normal with mean 0 and covariance matrix $\boldsymbol{G}_{w} \mathrm{E}\left(\xi_{w} \xi_{w}^{\top}\right) \boldsymbol{G}_{w}^{\top}$. Consequently, $\sqrt{n} \tilde{\boldsymbol{\Gamma}}^{\top}(\hat{\boldsymbol{M}}-\boldsymbol{M}) \tilde{\boldsymbol{\Psi}}$ converges to a multivariate normal distribution with mean 0 and covariance matrix $\tilde{\boldsymbol{\Delta}}=$ $\sum_{w=1}^{c}\left(\tilde{\boldsymbol{\Psi}}_{w} \otimes \tilde{\boldsymbol{\Gamma}}\right)^{\top} \boldsymbol{G}_{w} \mathrm{E}\left(\xi_{w} \xi_{w}^{\top}\right) \boldsymbol{G}_{w}^{\top}\left(\tilde{\mathbf{\Psi}}_{w} \otimes \tilde{\boldsymbol{\Gamma}}\right)$. This completes the proof.

Additional References

Eaton, M.L. and Tyler, D. (1994). The asymptotic distribution of singular values with application to canonical correlations and correspondence analysis., Journal of Multivariate Analysis, 50, 238-264.

