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This note contains proofs for Corollary 1 and Propositions 3 and 4.

S1. Proof of Proposition 3

With i.i.d. observations {(Y iw ,X iw) : i = 1, . . . , nw} and n =
∑c

w=1 nw, the

sample estimates of the quantities in Σ1/2
• β∗Ω−1/2 can be expressed as follows.

Σ̂w = n−1
w

nw∑
iw=1

(X iw − X̄w)(X iw − X̄w)T,

σ̂kw = n−1
w

nw∑
iw=1

(X iw − X̄w)(Yikw − Ȳ•kw),

ε̂ikw = (Yikw − Ȳ•kw)− β̂T

ikw
(X iw − X̄w),

ε̂iw = (ε̂i1w , ε̂i2w , · · · , ε̂irw)T,

Σ̂• =
c∑

w=1

â2
wΣ̂w =

1
n

c∑
w=1

nwΣ̂w,

Ω̂w = n−1
w

nw∑
iw=1

ε̂iwε̂
T

iw,

where X̄w and Ȳ•kw are the sample average of X iw and Yikw , i = 1, 2, · · · , nw, and

β̂kw
= Σ̂

−1
w σ̂kw , β̂w = (β̂1w

, . . . , β̂rw
), âw = (nw/n)1/2, and β̂

∗
= (â1β̂1, . . . , âcβ̂c).

It follows from Eaton and Tyler (1994) that the asymptotic distribution of

Λ̂d is the same as that of Λd = trace(UU T) = vec(U )Tvec(U ), where

U =
√
nΓT(Σ̂

1/2
• β̂

∗
Ω̂
−1/2 −Σ1/2

• β∗Ω−1/2)Ψ.
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(Here U and Σ1/2
• β∗Ω−1/2 correspond to Eaton and Tyler’s Z n and B , respec-

tively, in their equations (4.4) and (4.1).) Consequently, it is sufficient to prove

that vec(U ) is asymptotically normally distributed, with mean 0 and covariance

matrix ∆. Note that

ΓTΣ1/2
• β∗ = 0 and β∗Ω−1/2Ψ = 0. (S1.1)

The matrix U can be expanded as

U =
√
nΓT{Σ1/2

• β∗(Ω̂
−1/2 −Ω−1/2) + (Σ̂

1/2
• −Σ1/2

• )β∗Ω−1/2

+ Σ1/2
• (β̂

∗ − β∗)Ω−1/2}Ψ +Op(n−1/2)

By (S1.1) the first and second terms are 0, so we have

U =
√
nΓTΣ1/2

• (β̂
∗ − β∗)Ω−1/2Ψ +Op(n−1/2) (S1.2)

and the limiting distribution of U is the same as that of U 0 =
√
nΓTΣ1/2

• (β̂
∗ −

β∗)Ω−1/2Ψ. Li, Cook and Chiaromonte(2003) and Cook and Setodji(2003)

proved that

âw

√
n(β̂jw

− βjw
) =
√
nw(β̂jw

− βjw
) = n−1/2

w Σ−1/2
w

nw∑
i=1

Z iwεijw +Op(n−1/2
w ).

Consequently,

√
nw(β̂jw

− βjw
) = n−1/2

w Σ−1/2
w

nw∑
i=1

Z iwεijw +Op(n−1/2
w ),

√
nw(β̂w − βw) = n−1/2

w Σ−1/2
w

nw∑
i=1

(
Z iwεi1w ,Z iwε2jw , . . . ,Z iwεirw

)
+Op(n−1/2

w ),

√
n(β̂ − β) =

(√
n1(β̂1 − β1),

√
n2(β̂2 − β2), . . . ,

√
nc(β̂c − βc)

)
.

Defining Rw = n
−1/2
w Σ−1/2

w
∑nw

i=1

(
Z iwεi1w ,Z iwε2jw , . . . ,Z iwεirw

)
and R = (R1,

R2, . . . ,Rc), so that U 0 = ΓTΣ1/2
• RΩ−1/2Ψ, and

vec(U 0) = [(ΨTΩ−1/2)⊗ (ΓTΣ1/2
• )]vec(R),

By the central limit theorem, we then have

vec(U 0) L→ N (0,∆),
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where

∆ =
c∑

w=1

[(ΨT

wΩ−1/2
w )⊗ (ΓTΣ1/2

• Σ−1/2
w )](Var(Tw))[(Ω−1/2

w Ψw)⊗ (Σ−1/2
w Σ1/2

• Γ)].

Note that Var(Tw) = E(TwT T

w)−E(Tw)E(Tw)T. Because εw is an OLS resid-

ual of the regression within the subgroup w, we have Cov(εw,Zw) = 0 and so

E(Tw) = 0. From this we can write Var(Tw) = E(TwT T

w) and

∆ =
c∑

w=1

[(ΨT

wΩ−1/2
w )⊗ (ΓTΣ1/2

• Σ−1/2
w )](E(TwT T

w))[(Ω−1/2
w Ψw)⊗ (Σ−1/2

w Σ1/2
• Γ)].

The conclusion then follows. 2

S2. Proof of Corollary 1

With either assumptions (a) or (b), we have Var(Tw) = Ωw ⊗ Ip, and thus,

∆ =
c∑

w=1

[(ΨT

wΩ−1/2
w )⊗ (ΓTΣ1/2

• Σ−1/2
w )](Var(Tw))[(Ω−1/2

w Ψw)⊗ (Σ−1/2
w Σ1/2

• Γ)]

=
c∑

w=1

[(ΨT

wΩ−1/2
w )⊗ (ΓTΣ1/2

• Σ−1/2
w )](Ωw ⊗ Ip)[(Ω−1/2

w Ψw)⊗ (Σ−1/2
w Σ1/2

• Γ)]

=
c∑

w=1

[(ΨT

wΩ−1/2
w Ωw)⊗ (ΓTΣ1/2

• Σ−1/2
w Ip)][(Ω−1/2

w Ψw)⊗ (Σ−1/2
w Σ1/2

• Γ)]

=
c∑

w=1

[(ΨT

wΩ1/2
w )⊗ (ΓTΣ1/2

• Σ−1/2
w )][(Ω−1/2

w Ψw)⊗ (Σ−1/2
w Σ1/2

• Γ)]

=
c∑

w=1

[(ΨT

wΩ1/2
w )(Ω−1/2

w Ψw)]⊗ [(ΓTΣ1/2
• Σ−1/2

w )(Σ−1/2
w Σ1/2

• Γ)]

=
c∑

w=1

[ΨT

wΨw]⊗ [ΓTΣ1/2
• Σ−1

w Σ1/2
• Γ].

If in addition Σ• = Σ1 = Σ2 = . . . = Σc, then we have ∆ = I(p−d)(rc−d),

and consequently Λ̂d converges to a chi-squared distribution with (p− d)(rc− d)

degrees of freedom. 2

S3. Proof of Propostion 4
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The joint asymptotic distribution of the p − d smallest singular values of
√
nM is the same as the distribution of the singular values of the matrix V =
√
nΓ̃

T

(M̂ −M )Ψ̃ (Eaton and Tyler, 1994). This implies that the asymptotic

distribution of Λ̃d is the same as that of vec(V )Tvec(V ), i.e., the sum of the

squared elements of V . Consequently, it is sufficient to show that vec(V ) is

asymptotically normally distributed with mean 0 and covariance matrix ∆̃.

Let N w = (M 1w , . . . ,M rw). Since Γ̃
T

M kw = 0 for any k and w,

V =
√
nΓ̃

T

(M̂ −M )Ψ̃ =
c∑

w=1

√
nwΓ̃

T

(N̂ w −N w)Ψ̃w ≡
c∑

w=1

√
nwV w

where N̂ w is the sample estimate of N w. This implies vec(V ) =
∑c

w=1 vec(V w).

Since the V w’s are mutually independent, we can determine the limiting distri-

bution of just one vec(V w), and then add them to obtain our desired result.

Note that vec(V w) can be rewritten as vec(V w) = (Ψ̃
T

w ⊗ Γ̃
T

)vec(N̂ −N ).

Cook and Li (2004) showed that, with ξ
(i)
kw

and ξ
(i)
w denoting the ith observation

of the random variable ξkw ∈ IRp2
and ξw ∈ IRrp2

respectively,

vec(M̂ kw −M kw) = Gkw ×

(
1
nw

nw∑
i=1

ξ
(i)
kw

)
+Op(n−1

w ).

In the multivariate setting, this leads to

vec(N̂ w −N w) = Gw ×

(
1
nw

nw∑
i=1

ξ(i)w

)
+Op(n−1

w ).

Since each Gw is a rp2 × rp2 constant matrix,
√
nvec(N̂ w − N w) converges

in distribution to a rp2-dimensional multivariate normal with mean 0 and co-

variance matrix GwE(ξwξT

w)GT

w. Consequently,
√
nΓ̃

T

(M̂ −M )Ψ̃ converges to

a multivariate normal distribution with mean 0 and covariance matrix ∆̃ =∑c
w=1(Ψ̃w ⊗ Γ̃)TGwE(ξwξT

w)GT

w(Ψ̃w ⊗ Γ̃). This completes the proof. 2
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