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Abstract: Cook and Setodji (2003) introduced the notion of model-free reduced-rank

in multivariate regression. However, they only focused on continuous predictors.

In this article, we propose an extension of model-free multivariate reduced-rank

regression to incorporate a mixture of continuous and categorical predictors. A

test for reduced-rank is proposed that requires no parametric model specification.

Simulations and a data analysis are provided to demonstrate its effectiveness.
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1. Introduction

Consider a multivariate response Y ∈ IRr , a vector X ∈ IRp of p continuous

predictors, and a vector W ∈ IRq of q categorical predictors. Regression analysis

hinges on describing the conditional distribution of Y |(X ,W ) by a parsimonious

parametric model, whereas the attention is often concentrated on the conditional

mean function E (Y |X ,W ). Commonly used is the classical multivariate linear

model of the form

Y = α + B
T

X + C
T

W + δ (1.1)

where α is an r × 1 vector of intercepts, B and C are p × r and q × r matrices

of unknown regression coefficients, and δ is an error vector that is independent

of the predictors (X ,W ) with zero mean and constant variance.

When rank(B T,C T) < min(r, p + q), (1.1) is called a multivariate reduced-

rank linear model, since only a reduced number of linear combinations of the

predictors is needed to convey full information about E (Y |X ,W ). Such reduc-

tion is often appealing from both estimation and interpretation points of view,

especially when there are a fair number of predictors under examination. Mul-

tivariate reduced-rank linear model has been studied extensively by Anderson

(1951), Izenman (1975) and Reinsel and Velu (1998), among others. In particu-

lar, Anderson (1951) considered a version of (1.1), where X has a reduced-rank

coefficient matrix B , while W has a full rank coefficient matrix C , and the

reduction is only possible for X .
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A linear model such as (1.1) may not always be appropriate, since the true

functional predictor-response relation may not be known a priori, and the re-

sponse may depend on the predictors in a complicated manner. Moreover, (1.1)

is restricted by the assumption of no interaction between the continuous and

categorical predictors. Cook and Setodji (2003) proposed a test for the multi-

variate reduced-rank regression without positing any parametric model. How-

ever, their method focused only on the case where all predictors are continuous.

Li, Cook and Chiaromonte (2003) considered a mixture of continuous and cat-

egorical predictors, but they only dealt with a univariate response. When the

components of the multivariate response are correlated, a univariate analysis of

individual responses is often less informative than a multivariate treatment.

The ability to handle both a multivariate response and a mixture of predic-

tors is often desirable in applications. One example is the Berkeley Guidance

Study. Tuddenham and Snyder (1954) investigated the physical growth of 136

white children, 66 boys and 70 girls, born in Berkeley, California. Weight (WT )

and height (HT ) were measured for all children at years 2, 9, and 18, while leg

circumference (LG) and strength (ST ) were measured at years 9 and 18. In

the following, we denote a measurement V taken at age t by Vt. To study the

effect of early life trajectories on aging, researchers were interested in modelling

the weight and height of a child at age 18 based on the measurements taken at

earlier years, including HT2, HT9, WT2, WT9, LG9, and ST9. The two response

variables, (HT18, ST18), were found to be highly correlated, a correlation of 0.7,

suggesting that a multivariate analysis might provide better inference than a

univariate analysis of the two responses separately. Moreover there is a natural

expectation of a difference in the growth of boys and girls; then it would be

important to include gender as a predictor in addition to other predictors.

In this article we extend Cook and Setodji (2003) and Li, Cook and Chiaro-

monte (2003) to develop a multivariate reduced-rank regression with a mixture of

continuous and categorical predictors, meanwhile imposing no parametric model

such as (1.1). The proposed method could potentially be useful in the exploratory

stage of analysis prior to model specification. It could also lead to construction

of low-dimensional summary plots that contain all regression information, thus

facilitating the subsequent model specification. In this article we use a univariate

W ∈ {1, . . . , c} to denote the categorical variable. It can represent a single qual-

itative predictor like gender, or a combination of several qualitative predictors

like gender and race; any multivariate categorical variable can be reparameter-

ized into this form. For this reason, dimension reduction here is focused on the

continuous predictors only. The rest of the article is organized as follows. Section

2 introduces the concept of the central partial mean subspace that will serve as

a basis for our methodology development. A model-free reduced-rank regression
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estimation and a dimension test with mixture of predictors based on ordinary

least square (OLS) are developed in Section 3. An application to the Berkeley

Guidance Study is presented in Section 4, and simulations are presented in Sec-

tion 5. Moreover, we discuss extension of the proposed methodology to other

estimators of the central mean subspace in Section 6, and conclude the paper in

Section 7. All technical proofs are relegated to an online supplementary appendix

available at http://www.stat.sinica.edu.tw/statistica.

2. Central Partial Mean Subspace

2.1. Multivariate central partial mean subspace

When the focus of a regression analysis is only on the conditional mean

E (Y |X ), Cook and Li (2002) developed the notion of the central mean sub-

space, denoted by SE (Y |X ), which is defined as the intersection of all subspaces

S in IRp satisfying that Y E (Y |X )|PSX, where denotes independence and

PS is the orthogonal projection onto S. Such a subspace uniquely exists under

minor conditions, and is the minimum subspace that contains all information

about Y that is available through E (Y |X ). Cook and Setodji (2003) extended

the concept of the central mean subspace to a multivariate response, whereas

Li, Cook and Chiaromonte (2003) extended it to incorporate a categorical pre-

dictor W by introducing the central partial mean subspace. Stemming from

these concepts, we next define the central partial mean subspace for regression

of the multivariate response Y given a mixture of quantitative and qualitative

predictors X and W .

The central partial mean subspace (CPMS), denoted by S(W )

E (Y |X )
, is defined

as the intersection of all subspaces S of IRp satisfying

Y E(Y |X ,W )|(ηT

X ,W ), (2.1)

where η denotes a basis of S. S(W )

E (Y |X )
uniquely exists under minor conditions

(Cook (1998)) and is assumed to exist here. Following this definition, (2.1)

indicates that (ηT
X ,W ) contains all information that the predictors (X ,W )

have to furnish about the conditional mean E (Y |X ,W ) and, as such, one can

replace X with ηT
X to characterize E (Y |X ,W ) and lose no information about

the conditional mean.

The next proposition, which is a multivariate version of Proposition 2.1 of

Li, Cook and Chiaromonte (2003), gives alternative ways to characterize the cen-

tral partial mean subspace.

Proposition 1. Condition (2.1) is equivalent to either of

(i) Cov (Y ,E (Y |X ,W )|ηT
X ,W ) = 0,

http://www.stat.sinica.edu.tw/statistica
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(ii) E (Y |X ,W ) = E (Y |ηT
X ,W ).

The proposition suggests that ηT
X is sufficient for the mean function if and only

if Y and E (Y |X ,W ) are uncorrelated within each subpopulation determined

by W , or equivalently, E (Y |X ,W ) depends on X only through ηT
X .

2.2. Decomposition of multivariate CPMS

Let Yk denote the kth univariate response variable of Y , k = 1, . . . , r,

and let Xw and Ykw
denote random variables distributed as X |(W = w) and

Yk|(W = w), respectively, for w = 1, . . . , c. In the univariate response case

(r = 1), Li, Cook and Chiaromonte (2003) showed that the CPMS can be derived

from the integration of all the central mean subspaces obtained from each subpop-

ulation of W . That is, for each k = 1, . . . , r, SW
E (Yk|X )

=
⊕c

w=1 SE (Ykw
|Xw). Here

⊕ indicates direct sum between subspaces: S1 ⊕S2 = {s1 + s2; s1 ∈ S1, s2 ∈ S2}.
In principle, the subpopulation central mean subspaces SE (Ykw

|Xw) can overlap

in any fashion, but always add up to SW
E (Yk |X )

. For the multivariate response

case, Cook and Setodji (2003) showed that the central mean subspace of Y given

X can be obtained as the direct sum of the central mean subspaces of all the

univariate coordinates Yk given X , i.e., SE (Y |X ) =
⊕r

k=1 SE (Yk|X ). Combining

these observations, we obtain the following.

Proposition 2.

S(W )

E (Y |X )
=

c
⊕

w=1

SE (Y w|Xw) =
r
⊕

k=1

S(W )

E (Yk|X )
=

r
⊕

k=1

c
⊕

w=1

SE (Ykw
|Xw).

This proposition provides a way to develop an estimator of the CPMS through

estimation of the individual central mean subspaces SE (Ykw
|Xw). A thorough

treatment of estimation of S(W )

E (Y |X )
is presented in Sections 3 and 6.

2.3. Connection with multivariate linear reduced-rank model

In this section we examine some specific models to help fix the ideas of the

central partial mean subspace. Returning to the multivariate linear model (1.1),

one assumes that

Yk = αk + b
T

kX + ckW + δk, for k = 1, . . . , r,

where B = (b1, . . . , br), α = (α1, . . . , αr)
T, C = (c1, . . . , cr)

T, and δ = (δ1, . . .,

δr)
T. Here W is treated as a univariate variable. That is, the mean of each

coordinate E (Yk|X ,W ) is a linear function in X and W . For this model, it is
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straightforward to verify that SE (Ykw
|Xw) = Span(bk) for all w’s, and S(W )

E (Y |X )
=

Span(B) =
⊕r

k=1 Span(bk).
Note that (1.1) does not allow for interaction between X and W , which may

be restrictive in practice. Taking the Berkeley Guidance Study as an example,
it seems more reasonable to believe that different covariate effects on aging may
exist for boys and girls. The structure of S(W )

E (Y |X )
, on the contrary, does permit

interactions, e.g.,

Yk = αk +
c
∑

w=1

b
T

kw
X 1I(W=w) + ckW + δk, for k = 1, . . . , r,

where 1I denotes the indicator function and different covariate effects bkw
could

be estimated for different groups in W . In this model, SE (Ykw
|Xw) = Span(bkw

),

and S(W )

E (Y |X )
=
⊕r

k=1

⊕c
w=1 Span(bkw

).

Actually the structure of S(W )

E (Y |X )
permits more general regression forms

than the ones mentioned above, for instance,

Yk = αk + ckW +

c
∑

w=1

(

b
T

kw
X 1I(W=w) + σkw

(bT

kw
X )δkw

)

,

where the subpopulation variance function σkw
can depend on the linear com-

binations of X that serves as the mean function. It also covers models such

as

Yk = αk +
c
∑

w=1

fkw

(

b
T

kw
X 1I(W=w)

)

+ δk,

where the conditional mean E (Yk|X ,W ) can depend on the terms (bT

k1
X , . . .,

b
T

kc
X ) and W in a nonlinear fashion. In the above examples, we always have

S(W )

E (Y |X )
=
⊕r

k=1

⊕c
w=1 Span(bkw

).

3. Estimation of Reduced-rank Regression with Mixture Predictors

3.1. Estimation of CPMS via OLS

Proposition 2suggests that the CPMS can be derived from the central mean
subspace for each univariate response coordinate within each subpopulation im-
plied by W . We next develop an estimator of the CPMS and the associated test
for dimension.

For Σw = Var (Xw), assumed positive definite, and σkw
= Cov (Ykw

,X w),
let βkw

= Σ−1
w σkw

denote the population ordinary least squares vector regressing
Ykw

on Xw, and let β = (β11
, . . . ,βr1

, . . . ,β1c
, . . . ,βrc

). We assume the following

conditions:
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(C.1) E (Xw|γT
Xw = ν) is a linear function of ν for any γ ∈ IRp ;

(C.2) SE (Ykw
|Xw) ⊆ Span(β) for k = 1, . . . , r and w = 1, . . . , c.

The first condition (C.1) is often called the linearity condition, and is a

common assumption imposed by most sufficient dimension reduction methods.

Li and Duan (1989) showed that, under this condition, Span(β) ⊆ SE (Y |X ). It

is typically viewed as a mild restriction since it involves only the marginal dis-

tribution of the predictors, and it holds to a reasonable approximation as the

number of predictors increases (Hall and Li (1993)). It may also be induced by

predictor transformation, re-weighting (Cook and Nachtsheim (1994)), or clus-

tering (Li, Cook and Nachtsheim (2004)). Condition (C.2) is satisfied when the

distribution of Ykw
|Xw can be summarized through at most one linear combina-

tion of the predictors. Even so, (C.2) permits the distribution of Y |X to depend

on multiple linear combinations of the predictors. In general, the conditions (C.1)

and (C.2) are flexible enough to cover many regression structures. For instance,

they hold for all the models discussed in Section 2.3.

Assuming (C.1) and (C.2), the following relation can be derived from Propo-

sition 2.

S(W )

E (Y |X )
= Span(β) = Span(β11

, . . . ,βr1
, . . . ,β1c

, . . . ,βrc
).

Consequently, we propose to use Span(β̂) = Span(β̂11
, . . . , β̂r1

, . . . , β̂1c
, . . . , β̂rc

)

to construct an estimate of S(W )

E (Y |X )
, where β̂kw

is the usual OLS sample esti-

mate. We next develop a formal test to determine the rank of β.

3.2. Reduced-rank dimension test

As implied by the discussion in Section 2.3, the rank of B in the multivariate

reduced-rank linear model (1.1) is the dimension of the central partial mean

subspace. As a consequence, we can infer the rank of the model (1.1) through

a formal test of the dimension of S(W )

E (Y |X )
. In addition, the dimension test we

develop here applies to more general structures of the reduced-rank models than

(1.1), as suggested in Section 2.3.

Specifically, we consider the hypotheses

H0 : rank(β) = m versus HA : rank(β) > m. (3.1)

We repeat the test for a series of values of m from 0 to p−1, and we take the mini-

mum m such that H0 is not rejected as an estimate of rank(β) = dim(S(W )

E (Y |X )
).

To help derive the large sample test for (3.1), we first note that the rank of

β remains unchanged if it is multiplied by a full rank matrix, or its columns
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are multiplied by nonzero scalars. We thus introduce the following transforma-

tion. Let aw = Pr(W = w)1/2 > 0 denote the square root of the probabil-
ity of being in a subpopulation w defined by W . Write βw = (β1w

, . . . ,βrw
),

and let β∗ = (a1β1, . . . , acβc). Next define Σ• =
∑c

w=1 a2
wΣw = E(ΣW ), and

assume it is positive definite. Compute the residual εkw
from the population

OLS fit of the kth response variable Ykw
on Xw within the subpopulation w,

εkw
= (Ykw

− E (Ykw
)) − βT

kw
(Xw − E (X w)), and write εw = (ε1w

, . . . , εrw
)T,

Ωw = Var (εw) > 0, and define Ω = diag(Ω1, . . . ,Ωc) as the block diagonal ma-

trix with diagonal blocks Ωw. Then the null hypothesis H0 in (3.1) is equivalent
to

H ′
0 : rank(Σ

1/2
• β∗Ω−1/2) = m. (3.2)

Given n i.i.d. sample observations of (Y ,X ,W ), {(Y iw ,X iw) : i = 1, . . .,

nw}, with n =
∑c

w=1 nw, the population quantities Σ•, β∗, and Ω in (3.2) can be

estimated by their usual sample counterparts Σ̂, β̂
∗

and Ω̂, respectively. Since

the rank of a matrix corresponds to its number of nonzero singular values, a

natural test statistic for (3.2) is

Λ̂m =

min(p,rc)
∑

i=m+1

λ̂i,

where λ̂1 ≥ · · · ≥ λ̂p ≥ 0 are the ordered eigenvalues of the p × p matrix

n(Σ̂
1/2
• β̂

∗
Ω̂

−1/2
)(Σ̂

1/2
• β̂

∗
Ω̂

−1/2
)T.

We next derive the asymptotic distribution of the test statistic Λ̂m under
H0. Let d = rank(β) and consider the singular value decomposition

Σ
1/2
• β∗Ω−1/2 =

(

Γ0 Γ
)

(

D 0

0 0

)(

ΨT

0

ΨT

)

,

where (Γ0,Γ) and (Ψ0,Ψ) are orthogonal matrices with dimensions p × p and

rc× rc, and D is a d× d diagonal matrix with positive diagonal elements, Γ has
dimension p× (p−d) and Ψ has dimension rc× (rc−d). Define the standardized

predictor w = Σ
−1/2
w (Xw−E (Xw)), and a random vector Tw = vec(wεT

w) where

vec is a matrix operator that stacks all the columns of a matrix to a vector. Next,
define

∆ =

c
∑

w=1

[(ΨT

wΩ−1/2
w )⊗(ΓTΣ

1/2
• Σ−1/2

w )](E (TwT
T

w))[(Ω−1/2
w Ψw)⊗(Σ−1/2

w Σ
1/2
• Γ)],

where ⊗ indicates a kronecker product, and for w ∈ {1, . . . , c}, the Ψw’s are the

r × (rc− d) row matrices of Ψ so that ΨT = (ΨT

1, . . . ,Ψ
T

c). The next proposition

gives the asymptotic distribution of the test statistic Λ̂d.
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Proposition 3. Assuming that all moments involved in ∆ are finite, then as

nw → ∞ for w = 1, . . . , c,

Λ̂d =

min(p,rc)
∑

i=d+1

λ̂i
L→

(p−d)(rc−d)
∑

i=1

αiKi

where α1, . . . , α(p−d)(rc−d) are the eigenvalues of the matrix ∆, and K1, . . .,

K(p−d)(rc−d) are independent identically distributed random variables with a χ2
1

distribution.

Proposition 3 suggests that one can get the p-value of the test from a

weighted chi-squared distributions, where the weights αi’s can be estimated con-

sistently from a sample version of ∆. Alternatively, instead of calculating the

p-value for the distribution of Λ̂m, one may also use Satterthwaite’s (1941) chi-

squared approximation. See Bentler and Xie (2000), Cook and Setodji (2003),

and Li, Cook and Chiaromonte (2003) for more details about the approximate

chi-squared test.

In some regression problems, the asymptotic distribution of Λ̂m can be sim-

plified to a single chi-squared rather than a linear combination of chi-squared

distributions. The next corollary gives conditions for such a simplification.

Corollary 1. Suppose:

(a) Var (Tw) = E (εwεT

w) ⊗ E (w
T

w), for all w = 1, . . . , c, or

(b) Y w|X w follows a location regression, i.e., Y w Xw|E (Y w|X w), and Xw

is normally distributed.

Then ∆ =
∑c

w=1[Ψ
T

wΨw]⊗[ΓTΣ
1/2
• Σ−1

w Σ
1/2
• Γ]. If, in addition, Σ• = Σ1 = Σ2 =

· · · = Σc then Λ̂d
L→ χ2

(p−d)(rc−d).

Note that condition (a) is satisfied when any of the following conditions are

met (Cook and Setodji (2003)): Cov (εkw
εjw

, w
T

w) = 0 for j, k = 1, . . . , r and

w = 1, . . . , c, or Y w|Xw follows a location regression and d = 0. Moreover, the

condition of equal predictor covariance matrix Σw across all subpopulations may

be appropriate in some applications, for instance, in cases where W denotes a

treatment that is randomly assigned to all the experimental units.

4. Application to the Berkeley Guidance Study

We revisit the Berkeley Guidance Study data introduced in Section 1 to

illustrate aspects of data analysis of the proposed methods. In this analysis, the

response vector consists of the height and strength of the children at age 18,

Y = (HT18, ST18), and the predictors include HT2, HT9, WT2, WT9, LG9, ST9

(X ), plus gender (W ).
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Figure 4.1. Summary plot of the responses versus the sufficient predictors
marked by gender. Boys (o), girls (+).

To ensure condition (C.1), we first transformed the predictors height and

leg circumference measurements to log scale, while the rest of the predictors

remained untransformed. Such a transformation leads to an approximate multi-
variate normal distribution, and as such the linearity condition is met. For the

second condition (C.2), we examined the dimension of the subgroup central mean
subspace SE (Ykw

|Xw) based on the dimension test of sliced inverse regression (Li

(1991)) within each gender group. In all cases the dimension was concluded to
be no greater than one, suggesting that (C.2) holds.

We then constructed the test statistics Λ̂m for m = 1, . . . , 4, and referenced
those statistics to the weighted chi-squared distribution as in Proposition 3. The

resulting p-values were 0, 0, 0.32 and 0.56, respectively. We also tried with
the simplified chi-squared reference distribution as in Corollary 1, yielding the

p-values 0, 0, 0.34, and 0.58. We thus concluded that only two linear combina-

tions of X are needed to characterize the conditional mean E (Y |X ,W ). After
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Table 4.1. Estimated mean and standard deviation (in parenthesis) from a
linear model with interactions on the Berkeley Guidance Study.

Model predictors Model for ST18 (R2 = 0.87) Model for HT18 (R2 = 0.88)
Boys vs. Girls -80.3 (3.2) -11.2 (0.5)

with boys with girls with boys with girls

b̂
T

1
X interaction 9.4 (2.3) 4.1 (2.2) 5.9 (0.4) 5.1 (0.4)

b̂
T

2
X interaction 18.0 (2.3) 9.2 (2.2) 0.2 (0.4) -0.9 (0.4)

standardizing the coordinates of X to have sample standard deviation one, we
obtained the linear combinations

b̂
T

1X = −0.06 log(HT2) + 0.97 log(HT9) + 0.10WT2 − 0.22WT9 − 0.07 log(LG9)

+0.003ST9,

b̂
T

2X = 0.12 log(HT2) − 0.57 log(HT9) − 0.15WT2 + 0.38WT9 − 0.03 log(LG9)

+0.700ST9.

Figure 4.1 shows the summary plot of Y = (HT18, ST18) versus b̂
T

1X and
b̂

T

2X . The plot sustains the common belief that boys and girls have different
growth trajectories, and thus there exists interaction between X and W . Sec-
ondly, both response variables exhibit a strong linear correlation with the first
summary variable b̂

T

1X , while there is a hint of a possibly quadratic relation with
b̂

T

2X . These observations would facilitate subsequent model formulation.
To complete the analysis, we fitted a simple linear model for each response

variable given the two new predictors b̂
T

1X and b̂
T

2X interacted with gender.
Both models yielded R2 equal to about 0.9, indicating a good model fit to the
data. The results are summarized in Table 4.1 where it can be seen, for instance,
on average the strength of boys is about 80kg greater than that of girls, while
boys are about 11cm taller than girls at age 18; the strength of teenagers increases
at a rate of 9kg for boys and 4 kg for girls for every one unit increase in the score
of b̂

T

1X . Similar interpretation can be obtained for the two response variables
given b̂

T

1X and b̂
T

2X for boys and girls, respectively. We also examined the linear
model with a quadratic term of b̂

T

2X for both response variables, but there was
no significant gain with this additional term.

5. Finite Sample Performance

5.1. Reduced-rank dimension test

We first examine the finite sample performance of the chi-squared tests in
Proposition 3 and Corollary 1. We start with the following model, with p = 5
and r = 4,

Y1 = (bT

1X )21I(W=0) + b
T

2X 1I(W=1) + (bT

1X )δ1,
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a. Chi-squared test of Corollary 1 b. Weighted chi-squared test of

Proposition 3

Figure 5.2. Estimated Pr(p-value ≤ U) for model (5.1) with sample size

n = 100, 200, 300, 400 and 1, 000.

Y2 = b
T

2X 1I(W=0) + b
T

1X 1I(W=1) + δ2,

Y3 = b
T

1X 1I(W=0) + δ3,

Y4 = Y 2
2 + b

T

1X 1I(W=1) + (bT

2X )δ4, (5.1)

where X follows a multivariate standard normal distribution, W is a Bernoulli

random variable with probability of success 0.4, δ1, . . . , δ4 are standard normal

errors independent of X and W , and b1, b2 are two vectors in IRp . First we set

b1 = b2 = (1, 1, 1, 1, 1)T , and so the central partial mean subspace is S(W )

E (Y |X )
=

Span(b1) with dimension d = 1. Since W is independent of X , we have Σ0 =

Σ1. In addition, since Y w|Xw follows a location regression and Xw is normally

distributed, the chi-squared test in Corollary 1can be readily applied.

For each simulated data, Λ̂1 was computed and the corresponding p-value was

derived. This procedure was repeated 1,000 times to obtain an estimate of the

distribution of the p-value for Λ̂1. If the distribution of Λ̂1 is well approximated

by a chi-squared with (p − 1)(rc − 1) degrees of freedom, then it is expected to

have Pr(p-values ≤ u) ≈ u for 0 ≤ u ≤ 1. The empirical cdf’s of the p-values for

the sample sizes n = 100, 200, 300, 400, and 1,000 are shown in Figure 5.2a. For

a small sample size as n = 100, the empirical cdf was notably curved. However,

it improved substantially when the sample size increased, and the actual level

quickly approached the true nominal level. The actual level of the nominal 5%

test was 9.8% for n = 200, 6.8% for n = 400, and 5.6% for n = 1, 000. We also

considered a model with b1 = (1, 1, 1, 1, 1)T and b2 = (1,−1,−1, 0, 0)T , which

yields a reduced-rank model with dimension d = 2. The resulting plot was

similar to Figure 5.2a, and thus is not shown. Numerically, the observed level of
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the nominal 5% test was about 12.3% when n = 200, and dropped to 6.4% for

n = 400 and 5.9% for n = 1, 000.

We next examined a model where the chi-squared test of Corollary 1 no

longer applied, but the weighted chi-squared test of Proposition 3 was still ap-

plicable. Specifically, we set W as a Bernoulli with probability of success equal

to 0.4. Xj = {ujW + vj(1 − W )}Tj , j = 1, . . . , 5, where Tj’s were independent

standard normal random variables, u1 = 0.3, v1 = 1.2; u2 = 1.3, v2 = 0.2;

u3 = 0.5, v3 = 0.6; u4 = 0.6, v4 = 1.2; and u5 = 1.1, v5 = 0.5. The rest of data

generation remained the same as in (5.1). In this setup, X depends on W and

Σw differs across different levels of W . We examined both a d = 1 model and a

d = 2 model as before, and Figure 5.2b shows the empirical cdf’s of the p-values

obtained from the weighted chi-squared test of Λ̂2 for the d = 2 case. Similar

qualitative patterns as Figure 5.2a were observed, indicating that the weighted

chi-squared test worked quite well too.

We have also examined the effect of the dimension r of Y and p of X on

the performance of the proposed test. As anticipated, a smaller number r or p

yielded a more accurate actual level for the test. For brevity, those results are

not reported here. In summary we conclude, based on our simulations, that the

actual level of the proposed chi-squared test is sufficiently close to the nominal

level to be practically useful, provided that there is a reasonable amount of, say,

about 200 or more sample observations.

5.2. Estimation of basis of CPMS

We next evaluated accuracy of basis estimation for the central partial mean

subspace. We employed the squared multiple correlation coefficient (Li (1991,

p.318)) as the evaluation criterion,

R
2(b̂j) = max

γ∈Span{b1,...,bd}

(b̂
T

jΣγ)2

(b̂
T

jΣb̂j) × (γTΣγ)
, for j = 1, . . . , d,

where Σ = Var (X ), (b1, . . . , bd) denotes a basis of S(W )

E (Y |X )
and (b̂1, . . . , b̂d) are

the corresponding sample estimates.

We first examined a bivariate response model with d = 1:

Y1 = δ1 exp{W (X1 + X2) − (1 − W )(X1 + X2)
2},

Y2 =
X1 + X2

1 + exp(X1 + X2 + W )
+ δ2, (5.2)

where X and W were generated the same way as in the weighted chi-squared

test example in Section 5.1. For this model, S(W )

E (Y |X )
= Span(b1), with b1 =
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Table 5.2. Estimated mean and standard deviation (in parentheses) of the
squared multiple correlation coefficient.

Model (5.2) Model (5.3)

Sample size R
2(b̂1) R

2(b̂1) R
2(b̂2)

100 0.900 (0.103) 0.965 (0.038) 0.803 (0.241)
300 0.958 (0.039) 0.991 (0.007) 0.933 (0.088)
500 0.972 (0.023) 0.995 (0.004) 0.961 (0.061)

(1, 1, 0, . . . , 0)T. The first response component Y1 is heteroscedastic, while the

second component Y2 depends on b
T

1X in a nonlinear fashion. Table 5.2 reports

the mean and the standard deviation of R
2(b̂1) out of 1,000 data replications.

The average R
2 was above 0.9 for all sample sizes, indicating that the reduced-

rank method produced really good estimate of the basis of the CPMS.

We next considered a bivariate response model with d = 2:

Y1 = {X1 + (1 − W )X2}(X1 + X2 + 1) + δ1,

Y2 =
X1 + (1 − W )X2

0.5 + (X1 + 2X2 + 1)2
+ δ2, (5.3)

where the rest of data generation was the same as in the previous example.

For this setup, S(W )

E (Y |X )
= Span(b1, b2), with b1 = (1, 0, . . . , 0)T and b2 =

(0, 1, 0, . . . , 0)T. Table 5.2 reports the mean and the standard deviation of R2(b̂1)

and R
2(b̂2), respectively, based on 1,000 replications. Again, the proposed

method is seen to estimate the true basis pretty accurately.

6. Extended Estimation of Reduced-rank Regression

6.1. Multivariate partial iterative Hessian transformation

In Section 3, estimation of the central partial mean subspace was developed

based on the ordinary least squares estimator. The same idea can also be general-

ized to other estimators of the central mean subspace. Representative estimators

in this category include principal Hessian directions (PHD, Li (1992) and Cook

(1998)), iterative Hessian transformation (IHT, Cook and Li (2002, 2004)), and

minimum average variance estimation (MAVE, Xia, Tong, Li and Zhu (2002)).

Among them, PHD requires an additional constant variance condition besides

the linearity condition, and is generally insensitive to linear trends in regression.

MAVE further relaxes the linearity condition, but it involves high-dimensional

nonparametric smoothing and may be computationally intensive. IHT combines

OLS and PHD in estimating the central mean subspace, requires only the lin-

earity condition, and also avoids nonparametric smoothing. For these reasons,
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in this section, we extend IHT to multivariate reduced-rank regression with a

mixture of continuous and categorical predictors.

Let βkw
= Var (Ykw

)−1Σ−1
w σkw

denote the standardized version of the OLS

vector of regressing Ykw
on w, and let H kw

= E [Var (Ykw
)−1{Ykw

− E (Ykw
) −

βT

kw
w}w

T

w]. Following Cook and Li (2002, 2004), and assuming the linearity

condition (C.1), IHT estimates the central mean subspace by a matrix consisting

of iteratively transformed βkw
by H kw

, i.e.,

Span
(

βkw
,H kw

βkw
,H 2

kw
βkw

, . . . ,H
p−1
kw

βkw

)

⊆ SE (Ykw
|w).

Consequently one can estimate S(W )

E (Y | )
by combining IHT estimates of SE (Ykw

|w)

for each component of Y and at each level of W . Define M kw
= (βkw

,H kw
βkw

,

H
2
kw

βkw
, . . . ,H

p−1
kw

βkw
), and M =(a1M 11

, . . . , a1M r1
, . . . , acM 1c

, . . . , acM rc
),

where aw = Pr(W = w)1/2 as defined before. Then, following Proposition 2,

under the linearity condition (C.1) and the usually imposed coverage condition,

we have

S(W )

E (Y | )
= Span(M ).

We next derive a test statistic for estimating the rank of M obtained through

IHT. The development parallels that in Section 3.2 for OLS-based estimation.

Consider the following hypotheses

H0 : rank(M ) = m versus HA : rank(M ) > m. (6.1)

Letting M̂ denote the sample estimate of M by substituting corresponding sam-

ple estimates of aw, βkw
and H kw

in M , we construct the test statistic for (6.1)

as Λ̃m =
∑p

i=m+1 λ̃i, where λ̃1 ≥ · · · ≥ λ̃p ≥ 0 are the ordered eigenvalues of the

p × p matrix nM̂ M̂
T

. Next consider the singular value decomposition

M =
(

Γ̃0 Γ̃
)

(

D 0

0 0

)

(

Ψ̃
T

0

Ψ̃
T

)

,

where (Γ̃0, Γ̃) and (Ψ̃0, Ψ̃) are orthogonal matrices with dimensions p × p and

prc × prc, and D is a d × d diagonal matrix with positive diagonal elements, Γ̃

has dimension p × (p − d) and Ψ̃ has dimension prc × (prc − d). We partition

Ψ̃ = (Ψ̃
T

1, . . . , Ψ̃
T

c, )
T, where Ψ̃w has dimension pr × (prc − d) for w = 1, . . . , c.

We further introduce the following notations: for k = 1 . . . , r and w =

1, . . . , c,

ξ1(kw) = wYkw
− βkw

− 1

2
(w

T

w − Ip)βkw
− 1

2
(Y 2

kw
− 1)βkw

,
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ξi(kw) =
{

εkw
(w

T

w − Ip) −H kw
− 1

2
(w

T

w − Ip)H kw

−1

2
H kw

(w
T

w − Ip) −
1

2
(Y 2

kw
− 1)H kw

}

H
i−2
kw

βkw
, i = 2, . . . , p,

ξkw
= (ξT

1(kw), ξ
T

2(kw), . . . , ξ
T

p(kw))
T, ξw = (ξT

1w
, ξT

2w
, . . . , ξT

rw
)T, and

Gkw
=











Ip 0 . . . 0 0

H kw
Ip . . . 0 0

...
. . .

...

H
p−1
kw

. . . H kw
Ip











, Gw =











G1w
0 . . . 0

0 G2w
. . . 0

...
. . . 0

0 0 . . . Grw











.

The next proposition gives the asymptotic distribution of the test statistic Λ̃d,

again a weighted chi-squared distribution under the null hypothesis.

Proposition 4. Define

∆̃ =

c
∑

w=1

(Ψ̃w ⊗ Γ̃)T

GwE (ξwξT

w)GT

w(Ψ̃w ⊗ Γ̃),

and assume that all moments involved in ∆̃ are finite. Then, as nw → ∞,

Λ̃d =

p
∑

i=d+1

λ̃i
L→

(p−d)(prc−d)
∑

i=1

αiKi,

where α1, . . . , α(p−d)(prc−d) are the eigenvalues of the matrix ∆̃, and K1, . . .,

K(p−d)(prc−d) are independent identically distributed random variables with a χ2
1

distribution.

Comparing the above partial IHT estimator with the OLS-based estimator,

the new method further relaxes the condition (C.2). That is, the distribution

of Ykw
|X kw

can depend on more than one linear combinations of the predictors

including the ones not covered by the OLS estimates. On the other hand, we also

note that a relatively large sample size is required for the IHT-based method since

it involves an estimation of a (p−d)(prc−d)×(p−d)(prc−d) matrix ∆̃. To help

fix ideas, consider an example with r = 4 response variables, p = 5 predictors,

and a binary c = 2 categorical variable. Besides, suppose the dimension of the

CPMS is d = 2. Given this setup, one would need to estimate a 114×114 matrix

∆̃ to carry out the proposed IHT-based rank test. By contrast, the OLS-based

rank test involves only a 18 × 18 matrix ∆ as given in Proposition 3. For this

reason, if the sample size of the data is not large, and if the data supports (C.2) as

in the case of the Berkeley Guidance Study, we would recommend the OLS-based

approach.
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6.2. Asymptotically efficient estimation

The methods described so far all hinge on the spectral decomposion of a p×h

matrix θ satisfying Span(θ) = S(W )

E (Y | )
. For the OLS-based method, θ = β with

h = rc; for the IHT-based method, θ = M with h = prc. Following the recent

development of Cook and Ni (2005), one may further construct an asymptotically

efficient estimator of S(W )

E (Y | )
, by minimizing a quadratic discrepancy function,

F (η,γ) =
{

vec(θ̂) − vec(ηγ)
}

T

V̂

{

vec(θ̂) − vec(ηγ)
}

, (6.2)

over a p × d matrix η and a d × h matrix γ. Here θ̂ is a usual
√

n-consistent

estimator of θ, and V̂ is a
√

n-consistent estimator of Λ−1, with Λ denoting the

asymptotic covariance matrix of
√

n(θ̂ − θ). The next proposition summarizes

the construction of an asymptotically efficient estimator of S(W )

E (Y | )
.

Proposition 5. Consider the optimization in (6.2). For OLS-based estima-

tion, θ = β and Λ = diag{E (TwT
T

w), w = 1, . . . , c}; for IHT-based estima-

tion, θ = M and Λ = diag{GwE (ξwξT

w)GT

w, w = 1, . . . , c}. Let (η̂, γ̂) =

arg minη,γ F (η,γ) and F̂ = F (η̂, γ̂). Then,

(a)
√

n{vec(η̂γ̂) − vec(ηγ)} converges asymptotically to a normal distribution

with mean 0 and covariance matrix ∆θ(∆
T

θΛ
−1∆θ)

−∆T

θ, where ∆θ = (γT ⊗
Ip, Ih ⊗ η);

(b) nF̂ follows asymptotically a χ2
(p−d)(h−d) distribution;

(c) Span(η̂) is a consistent and asymptotically efficient estimator of Span(θ) =

S(W )

E (Y | )
.

This proposition is a direct consequence of Theorem 2 in Cook and Ni (2005),

and thus its proof is omitted here. It is also similar in spirit to Wen and Cook

(2007) and Yoo and Cook (2007) in the context of multivariate response regres-

sion. Based on Proposition 5, we note the following. First, the asymptotically

efficient estimator can be constructed for both the OLS-based and IHT-based ap-

proaches, which share a common framework and corresponding specific forms of

Λ as given in the proposition. Secondly, the conclusion in Proposition 5 (b) allows

one to conduct an alternative test to determine the dimension of the CPMS. See

also Cook and Ni (2005) for more detailed discussion on asymptotically efficient

estimation.

7. Conclusion

In this article we have developed a dimension-reduction-based rank test for

the multivariate reduced-rank regression with presence of both quantitative and
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qualitative predictors. The proposed methods apply to a wide class of reduced-

rank models permitting interactions, nonlinear means, and heteroscedastic vari-

ances. The methods are mostly useful at the outset of an analysis, by allowing

visualization of regressions in low-dimensional projections, and providing a rela-

tively small set of composite predictors for subsequent model formulation. The

strategy proposed in this article is applicable to most central mean subspace es-

timators, though we only implemented it with OLS and IHT-based approaches.

Asymptotically efficient estimation is also briefly discussed.
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