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Abstract: This paper investigates optimal designs for mixture experiments when
there is uncertainty as to whether a polynomial regression model of degree one or
two is appropriate. Three groups of novel results are presented: (i) a complete
class of designs relative to certain mixed design criteria, (ii) model-robust D- and
A-optimal designs, (iii) D- and A-optimal designs with maximin efficiencies under
variation of the design criterion.
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1. Introduction

A mixture experiment is an experiment in which the factors x1, . . . , xq (q ≥ 2)
are non-negative and sum to unity, that is, the factors represent relative propor-
tions of the q ingredients blended in a mixture. The experimental conditions are
thus elements of the probability simplex Sq−1 := {x ∈ [0, 1]q : x′1q = 1}, with
1q := (1, . . . , 1)′ ∈ Rq. Cornell (2002) has numerous examples and applications
of mixture experiments.

Various types of models have been proposed for mixture experiments, such
as polynomial models of degree d ≤ 3, models with inverse terms, and log-
contrast models. In this paper we investigate mixture experiments where there
is uncertainty as to whether Scheffé’s (1958) first- or second-degree polynomial
mixture model is appropriate. Uncertainty about the choice of model is frequently
encountered in practical applications and should be taken into account at the
design stage. The regression functions specifying the first- and second-degree
polynomial mixture models are

f1 : Sq−1 → Rm1 , x 7→ x,

f2 : Sq−1 → Rm2 , x = (x1, . . . , xq)′ 7→
(
x′, (xixj)1≤i<j≤q

)′
,

with m1 := q and m2 :=
(
q+1
2

)
. We refer to these models as (Sq−1, f1) and

(Sq−1, f2), and they are written as

E[y(x)] = θ′f1(x) =
q∑

i=1

θixi , E[y(x)] = β′f2(x) =
q∑

i=1

βixi +
q∑

i, j =1
i<j

βijxixj ,
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with unknown parameter vectors θ ∈ Rm1 and β ∈ Rm2 , respectively. All ob-
servations taken in an experiment are assumed to be uncorrelated and to have
common unknown variance σ2 > 0. Note that (Sq−1, f1) is a proper submodel of
(Sq−1, f2) since

f1(x) = Zf2(x) for all x ∈ Sq−1, (1.1)

with Z := (Im1 , 0m1×(m2−m1)) ∈ Rm1×m2 , and Im1 denoting the m1×m1 identity
matrix. An experimental design ξ for a mixture model is a probability measure
on Sq−1 with finite support, |supp ξ| < ∞. The statistical properties of a design
ξ within the model (Sq−1, fi) are captured by its information matrix Mi(ξ) :=∫
Sq−1 fi(x)f ′

i(x) dξ(x) for i = 1, 2. Note that (1.1) implies

M1(ξ) = ZM2(ξ)Z ′ for all designs ξ on Sq−1. (1.2)

A design ξ is called feasible in a given model if and only if its information matrix
has full rank. Associated with any feasible design in the model (Sq−1, fi) we
have the dispersion function di(., ξ) : Sq−1 → [0,∞), x 7→ f ′

i(x)M−1
i (ξ)fi(x), for

i = 1, 2.
Let PD(mi) denote the cone of positive definite mi×mi matrices, for i = 1, 2.

Given (Sq−1, fi), i = 1, 2, we measure a feasible design’s information matrix using
the scalar functions φD

i , φA
i : PD(mi) → (0,∞) defined by

φD
i (M) := |M | = det M and φA

i (M) := (trM−1)−1,

and called the D- and the A-criterion, respectively. Both the D- and the A-
criterion are members of the popular family of Kiefer’s φp-criteria, see Pukelsheim
(2006). A feasible design ξ∗ is called D-optimal (or A-optimal) within the model
(Sq−1, fi) if it maximizes φD

i

(
Mi(ξ)

)
(or φA

i

(
Mi(ξ)

)
, respectively) among all fea-

sible designs ξ on Sq−1. Necessary and sufficient conditions for optimality are
given in Pukelsheim (2006). For instance, a feasible design ξ∗ is D-optimal in
model (Sq−1, fi) if and only if it minimizes max{di(x, ξ)|x ∈ Sq−1} among all
feasible designs ξ on Sq−1. In this case we have max{di(x, ξ∗)|x ∈ Sq−1} = q,
where the maximum is attained at all points x ∈ supp ξ∗. Similarly, a design ξ∗

is A-optimal in model (Sq−1, fi) if and only if f ′
i(x)M−2

i (ξ∗)fi(x) ≤ trM−1
i (ξ∗)

for all x ∈ Sq−1.
Designs for mixture experiments have been investigated extensively in the

literature, see Chan’s (2000) comprehensive overview. Kiefer (1961) derived
D-optimal designs in Scheffé’s second-degree model. Galil and Kiefer (1977)
presented numerical results on φp-optimal designs in that model. Our starting
point is the completeness results of Draper and Pukelsheim (1999) and Draper,
Heiligers and Pukelsheim (2000) that reduce the optimal design problem to a
mere allocation problem. We make particular use of Klein’s (2004b) method for
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evaluating Kiefer-Wolfowitz-type optimality conditions based on the analysis of a
quadratic subspace of invariant symmetric matrices, see Klein (2004a). Concern
about model uncertainty dates back to Box and Draper (1959), and various de-
sign strategies addressing this issue have been suggested, see Atkinson and Cox
(1974), Studden (1982), Huang and Studden (1988), Dette (1990, 1991, 1993),
and Pukelsheim and Rosenberger (1993). Our design approach toward model
uncertainty can also be viewed as a compound or multi-purpose design strategy,
see Läuter (1974, 1976) or Cook and Wong (1994).

The paper is organized as follows. Section 2 introduces our models’ symme-
try structure and gives a completeness result for the class of weighted centroid
designs. Due to this result, we can reduce the set of competitors in Sections 3 and
4, where two model-robust D- and A-criteria are defined and model-robust D-
and A-optimal designs are derived. In Section 5, we explore a maximin approach
for the efficiencies of model-robust D- and A- optimal designs under variation of
the optimality criterion. A final section summarizes the paper.

2. Kiefer Orderings and Mixed Design Criteria

We start by discussing the invariance properties of the design problems inves-
tigated in Sections 3−5, very much in the spirit of Kiefer (1961) and Pukelsheim
((2006), Chap. 13, 14). Denote the canonical unit vectors in Rq by e1, . . . , eq,
and those in R(q

2) by eij with 1 ≤ i < j ≤ q, and let Sq denote the group of per-
mutations of {1, . . . , q}. The probability simplex Sq−1 has a natural symmetry
structure, it is invariant under permutation of the coordinates. Formally we have
RπSq−1 = Sq−1 for all Rπ :=

∑q
i=1 eπ(i)e

′
i, π ∈ Sq, that is, the group Perm(q)

of q × q permutation matrices acts on Sq−1 through (R,x) 7→ Rx. This induces
an action (R, ξ) 7→ ξR = ξ ◦R−1 of Perm(q) on the set of all designs on Sq−1. A
design ξ satisfying ξ = ξR for all R ∈ Perm(q) is called exchangeable. Now we
define the groups H1 := Perm(m1) and

H2 :=
{

Hπ =
(
Rπ0
0Sπ

)
: π ∈ Sq

}
, Sπ :=

q∑
i, j =1
i<j

e(π(i),π(j))↑ e′ij , π ∈ Sq,

where (π(i), π(j))↑ denotes the pair of indices π(i), π(j) in ascending order. Note
that H2 is a subgroup of Perm(m2), see Klein (2004a). The group Hi acts on
the cone NND(mi) of nonnegative definite mi × mi matrices by

Hi × NND(mi) → NND(mi), (H,M) 7→ HMH ′, for i = 1, 2. (1.3)

These actions are linked to that of Perm(q) on Sq−1 by the regression functions’
equivariance properties, f1(Rπx) = Rπf1(x) and f2(Rπx) = Hπf2(x) for all
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x ∈ Sq−1, π ∈ Sq. For any design ξ these imply M1(ξRπ) = RπM1(ξ)R′
π and

M2(ξRπ) = HπM2(ξ)H ′
π for all π ∈ Sq. Consequently, the information matrices

of an exchangeable design ξ are Hi-invariant or exchangeable,

Mi(ξ) = HMi(ξ)H ′ for all H ∈ Hi, i = 1, 2. (1.4)

Each of the group actions from (1.3) induces a Kiefer ordering of information
matrices, see Pukelsheim (2006). For i = 1, 2, and A, B ∈ NND(mi), we write
A ¿Hi B (B improves upon A in the Kiefer ordering induced by Hi) if there
is a matrix C ∈ conv {HAH ′|H ∈ Hi} such that C ≤ B. Here ≤ denotes the
Löwner ordering on NND(mi), defined by C ≤ B if and only if B−C ∈ NND(mi).
The Kiefer ordering’s significance lies in the fact that any design criterion that
is Löwner monotonic, matrix-concave, and invariant under the action of Hi on
NND(mi), is monotonic with respect to ¿Hi . In particular, this is the case for
the orthogonally invariant criteria φD

i and φA
i . The following lemma establishes

a relation between ¿H1 and ¿H2 .

Lemma 2.1. Let ξ, ξ′ be two designs on Sq−1. Then the inequality M2(ξ) ¿H2

M2(ξ′) implies M1(ξ) ¿H1 M1(ξ′).

Proof. First we observe ZHπ = RπZ for all π ∈ Sq, with Z from (1.1). Now as-
sume M2(ξ) ¿H2 M2(ξ′), that is, M2(ξ′) ≥ C for some C ∈ conv {HM2(ξ)H ′|H ∈
H2}. Writing C =

∑
π∈Sq

γπHπM2(ξ)H ′
π with γπ ≥ 0, π ∈ Sq,

∑
π∈Sq

γπ = 1,
we find

ZCZ ′=
∑

π∈Sq

γπZHπM2(ξ)H ′
πZ ′=

∑
π∈Sq

γπRπZM2(ξ)Z ′R′
π =

∑
π∈Sq

γπRπM1(ξ)R′
π,

which proves ZCZ ′ ∈ conv {HM1(ξ)H ′|H ∈ H1}. Our assumption C ≤ M2(ξ′)
implies ZCZ ′ ≤ ZM2(ξ′)Z ′ = M1(ξ′), thus establishing the assertion.

In Sections 3 and 4 we explore certain mixed design criteria, that is, functions
of a design criterion in the first-degree model and another criterion in the second-
degree model. Now we link such criteria to the Kiefer ordering ¿H2 using Lemma
2.1.

Lemma 2.2. Let φi : NND(mi) → [0,∞), i = 1, 2, be functions that are
monotonic relative to the Kiefer orderings ¿Hi, respectively. Furthermore, let
ϕ : [0,∞)2 → [0,∞) be a function that is increasing in both arguments. Fi-
nally, define Φ : Ξ → [0,∞), ξ 7→ ϕ

(
φ1(M1(ξ)), φ2(M2(ξ))

)
, where Ξ denotes

the set of all designs on Sq−1. Then the inequality M2(ξ) ¿H2 M2(ξ′) implies
Φ(ξ) ≤ Φ(ξ′), for all ξ, ξ′ ∈ Ξ.

Proof. Assume M2(ξ) ¿H2 M2(ξ′) with ξ, ξ′ ∈ Ξ. By Lemma 2.1 we also have
M1(ξ) ¿H1 M1(ξ′). The claim follows from the monotonicity of φ1, φ2, and ϕ.
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The above Lemma 2.2 allows us to restrict our considerations to the class of
weighted centroid designs defined below. For x1,x2 ∈ Sq−1 we use the notation
x1 ↔ x2 to indicate x1 = Rx2 for some R ∈ Perm(q).

Definition 2.3. For 1 ≤ j ≤ q, the j-th elementary centroid design ηj is the
uniform distribution on the

(
q
j

)
points of the form x ↔ j−1

∑j
k=1 ek ∈ Sq−1. A

convex combination η(λ) =
∑q

j=1 λjηj with λ = (λ1, . . . , λq)′ ∈ Sq−1 is called
a weighted centroid design with weight vector λ. We write W for the set of all
weighted centroid designs.

Theorem 2.4. Let φ1, φ2, ϕ, and Φ satisfy the assumptions of Lemma 2.2.
Then the class W of weighted centroid designs is essentially complete relative to
Φ, that is, for every design ξ on Sq−1, there is η ∈ W such that Φ(ξ) ≤ Φ(η).

Proof. Draper and Pukelsheim (1999) and Draper et al. (2000) proved the class
W essentially complete relative to ¿H2 , that is, for every design ξ on Sq−1 there
is η ∈ W such that M2(ξ) ¿H2 M2(η). Hence the claim follows from Lemma 2.2.

Weighted centroid designs are exchangeable by definition. Their informa-
tion matrices in the model (Sq−1, fi), i = 1, 2, are thus Hi-invariant, see (1.4).
In particular, they are elements of Sym(mi,Hi) := {M ∈ Sym(mi) | HMH ′ =
M for all H∈Hi}, the subspace of Hi-invariant symmetric matrices, where Sym
(mi) denotes the space of symmetric mi × mi matrices. The following lemma
quotes a fundamental result on the matrix subspaces Sym(mi,Hi), i = 1, 2, from
Klein (2004a).

Lemma 2.5. Let U1 := Iq, U2 := 1q1′q − Iq, W1 := I(q
2)

, and

V1 :=
q∑

i, j =1
i<j

eij (ei + ej)′, V2 :=
q∑

i, j =1
i<j

q∑
k=1

k 6∈{i, j}

eij e′k ,

W2 :=
q∑

i, j =1
i<j

q∑
k, `=1
k<`

|{i, j}∩{k, `}|=1

eij e′k` , W3 :=
q∑

i, j =1
i<j

q∑
k, `=1
k<`

{i, j}∩{k, `}=∅

eij e′k` .

Then any matrix M ∈ Sym(m1,H1) can be uniquely represented as M = aU1 +
bU2 with coefficients a, b ∈ R. Similarly, any matrix M ∈ Sym(m2,H2) is of the
form

M =

(
aU1 + bU2 symm.
c V1 + d V2 eW1 + f W2 + g W3

)
with unique coefficients a, . . . , g ∈ R. Note that V2 = 0, W2 = W3 = 0 for q = 2,
and W3 = 0 for q = 3.
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Due to the fact that Hi, i = 1, 2, is a subgroup of the orthogonal group, the
subspace Sym(mi,Hi) is a quadratic subspace, that is, it is closed under formation
of powers M 7→ Mn for n ∈ Z, see Pukelsheim ((2006), p. 346). Computing such
powers is a crucial step in evaluating optimality conditions related to the D-
and the A-criterion. We make extensive use of a multiplication table for the
matrices U1, . . . ,W3 given by Klein ((2004a), Lemma 3.2) that allows efficient
computation of these matrix powers.

3. Model-Robust D-Optimal Designs

The unique D-optimal design in Scheffé’s first-degree model is ξD
1 := η1,

see Draper and Pukelsheim (1999). In the second-degree model, the unique D-
optimal design is ξD

2 := [2/(q + 1)]η1 + [(q − 1)/(q + 1)]η2, see Kiefer (1961). If
the experimenter is uncertain about the appropriate model, then neither of the
two results is particularly useful. For instance, the design ξD

2 is non-optimal in
the first-degree model, and the design ξD

1 is not even feasible in the second-degree
model. This raises the central question of the present paper: Which designs shall
an experimenter use if there is uncertainty about whether the first- or the second-
degree model is more appropriate for a given mixture experiment? We answer
this question by assessing designs in terms of a model-robust D-criterion.

Our criterion is a tradeoff between the D-criteria in the first- and second-
degree models. For r ∈ [0, 1] the model-robust D-criterion is defined as a
weighted geometric average of the D-efficiencies of a design ξ under the first-
and second-degree models

(
|M1(ξ)|/|M1(ξD

1 )|
)r/m1

(
|M2(ξ)|/|M2(ξD

2 )|
)(1−r)/m2 ;

here |M1(ξD
1 )| and |M2(ξD

2 )| are fixed constants. Maximizing this criterion is
equivalent to maximizing ψr(ξ) := |M1(ξ)|r/m1 |M2(ξ)|(1−r)/m2 , a weighted av-
erage of the two D-optimality criteria. The parameter r is a prior, that is, an
initial weight assigned to the first-degree model. Taking logarithms we obtain
the model-robust D-criterion

ΨD
r (ξ) := log ψr(ξ) =

r

m1
log(|M1(ξ)|) +

1 − r

m2
log(|M2(ξ)|). (3.1)

A design ξD
r with M2(ξD

r ) ∈ PD(m2) is called model-robust D-optimal if and only
if it satisfies

ΨD
r (ξD

r ) = max{ΨD
r (ξ) | ξ ∈ Ξ with M2(ξ) ∈ PD(m2)}. (3.2)

Note that M2(ξ) ∈ PD(m2) implies M1(ξ) ∈ PD(m1). As in Section 1, we have
an associated dispersion function

d(., ξ) : Sq−1 → [0,∞], x 7→ r

m1
d1(x, ξ) +

1 − r

m2
d2(x, ξ) (3.3)
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for every design ξ on Sq−1. In a similar fashion to Dette’s (1990) Equivalence
Theorem, it can be shown that a design ξD

r with M2(ξ) ∈ PD(m2) is model-
robust D-optimal for a given prior r ∈ [0, 1] if and only if its dispersion function
satisfies

d(x, ξD
r ) ≤ 1 for all x ∈ Sq−1. (3.4)

As a first step toward solving the design problem (3.2) we restrict the set of
competing designs to the class of weighted centroid designs.

Lemma 3.1. The set W from Definition 2.3 is an essentially complete class of
designs relative to the model-robust D-criterion ΨD

r , r ∈ [0, 1], defined in (3.1).
Then a design ξD

r with M2(ξD
r ) ∈ PD(m2) (for given r ∈ [0, 1]) is model-robust

D-optimal if and only if d(x, ξD
r ) ≤ 1 for all x ∈ ηj , 1 ≤ j ≤ q.

Proof. Upon setting ϕ(y1, y2) := (r/m1) log y1 +[(1 − r)/m2] log y2 we can write
ΨD

r (ξ) = ϕ
(
φD

1 (M1(ξ)), φD
2 (M2(ξ))

)
for all designs ξ. Clearly, φD

1 , φD
2 and φ

satisfy the assumptions of Lemma 2.2, which is why Theorem 2.3 establishes the
claim. The set of competitors in the design problem (3.2) can thus be restricted to
W. Based on standard arguments the optimality condition (3.4) then simplifies
to the one stated in the second claim.

Note that the above proof yields an even stronger result than the one stated
in Lemma 3.1: for any design ξ on Sq−1 there is η ∈ W such that ΨD

r (ξ) ≤ ΨD
r (η)

for all r ∈ [0, 1]. In this sense the completeness property of W holds uniformly
with respect to the family of criteria

(
ΨD

r

∣∣ r ∈ [0, 1]
)
.

The optimality condition in Lemma 3.1 directs us toward evaluating the
dispersion function of a candidate design in support points of weighted centroid
designs.

Lemma 3.2. For every exchangeable design ξ on Sq−1, the dispersion function
given in (3.3) satisfies

d(x, ξ) =
r

m1
tr (M1(ηj) M−1

1 (ξ)) +
1 − r

m2
tr (M2(ηj) M−1

2 (ξ))

for all x ∈ supp ηj, 1 ≤ j ≤ q.

Proof. Assume x ∈ Sq−1, and let εx denote the single-point design in x. Then
the balanced design ε̄x puts equal weights on all points y ∈ Sq−1 with y ↔
x. Standard arguments based on Hi-invariance of information matrices show
di(x, ξ) = tr

(
Mi(ε̄x) M−1

i (ξ)
)

for all exchangeable designs ξ and i = 1, 2. From
the definition of d(., ξ), we obtain

d(x, ξ) =
r

m1
tr

(
M1(ε̄x)M−1

1 (ξ)
)

+
1 − r

m2
tr

(
M2(ε̄x)M−1

2 (ξ)
)
.
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Figure 1. The weight αD
r as a function of r ∈ [0, 1]

Noting that ε̄x = ηj if and only if x ∈ supp ηj , the assertion is proved.

The following definition is essential to our approach of determining model-
robust D-optimal designs.
Definition 3.3. For all α ∈ [0, 1] we write ξα := αξD

1 + (1 − α)ξD
2 , where ξD

i is
the D-optimal design in the model (Sq−1, fi), i = 1, 2. In addition, we define the
set of designs ΞD := conv {ξD

1 , ξD
2 } = {ξα|α ∈ [0, 1]} ⊆ W.

Now we solve the problem of maximizing the model-robust D-criterion (3.1)
in two steps. First, we generate an optimality candidate by finding a weight
αD

r ∈ [0, 1] such that ξαD
r

∈ ΞD maximizes (3.1) within ΞD. Second, we prove
the candidate design ξαD

r
to be optimal among all feasible designs. The following

lemma produces the optimality candidate ξαD
r
.

Lemma 3.4. For any r ∈ [0, 1], the design ξαD
r
∈ ΞD with weight

αD
r =

q (2r − 1) − 2 − r +
√

8r(q − r) + (2 + q + r − 2qr)2

2(q − r)
∈ (0, 1)

is the unique model-robust D-optimal design among all designs in ΞD. (Figure 1
displays the function r 7→ αD

r for various choices of q.)

Proof. For all α ∈ (0, 1) we have

d
dα

ΨD
r (ξα)

=
r

m1
trM−1

1 (ξα)[M1(ξD
1 )−M1(ξD

2 )] +
1 − r

m2
trM−1

2 (ξα)[M2(ξD
1 )−M2(ξD

2 )].(3.5)
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Adopting the block-matrix notation from Klein (2004a), we can write M1(ξD
1 ) =

U1/q, M1(ξD
2 ) = [(q + 3)U1 + U2]/(4

(
q+1
2

)
), and

M2(ξD
1 ) =

(
M1(ξD

1 ) 0
0 0

)
, M2(ξD

2 ) =

 M1(ξD
2 ) 1

8 (q+1
2 )V

′
1

1
8(q+1

2 ) V1
1

16(q+1
2 ) W1

 .

From Mi(ξα) = αMi(ξD
1 ) + (1 − α)Mi(ξD

2 ) we obtain

M1(ξα) =
1

2q(q + 1)
(
[(q − 1)α + q + 3] U1 + (1 − α) U2

)
,

M2(ξα) =

 M1(ξα) 1−α
4q(q+1) V ′

1

1−α
4q(q+1) V1

1−α
8q(q+1) W1

 .

Using the inverse formula in Fedorov ((1972), pp. 16, 17) and the multiplication
table from Lemma 3.2 in Klein (2004a), we compute the inverse information
matrices

M−1
1 (ξα) = ā1U1 + b̄1U2 and M−1

2 (ξα) =
(

ā2U1 c̄2V
′
1

c̄2V1 ē2W1 + f̄2W2

)
(3.6)

with coefficients

ā1 =
q(2q + 1 + α)
(q + 2) + qα

, b̄1 = − q(1 − α)
(q + 2) + qα

,

ā2 =
q(q + 1)

2 + (q − 1)α
, c̄2 = − 2q(q + 1)

2 + (q − 1)α
,

ē2 =
8q(q + 1)[3 + (q − 2)α]
(1 − α)[2 + (q − 1)α]

, f̄2 =
4q(q + 1)

2 + (q − 1)α
.

Further application of the abovementioned multiplication table and trU2 =
trW2 = trW3 = 0 yield

trM−1
1 (ξα)M1(ξD

1 )=ā1 , (3.7)

trM−1
1 (ξα)M1(ξD

2 )=
2

q + 1

(
a1 +

(q − 1)(ā1 + b̄1)
4

)
, (3.8)

trM−1
2 (ξα)M2(ξD

1 )=ā2 , (3.9)

trM−1
2 (ξα)M2(ξD

2 )=
q

q+1

(
(q+3)ā2

2q
+

(q−1)c̄2

4(q+2)

)
+

q(q−1)
4(q+1)

(
c̄2

2q
+

ē2

8(q+2)

)
. (3.10)

Substituting (3.7)–(3.10) into (3.5), we see that d
dαΨD

r (ξα) = 0 holds if and only
if

r =
(q + 2)αD

r + q(αD
r )2

2 + (2q − 1)αD
r + (αD

r )2
.
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The unique solution of this equation in [0, 1] is the weight αD
r given in the claim.

Using the Equivalence Theorem from Lemma 3.1, we now prove the candidate
designs ξαD

r
to be model-robust D-optimal among all designs. We follow Klein’s

(2004b) approach which is based on the quadratic subspace properties introduced
in Section 2 and yields tractable matrix algebra.

Theorem 3.5. The design ξαD
r

∈ ΞD given in Lemma 3.4 is a model-robust
D-optimal design for Scheffé’s first-degree and second-degree models.

Proof. We check the optimality condition provided by Lemma 3.1. Assume
j ∈ {1, . . . , q} and x ∈ supp ηj . Since the design ξαD

r
is exchangeable, we can

apply Lemma 3.2 and obtain

d(x, ξαD
r
) =

r

m1
tr (M−1

1 (ξαD
r
) M1(ηj)) +

1 − r

m2
tr (M−1

2 (ξαD
r
) M2(ηj)) =: Nj .

Based on the representation of Hi-invariant symmetric matrices (i = 1, 2) from
Lemma 2.5, and the moments of elementary centroid designs given by Draper
et al. (2000), the involved information matrices can be written as

M1(ηj) = ajU1 + bjU2 and M2(ηj) =
(

M1(ηj) cjV
′
1 + djV

′
2

cjV1 + djV2 ejW1 + fjW2 + gjW3

)
with coefficients

aj=
1
jq

, bj=
j − 1

jq(q − 1)
,

cj=
j − 1

j2q(q − 1)
, dj=

(j − 1)(j − 2)
j2q(q − 1)(q − 2)

,

ej=
j − 1

j3q(q − 1)
, fj=

(j − 1)(j − 2)
j3q(q − 1)(q − 2)

, gj=
(j − 1)(j − 2)(j − 3)

j3q(q − 1)(q − 2)(q − 3)
.

With the inverse matrices found in (3.6) and the multiplication table from Lemma
3.2 in Klein (2004a), lengthy calculations yield

Nj =
2 (j2 + 4j − 4) (1 + αD

r q) − j3 αD
r (1 − αD

r )
j3 [ (αD

r )2 + (2q − 1)αD
r + 2 ]

for all 1 ≤ j ≤ q.

Computing differences of these terms leads to

Nj − Nj+1 =
2 [−4 − 8j + 8j3 + j2 (1 + j)2] (1 + αD

r q)
j3 (j + 1)3 [(αD

r )2 + (2q − 1)αD
r + 2]

for all 1 ≤ j ≤ q − 1.

Recalling q ≥ 2, we see N1 = N2 = 1 and Nj − Nj+1 > 0 for j ≥ 2, that is,
N1 = N2 > · · · > Nq. This sequence of inequalities shows

d(x, ξαD
r
)

{
= 1 for all x ∈ (supp η1 ∪ supp η2) ,

< 1 for all x ∈
∪q

j=3 supp ηj .

Thus the equivalence theorem is satisfied and the proof is completed.
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4. Model-Robust A-Optimal Designs

We now adapt the arguments used in Section 3 to the alternative concept
of model-robust A-optimality. The D-optimal design ξD

1 in Scheffé’s first-degree
model is also A-optimal, ξA

1 := ξD
1 = η1, see Draper and Pukelsheim (1999).

Guan and Chao (1987) present the A-optimal design ξA
2 in the second-degree

model with q ≥ 4, given by ξA
2 := λ1η1 + λ2η2 with weights

λ1 =
√

4q − 3
2(q − 1) +

√
4q − 3

, λ2 =
2(q − 1)

2(q − 1) +
√

4q − 3
.

We ignore the case q ∈ {2, 3}. Following the same idea as in Section 3, our
model-robust A-criterion is a convex combination of the A-criteria in the first-
and second-degree models,

Ψ̃A
r̃ (ξ) := r̃

trM−1
1 (ξ)

trM−1
1 (ξA

1 )
+ (1 − r̃)

trM−1
2 (ξ)

trM−1
2 (ξA

2 )
for r̃ ∈ [0, 1].

From A-optimality results in the two individual models, we know trM−1
1 (ξA

1 ) =
q2 and trM−1

2 (ξA
2 ) = 1/λ1+

(
q
2

) [
8/(qλ1) + 16/(

(
q
2

)
λ2)

]
. These constants in Ψ̃A

r̃ (·)
standardize the A-criteria in the first- and second-degree model in order to make
them comparable. Upon setting

r := r(r̃) :=
r̃/trM−1

1 (ξA
1 )

r̃/trM−1
1 (ξA

1 ) + (1 − r̃)/trM−1
2 (ξA

2 )
∈ [0, 1], (4.1)

we may rewrite Ψ̃A
r̃ (ξ) in the form

Ψ̃A
r̃ (ξ) =

(
r̃

trM−1
1 (ξA

1 )
+

1 − r̃

trM−1
2 (ξA

2 )

)[
r trM−1

1 (ξ) + (1 − r) trM−1
2 (ξ)

]
and thus eliminate the standardizing constants. Hence the design criterion

ΨA
r (ξ) := r trM−1

1 (ξ) + (1 − r) trM−1
2 (ξ) with r ∈ [0, 1] (4.2)

is equivalent to Ψ̃A
r̃ , and we use this simplified form. Note that the function

r̃ 7→ r(r̃) from (4.1) is a bijection of [0, 1] into itself, which is why the transition
from Ψ̃A

r̃ to ΨA
r (ξ) is a mere re-parameterization of our family of model-robust

A-criteria. For given r ∈ [0, 1], a design ξA with M2(ξA) ∈ PD(m2) is called
model-robust A-optimal if and only if it satisfies

ΨA
r (ξA) = min{ΨA

r (ξ) | ξ ∈ Ξ with M2(ξ) ∈ PD(m2)}.

The following lemma restricts the set of competing designs to the class W of
weighted centroid designs. It parallels Lemma 3.1, and its proof is omitted.
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Lemma 4.1. The set W from Definition 2.3 is an essentially complete class of
designs relative to the model-robust A-criterion ΨA

r , r ∈ [0, 1], defined in (4.2).
Then a design ξA

r with M2(ξA
r ) ∈ PD(m2) (for given r ∈ [0, 1]) is model-robust

A-optimal if and only if

rtrM−2
1 (ξA

r )M1(ηj)+(1−r)tr M−2
2 (ξA

r )M2(ηj) ≤ rtrM−1
1 (ξA

r )+(1−r)trM−1
2 (ξA

r )

for all 1 ≤ j ≤ q.

We employ the same strategy as in Section 3. In our first step we consider
designs that are convex combinations of the two A-optimal designs in the first-
and second-degree model, and we establish a result analogous to that of Lemma
3.4.

Definition 4.2. We write ΞA := conv {ξA
1 , ξA

2 } ⊆ W and ξα := αξA
1 + (1− α)ξA

2

for all α ∈ [0, 1].

Lemma 4.3. For a given prior r ∈ [0, 1], there is a unique weight αA
r ∈ [0, 1]

such that the design ξαA
r

is model-robust A-optimal among all designs in ΞA.

Proof. For α ∈ [0, 1], the information matrices of ξα are

M1(ξα) =
[
p1 +

1
4

(q − 1)p2

]
Iq +

1
4

p2U2 , M2(ξα) =
(

M1(ξα) 1
8 p2V

′
1

1
8 p2V1

1
16 p2W1

)
with

p1 := p1(α) :=
α

q
+ (1 − α)λ1 =

2(q − 1)α +
√

4q − 3
q[2(q − 1) +

√
4q − 3]

,

p2 := p2(α) := (1 − α)λ2 =
4(1 − α)

q[2(q − 1) +
√

4q − 3]
.

The derivative of our model-robust A-criterion is

d
dα

ΨA
r (ξα)

= rtr
(
M−2

1 (ξα)[M1(ξA
2 ) − M1(ξA

1 )]
)

+ (1 − r)tr
(
M−2

2 (ξα)[M2(ξA
2 ) − M2(ξA

1 )]
)
.

Lengthy algebra based on Klein’s (2004a) multiplication table yields

M−2
1 (ξα) = ā1U1 + b̄1U2 , M−2

2 (ξα) =
(

ā2U1+b̄2U2 c̄2V
′
1+d̄2V

′
2

c̄2V1+d̄2V2 ē2W1+f̄2W2+ḡ2W3

)
,
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with

ā1 =
q2

{
[4p1 + (2q − 3)p2]2 + 4(q − 1)p2

2

}
[4p1 + (q − 2)p2]2

,

b̄1 = −q2[8p1 + (3q − 4)p2]p2

[4p1 + (q − 2)p2]2
,

ā2 =
4q − 3

p2
1

, b̄2 =
4
p2
1

, c̄2 = −2[16p1 + (4q + 1)p2]
p2
1p2

, d̄2 = −16
p2
1

,

ē2 =
8[32p2

1 + 32p1p2 + (4q + 1)p2
2]

p2
1p

2
2

, f̄2 =
4[32p1 + (4q + 9)p2]

p2
1p2

, ḡ2 =
64
p2
1

.

Setting (d/dα)ΨA
r (ξα) = 0 results in the equation rt1(α)+(1−r)t2(α) = 0, where

t1(α) := − q2 [ 2(q − 1) +
√

4q − 3 ]2

2[qα + (q − 2) +
√

4q − 3]2
,

t2(α) := q2[2(q − 1) +
√

4q − 3]2
(

1
(1 − α)2

− 4q − 3
[ 2(q − 1)α +

√
4q − 3 ]2

)
,

and, solving for r, we obtain

r = h−1(α) :=
t2(α)

t2(α) − t1(α)
. (4.3)

It can be shown that h−1(0) = 0, limα→1 h−1(α) = 1, and (d/dα)h−1(α) > 0
for all α ∈ (0, 1). Thus the function h−1 : [0, 1] → [0, 1] is bijective and, in
particular, we have r ∈ [0, 1] in the above equation. The assertion follows by
taking the inverse function h.

Figure 2 illustrates the behavior of the unique A-optimal weight αA
r for

various choices of q. Note that the above lemma does not provide an explicit
description of the weight αA

r since the equation r = h−1(α) cannot be solved
algebraically. Nevertheless we can now prove the design ξαA

r
to be model-robust

A-optimal among all designs.

Theorem 4.4. For a given r ∈ [0, 1], the design ξαA
r
∈ ΞA with αA

r = h(r) ∈ [0, 1]
(see Lemma 4.3) is model-robust A-optimal.

Proof. For simplicity we start with an arbitrary weight α ∈ [0, 1]. Following
Lemma 4.1 we investigate the quantities

N1,j = trM−2
1 (ξα)M1(ηj) , N2,j = tr M−2

2 (ξα)M2(ηj), for 1 ≤ j ≤ q.

The traces are computed using the multiplication table in Klein ((2004a), Lemma
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r̃
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q = 10

q = 100

Figure 2. The A-optimal weight αA
r(r̃) as a function of r̃ ∈ [0, 1]. Lemma

4.3 yields a unique A-optimal weight αA
r for every prior r ∈ [0, 1], that is,

a function r 7→ αA
r . Its graph is rather uninformative, which is why we use

a parameterization in terms of r̃, defined by r = r(r̃) as in (4.1). Hence
the function plotted above is r̃ 7→ αA

r(r̃). The weight αA
r(r̃) is found as the

numerical solution of (4.3).

3.2) and the fact trU2 = trW2 = tr W3 = 0, resulting in

N1,j =
ā1 − b̄1

j
+ b1 ,

N2,j =
−ē2/2 + 2f̄2 − 3ḡ2/2

j3
+

−2(c̄2 − d̄2) + ē2/2 − 3f̄2 + 11ḡ2/4
j2

+
ā2 − b̄2 + 2(c̄2 − d̄2) − d̄2 + f̄2 − 3ḡ2/2

j
+ const.

with ā1, b̄1, ā2, . . . , ḡ2 as given in the proof of Lemma 4.3. The term N1,j is
decreasing in j since ā1 − b̄1 > 0. In order to prove N2,j decreasing in j, we find

N2,j−N2,j+1=
1

j3(j+1)3

[(
− 1

2
ē2+2f̄2−

3
2
ḡ2

)
(3j2 + 3j + 1)

+
(
− 2(c̄2 − d̄2) +

1
2

ē2 − 3f̄2 +
11
4

ḡ2

)
j(j + 1)(2j+1)

+
(
ā2 − b̄2 + 2(c̄2 − d̄2) − d̄2 + f̄2 −

3
2

ḡ2

)
j2(j + 1)2

]
for 2 ≤ j ≤ q − 1. Due to 3j2 + 3j + 1 ≤ j(j + 1)(2j + 1) ≤ j2(j + 1)2 for j ≥ 2,
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we obtain

N2,j −N2, j+1 ≥ 3j2 + 3j + 1
j3(j + 1)3

(
ā2 − b̄2 − d̄2 −

1
4

ḡ2

)
=

3j2 + 3j + 1
j3(j + 1)3

· 4q − 7
p2
1

> 0.

Furthermore we have

r trM−2
1 (ξα)M1(η1) + (1 − r) trM−2

2 (ξα)M2(η1) = rā1 + (1 − r)ā2 (4.4)

with ā1, ā2 as given in the proof of Lemma 4.3, and

r trM−1
1 (ξα) + (1 − r) trM−1

2 (ξα)

= r
q2[4p1 + (2q − 3)p2]

4p1 + (q − 2)p2
+ (1 − r)

q[8(q − 1)p1 + (4q − 3)p2]
p1p2

. (4.5)

Now we consider the specific choice α := αA
r , characterized as the unique solution

of r = t2(α)/[t2(α) − t1(α)] in (4.3). Using this identity, the right sides of (4.4)
and (4.5) are seen to be equal, that is, we have equality in the optimality condition
from Lemma 4.1 for j = 1. Finally, αA

r satisfies (d/dα)ΨA
r (ξα)|α=αA

r
= 0 by con-

struction, which implies the terms r trM−2
1 (ξαA

r
)M1(ηj)+(1−r) trM−2

2 (ξαA
r
)M2(ηj),

j = 1, 2, coincide. This completes the proof.

5. Efficiencies of Model-Robust Optimal Designs

The model-robust D- and A-criteria used in Sections 3 and 4 contain a
parameter r ∈ [0, 1] that represents a prior or weight in the tradeoff between the
two candidate models (Sq−1, f1) and (Sq−1, f2). Since there is no natural choice
for r, we are interested in finding a design ξαD

s
whose worst performance under

all criteria ΨD
r , r ∈ [0, 1], is maximal. This maximin approach was suggested by

Zen and Tsai (2002). Assume r, s ∈ [0, 1] fixed. The relative ΨD
r -efficiency of

the model-robust D-optimal design ξαD
s

is defined as

Dr-eff(ξαD
s
) :=

ΨD
r (ξαD

s
)

ΨD
r (ξαD

r
)
, (5.1)

where the optimal weight αD
r is given in Lemma 3.4. The optimum value ΨD

r (ξαD
r
)

can be rewritten as

q(q + 1)ΨD
r (ξαD

r
) = 2(1−q)[q (3−2r)+r]/[q(q+1)](q + 1)r/q(2 + q + qαD

r )[(q−1)r]/q

×
(
(1 − αD

r )(q−1)/2[2 − (1 − q)αD
r ]

)2(1−r)/(q+1)
. (5.2)

Substituting (5.2) into (5.1) we obtain Dr-eff(ξαD
s
) = g(r, s)/g(r, r) with

g(r, s) := (1−αD
s )(q−1)(1−r)/(q+1)

(
2+(q−1)αD

s

)(2−2r)/(q+1)
(2+q+qαD

s )(q−1)r/q.
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Now we are interested in finding a prior s∗ ∈ [0, 1] such that

min
r∈[0,1]

Dr-eff(ξαD
s∗

) = max
s∈[0,1]

min
r∈[0,1]

Dr-eff(ξαD
s
) . (5.3)

The following lemma solves this maximin efficiency problem in two steps.

Theorem 5.1.
(i) For fixed s ∈ [0, 1), the minimum minr∈[0,1] Dr-eff(ξαD

s
) is attained at one of

the endpoints r = 0 and r = 1. More precisely, we have

min
r∈[0,1]

Dr-eff(ξαD
s
) =

{
D0-eff(ξαD

s
) for s ≥ s1,

D1-eff(ξαD
s
) for s < s1,

where s1 ∈ [0, 1] is the unique solution of p(s) = 1, with

p(s) :=
D0-eff(ξαD

s
)

D1-eff(ξαD
s
)
=

[2(q+1)](q−1)/q
(
(1−αD

s )(q−1)/2[2+(q−1)αD
s ]

)2/(q+1)

22/(q+1)(2 + q + qαD
s )(q−1)/q

.

(ii) The choice s∗ = s1 satisfies the maximin efficiency property stated in (5.3).

Proof. For convenience we treat Dr-eff(ξαD
s
) as a function of αD

r instead of r,
utilizing the fact that r 7→ αD

r is a bijection. We have

d
dαD

r

log Dr-eff(ξαD
s
)

=
−2[(q2 − q − 1)(αD

r )2 + 2qαD
r + (q + 2)]

q (q + 1)[2 + (2q − 1)αD
r + (αD

r )2]2

×
[
(q − 1)q log

(
1−αD

s

1−αD
r

)
+ 2q log

(
2+(q−1)αD

s

2+(q−1)αD
r

)
− (q2 − 1) log

(
2+q(1+αD

s )
2+q(1+αD

r )

)]
,

which turns out to have a unique root between 0 and 1. Since Dr-eff(ξαD
s
) attains

a maximum at αD
r = αD

s by definition, the two endpoints corresponding to r = 0
and r = 1 are the only local minima of Dr-eff(ξαD

s
). In the case s = s1, these two

local minima are equal. Furthermore, we can show (d/dαD
s ) log D0-eff(ξαD

s
) < 0,

which proves D0-eff(ξαD
s
) to be strictly decreasing in s. Similarly, D1-eff(ξαD

s
) is

found to be strictly increasing. This establishes assertion (i). Part (ii) follows
from the above monotonicity arguments.

Figure 3 displays the function r 7→ Dr-eff(ξαD
s
) for various choices of s ∈ [0, 1]

and q = 5. Table 1 lists numerical results for s∗ and the corresponding maximin
efficiencies of model-robust D-optimal designs, illustrating the results in Theorem
5.1.

Note that our concept of maximin efficiency only takes designs in the class
ΞD into account. For any design ξ on Sq−1, the remark following Lemma 3.1
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Figure 3. Efficiencies Dr-eff(ξαD
s

) of model-robust D-optimal designs for q = 5.

Table 1. Maximin efficiencies min
r∈[0,1]

Dr-eff(ξαD
s

) of model-robust D-optimal designs.

q s∗ min
r∈[0,1]

Dr-eff(ξαD
s∗

) D0-eff(ξαD
0.67

) D1-eff(ξαD
0.67

) D1-eff(ξαD
0
) D0-eff(ξαD

0.999
)

2 0.679472 0.913557 0.915523 0.919615 0.816497 0.164968
3 0.679609 0.866132 0.869229 0.875693 0.731004 0.063190
4 0.679667 0.835551 0.839402 0.847453 0.681732 0.034628
5 0.679662 0.813938 0.818324 0.827503 0.649731 0.022876

10 0.679188 0.759294 0.764876 0.77658 0.579539 0.008436
100 0.672929 0.682612 0.685299 0.690824 0.508413 0.002444

The prior s∗, indicating the maximin-efficient model-robust D-optimal design from

Theorem 5.1, converges to 0.67 as q → ∞. We have D0-eff(ξαD
s

) ≈ D1-eff(ξαD
s

)

for s = 0.67 ≈ s∗, where D0-eff(ξαD
s

) and D1-eff(ξαD
s

) are the candidates for an

efficiency minimum. The two last columns show how poorly a design ξαD
s

may

perform under variation of the criterion.

implies the existence of a weighted centroid design η ∈ W such that minr∈[0,1]

Dr-eff(ξ) ≤ minr∈[0,1] Dr-eff(η). Hence there is no need to consider minimum
efficiencies of designs ξ /∈ W. To our knowledge, the existence of a weighted
centroid design η ∈ W satisfying minr∈[0,1] Dr-eff(ξ) > minr∈[0,1] Dr-eff(ξαD

s∗
)

cannot be excluded in general.
Finally we consider efficiencies with respect to model-robust A-criteria. For

r, u ∈ [0, 1], the relative ΨA
r -efficiency of the model-robust A-optimal design ξαA

u

is

Ar-eff(ξαA
u
) :=

ΨA
r (ξαA

r
)

ΨA
r (ξαA

u
)

=
r trM−1

1 (ξαA
r
) + (1 − r)trM−1

2 (ξαA
r
)

r trM−1
1 (ξαA

u
) + (1 − r)trM−1

2 (ξαA
u
)
,
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Figure 4. Efficiencies Ar-eff(ξαA
u
) of model-robust A-optimal designs for q = 5.

Table 2. Maximin efficiencies min
r∈[0,1]

Ar-eff(ξαA
u
) of model-robust A-optimal designs.

q u∗ ũ∗ min
r∈[0,1]

Ar-eff(ξαA
u∗

) A1-eff(ξαA
0.997

) A0-eff(ξαA
0.997

) A1-eff(ξαA
0
) A0-eff(ξαA

≈1
)

4 0.995860 0.722769 0.797231 0.818912 0.737290 0.651388 0.032175

5 0.997397 0.722747 0.786961 0.776796 0.812796 0.640388 0.032598

10 0.999327 0.719108 0.760180 0.656392 0.968380 0.610099 0.034556

100 0.999991 0.696118 0.704220 0.543873 0.999997 0.543621 0.0033872

The prior u∗ indicates the maximin-efficient model-robust A-optimal design ξαA
u∗

,

in the sense of (5.4). The values of u∗ are complemented with those of ũ∗, defined
by u∗ = r(ũ∗) as in (4.1). While we have u∗ → 1 for q → ∞, the weight ũ∗

clarifies the fact that the maximin efficient model-robust A-optimal design assigns
considerable weight to ξA

2 when q → ∞.

where ξαA
r

are the designs from Definition 4.2. We are interested in u∗ ∈ [0, 1]
with

min
r∈[0,1]

Ar-eff(ξαA
u∗

) = max
u∈[0,1]

min
r∈[0,1]

Ar-eff(ξαA
u
) . (5.4)

The arguments from Theorem 5.1 can be adapted to this notion of maximin
efficiency. An outline of our numerical results on u∗ for various choices of q is
given in Table 2 and Figure 4.

6. Conclusion

In Section 2 we established a complete class result for mixed design criteria.
The crucial argument is the compatibility of the Kiefer orderings of informa-
tion matrices in the two candidate models, expressed by (1.2) and the identity
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ZHπ = RπZ, π ∈ Sq, in the proof of Lemma 2.1. Furthermore we derived
model-robust D- and A-optimal designs (see Sections 3 and 4) that are convex
combinations of the D- and A-optimal designs in the individual candidate mod-
els, respectively. This derivation was done in two steps, see the remark following
Definition 3.3: First, we generated an optimality candidate in the class ΞD, then
we showed this candidate to be optimal among all feasible designs. The partic-
ularly simple relation between optimal designs in the individual models and the
model-robust optimal designs raises the question for a general condition ensur-
ing such a smooth transition to model-robust designs. The case of model-robust
A-optimality is more involved than its D-optimality analogue since the second-
degree A-optimal design is not a uniform distribution on its support. Evaluating
our equivalence theorems is tractable only due to the matrix algebra developed in
Klein (2004a). Model-robust D- and A-optimal designs with maximin efficiency
perform reasonably well with respect to the whole family of model-robust criteria
considered here. At the same time, our results indicate that design performance
may drop dramatically if the issue of efficiency under variation of the criterion is
ignored.

Following our strategy, the model-robust optimality problem may be solved
for other criteria than the D- and A-criteria investigated in this paper. The
crucial requirement is that the selected optimality criteria are monotonic with
respect to the Kiefer ordering, see Lemma 2.2. Nevertheless, alternative choices
of optimality criteria will, in general, require extensive calculations and might
involve intractable algebra. In principle our arguments also carry over to the
setting where there is uncertainty between polynomial regression of degree two or
three. However, no non-trivial essentially complete class of designs (as provided
by Draper et al. (2000) for the second-degree model) is known for the third-degree
model. As a result we do not have a completeness result analogous to Theorem
2.3 in the aforementioned setting, and model-robust D- and A-optimal designs
are not available. Cook and Wong (1994) point out the equivalence of compound
optimal designs (which is an alternative view of our model-robust design strategy)
and constrained optimal designs under certain assumptions. Our treatment of
model-robust design optimality is in line with this view and can therefore be used
for further research on constrained optimality in mixture experiments.
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Läuter, E. (1974). Experimental design in a class of models. Mathematische Operationsforschung

und Statistik 5, 379-398.
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