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Abstract: This paper considers nonparametric estimation of the mean function of

a counting process based on periodic observations, i.e., panel counts. We present

estimators derived through minimizing a class of generalized sums of squares sub-

ject to a monotonicity constraint. We establish consistency of the estimators and

provide procedures to implement them with various weight functions. For spe-

cific weight functions, they reduce to the estimator given in Sun and Kalbfleisch

(1995), and are closely related to the nonparametric maximum likelihood estimator

studied in Wellner and Zhang (2000). With other weight functions, the proposed

estimators provide alternatives that can have better efficiency in non-Poisson situa-

tions than previous approaches. Simulations are used to examine the finite-sample

performance of the proposed estimators.
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1. Introduction

Suppose that the number of events that occur until time t > 0 is N(t),
and we wish to estimate the marginal expectation E{N(t)} without specifying
a probability model for the counting process {N(t), t > 0}. See Lawless and
Nadeau (1995) Lin, Wei, Yang and Ying (2000) and Wellner and Zhang (2000)
for examples of this setup.

When {N(t), t > 0} is a continuously-observed Poisson process subject to
right-censoring, the Nelson-Aalen estimator (cf., Andersen, Borgan, Gill and Kei-
ding (1992, Chap. IV)) is commonly used for estimating the cumulative inten-
sity function of the counting process, which is the same as its mean function
Λ0(t) = E{N(t)} (e.g., Lawless (1995)). Lawless and Nadeau (1995) and Lin et
al. (2000) indicate that the Nelson-Aalen estimator is a consistent estimator for
the marginal mean function of a counting process regardless of the underlying
probability model.

When the process for an individual is only observed at a finite set of time
points (that is, the observations are panel counts), Sun and Kalbfleisch (1995)
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present an estimator of the mean function based on isotonic regression, and Well-
ner and Zhang (2000) derive a maximum pseudo-likelihood estimator (NPMPLE)
and the nonparametric maximum likelihood estimator (NPMLE) under the
assumption that the counting process is Poisson. Wellner and Zhang note
that their NPMPLE is the same as the Sun-Kalbfleisch estimator, demonstrate
that the NPMLE is more efficient than the NPMPLE via simulation, and show
that both their estimators are consistent without the Poisson assumption. The
efficiency of the NPMLE for non-Poisson counts has not been explored. Hu and
Lagakos (2007) consider two weighted least squares estimators for the mean of an
arbitrary response process in a general incomplete data setting. Their estimators
reduce to, or are closely related to, some commonly-used estimators with certain
data structures, but are not necessarily monotone with panel counts.

This paper proposes a general class of nonparametric estimators for the mean
function Λ0(·) based on periodic observations, without specifying an underlying
probability model. The estimators arise by minimizing a generalized weighted
sum of squares under a monotonicity constraint. We establish consistency of the
general estimator and provide procedures to implement it with various weights.
One choice of weight function leads to the Sun-Kalbfleisch estimator and thus
also the Wellner-Zhang NPMPLE. Another leads to an estimator that is closely
related to the Wellner-Zhang NPMLE. Via simulation, we study the finite sample
performance of the proposed estimators in various situations, and compare them
to the Sun-Kalbfleisch estimator and the Wellner-Zhang NPMLE. With some
other specific weight functions, the proposed approach provides alternatives to
the NPMLE and NPMPLE that can have higher efficiency in situations with
non-Poisson counts.

Without loss of generality, we take N(0) ≡ 0 and thus Λ0(0) = 0. We assume
that the counting process and the observation mechanism are independent. Sec-
tion 2 presents a generalized least squares estimator for the mean function Λ0(·)
subject to the constraint that Λ0(·) is monotone, and then establishes consistency
of the estimator. Section 3 provides procedures to implement the estimator, and
Section 4 examines the specific estimators that result from several choices of
weight function. Section 5 presents the results of a simulation study comparing
the proposed estimators with those of Sun and Kalbfleisch (1995) and Wellner
and Zhang (2000). Section 6 discusses the results and extensions.

2. A Generalized Least Squares Monotonic Estimator

Hu and Lagakos (2007) show that two commonly-used nonparametric esti-
mators, the sample mean of available data and the Nelson-Aalen estimator, can
be derived as a solution to a weighted sum of squares criterion. This, along
with the monotonicity of the mean function Λ0(·), leads us to explore a criterion
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for defining nonparametric estimators through minimizing a generalized sum of
squares subject to the monotonicity constraint. In the following, we introduce a
generalized sum of squares criterion, and establish consistency of the estimator
obtained through its constrained maximization.

Let T = (TK,1, . . . , TK,K)
′
, with TK,j denoting the jth of K observation times

during time period [0, τ ], with 0 < τ < ∞, where τ is fixed and K can be random.
Let N =

(
N(TK,1), . . . , N(TK,K)

)′
and Λ =

(
Λ(TK,1), . . . , Λ(TK,K)

)′
. Assume{

Xi : i = 1, . . . , n
}

is a set of i.i.d. samples of X =
(
K,T,N

)
. We consider

the generalized sum of squares with a symmetric weight function w(u, v) for
u, v ∈

{
Tk,1, . . . , TK,K

}
,

Ln(Λ; w) =
n∑

i=1

m(Λ; w
∣∣Xi), (2.1)

where

m(Λ;w
∣∣X) =

(
N − Λ)

′
W

(
N − Λ)

=
K∑

j=1

K∑
l=1

w(TK,j , TK,l)
{
N(TK,j) − Λ(TK,j)

}{
N(TK,l) − Λ(TK,l)

}
, (2.2)

and where W is the K × K symmetric matrix with (j, l) entry w(TK,j , TK,l).
The weight function is deterministic given (K,T). Let Λ̂n(·; w) be the minimum
point of Ln(Λ; w) over all nondecreasing functions defined in [0, τ ], that is,

Λ̂n(·; w) = argminΛ∈FLn(Λ;w) (2.3)

with F =
{
Λ(·) : nondecreasing in [0, τ ]

}
. Following Wellner and Zhang (2000),

we define a measure µ in [0, τ ] based on the distribution of (K,T):

µ(B) =
∞∑

k=1

P (K = k)
k∑

j=1

P (TK,j ∈ B
∣∣K = k),

where B is a Borel set in [0, τ ]. For Λ, Λ
′ ∈ F , define

d(Λ, Λ
′
) =

[ ∫
{Λ(t) − Λ

′
(t)}2dµ(t)

] 1
2
. (2.4)

The following theorem establishes the consistency of Λ̂n(·; w) with respect to the
metric d.

Condition A: Λ0(t) = E{N(t)} and c(t, s) = Cov{N(t), N(s)} exist for t, s ∈
[0, τ ], Λ0(·) is strictly increasing with Λ0(0) = 0, and E{N′

N} < ∞.
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Condition B: The K × K weight matrix W =
(
w(TK,j , TK,l)

)
can be ex-

pressed as W = A
′
A with nonsingular A, and E{||A||2} < ∞ and E{||A−1||2} <

∞, where ||A||2 =
∑

a2
ij = tr(A

′
A).

Condition C: µ({τ}) > 0 and E{K2} < ∞.

Theorem 1. Assume Conditions A−C. For a given weight function w, d(Λ̂n(·; w),
Λ0(·)) → 0 almost surely as n → ∞.

A proof of the theorem is outlined in Appendix A. Following the arguments
in Wellner and Zhang (2000), we can extend the result to the situations with
µ({τ}) = 0. With some additional conditions on the observation mechanism, we
may also show that the convergence rate of Λ̂n(·; w) is at least n1/3.

3. Implementation of Estimator Λ̂n(·; w)

We begin by introducing an estimator closely related to Λ̂n(·; w) with an
arbitrary weight function, then show how this can be used to find Λ̂n(·;w).

3.1. Preparation

Denote the set of distinct values of the observation times
{
TKi,j , j =1, . . . ,Ki,

i = 1, . . . , n
}

by Tn =
{
sl : l = 1, . . . , Jn

}
, with 0 = s0 < · · · < sJn ≤ τ .

Let N
e

=
(
N(s1), . . . , N(sJn)

)′
with Ni

e

denoting the realization from subject i,

Λ
e

=
(
Λ(s1), . . . , Λ(sJn)

)′
, and ∆i = diag{δi(sl) : sl ∈ Tn}, where δi(sl) = 1

or 0 depending on whether or not Ni(sl) is observed. Further, let Wi
e

be the

Jn × Jn matrix with (l, l
′
) entry wi(sl, sl

′ ) = w(sl, sl
′ ) if both l, l

′
belong to{

k : there exists a j such that TKi,j = sk

}
, and zero otherwise. The objective

function in (2.1) is then expressible as

Ln(Λ; w) =
n∑

i=1

(
Ni

e

− Λ
e

)′

∆
′
iWi

e

∆i

(
Ni

e

− Λ
e

)
. (3.1)

The estimator Λ̂n(·; w) defined in (2.3) is thus an element in the class
{
Λ : Λ ∈

F ,Λ
e

= Λ̂
e

(w)
}

with Λ̂
e

(w) = argmin
Λ
e

∈CJn
+

Ln(Λ; w) for a given weight function

w(·). Here CJ
+ is the cone in RJ =

{
y = (y1, . . . , yJ)

′
: yj ∈ R

}
defined by

CJ
+ =

{
y ∈ RJ : 0 ≤ y1 ≤ . . . ≤ yJ

}
. A natural choice for Λ̂n(·; w) is the step

function, starting with 0 at t = 0 and having jumps at sl with size equal to the
lth component of Λ̂

e

(w) for l = 1, . . . , Jn. For a given weight function w(·), we
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can construct Λ̂n(·; w) through Λ̂
e

(w). Thus, in the following we focus on how to

obtain Λ̂
e

(w).

The objective function Ln(Λ; w) in (3.1) can be decomposed into the sum of
two terms,

Ln(Λ; w) =
n∑

i=1

(
Ni

e

− Λ̄
e

)′

∆
′
iWi

e

∆i

(
Ni

e

− Λ̄
e

)
+

(
Λ̄
e

−Λ
e

)′

Bn(w)
(
Λ̄
e

−Λ
e

)
(3.2)

with

Bn(w) =
n∑

i=1

∆
′
iWi

e

∆i and Λ̄
e

(w) =
( n∑

i=1

∆
′
iWi

e

∆i

)−1
n∑

i=1

∆
′
iWi

e

∆iNi
e

. (3.3)

Note that Λ̄
e

(w) minimizes Ln(Λ; w) in (3.1). It is easy to show that, conditional

on the observation times and for a given weight function w(·), Λ̄
e

(w) is an unbiased

estimator of Λ0
e

= (Λ0(s1), . . . , Λ0(sJn))
′
, provided the inverse in (3.3) exists. The

conditional covariance matrix of Λ̄
e

(w) is Bn(w)−1(
∑

∆
′
iWi

e

∆iVar(N
e

)∆
′
iWi

e

∆i)

Bn(w)−1. In fact, Λ̄
e

(w) gives a consistent estimator of Λ0(t) for t ∈ T =

limn→∞ Tn, provided that the probability of an observation at t ∈ T is posi-
tive (Hu and Lagakos (2007)).

The bar estimator Λ̄
e

(w) does not always belong to CJn
+ and thus is not the

same as Λ̂
e

(w) in general. We present procedures to compute Λ̂
e

(w) ∈ CJn
+ . From

(3.2), the estimator Λ̂
e

(w) can be viewed as the projection of Λ̄
e

(w) into CJn
+ with

respect to the metric ρ: ρw(a, b)2 = (a − b)
′
Bn(w)(a − b) for a, b ∈ RJn .

3.2. Procedures to implement Λ̂
e

(w)

We consider an application of the result given in Wellner and Zhan (1997)
and Wellner and Zhang (2000), which is restated as Lemma 2 in Appendix B.
Let φ(Λ

e

) = Ln(Λ;w)
/
2. The estimator can be obtained by jointly solving the

following equation and inequalities in Λ
e

= (Λ(s1), . . . , Λ(sJn))
′ ∈ CJn

+ :

Λ
e

′∇φ(Λ
e

) =
∑
s∈Tn

Λ(s)
∂φ(Λ

e

)

∂Λ(s)
= 0, (3.4)

( j−1︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1

)′
∇φ(Λ

e

) =
∑

s≥sj ;s∈Tn

∂φ(Λ
e

)

∂Λ(s)
≥ 0, sj ∈ Tn. (3.5)
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Here we have

∇φ(Λ
e

) = −
n∑

i=1

∆
′
iWi

e

∆i

(
Ni

e

− Λ
e

)
= −Bn(w)

(
Λ̄
e

(w) − Λ
e

)
, (3.6)

with Bn(w) and Λ̄
e

(w) defined in (3.3). For the special case where Λ̄
e

(w) ∈ CJn
+ ,

Λ̂
e

(w) = Λ̄
e

(w). In general, it is not easy to jointly solve (3.4) and (3.5) for

Λ
e

∈ CJn
+ .

An alternative approach for evaluating Λ̂
e

(w) utilizes the ICM algorithm (e.g.,

Jongbloed (1998)), which is restated for our application as Lemma 3 in Appendix
B. Specifically, the sequence

{
Λ
e

(k)(w) : k = 1, . . .
}

in the algorithm is obtained
as

Λ(k)(sl) = max
v≤l

min
r≥l

∑r
j=v Λ(sj)φjj(Λ

e

) − φj(Λ
e

)∑r
j=v φjj(Λ

e

)

∣∣∣∣∣
Λ
e

=Λ
e

(k−1)

, l = 1, . . . , Jn, (3.7)

where Λ
e

(0) is an initial estimator, φj(Λ
e

) is the jth component of ∇φ(Λ
e

) in (3.6),

and φjj(Λ
e

) is the (j, j) element of the matrix ∇2φ(Λ
e

) = Bn(w).

From (3.2), Λ̂
e

(w) = argmin
Λ
e

∈CJn
+

φ∗(Λ
e

) with φ∗(Λ
e

) = (Λ̄
e

− Λ
e

)
′
Bn(w)(Λ̄

e

−

Λ
e

)
/
2. It can be computationally easier in some situations to use φ∗(Λ

e

) instead

of φ(Λ
e

) = Ln(Λ;w)
/
2 to obtain the estimator Λ̂

e

(w). The kth evaluation Λ(k)(w)

in the iterative procedure is the left derivative of the greatest convex minorant
of the cumulative sum diagram( j∑

r=1

arr,

j∑
r=1

br(Λ
e

)
)∣∣∣

Λ
e

=Λ
e

(k−1)
, j = 1, . . . , Jn,

with arr the (r, r) element of the matrix Bn(w) = ∇2φ(Λ
e

), and br(Λ
e

) the rth

component of the vector Bn(w)Λ̄
e

(w)+
[
diag(Bn(w))−Bn(w)

]
Λ
e

. When Bn(w) is

diagonal, the estimator Λ̂
e

(w) is the isotonic regression of Λ̄
e

(w) with respect to

the weights of Bn(w)’s diagonal elements (Barlow, Bartholomew, Bremner and
Brunk (1972, Chap. 1)). Thus, we view Λ̂

e

(w) as a generalized isotonic regression

of the bar estimator Λ̄
e

(w) with weight matrix Bn(w).

4. Choices of Weight Function

We now consider several weight functions for the estimator Λ̂
e

(w). Each

determines the random matrix WK×K in the expression m(Λ; w
∣∣X) in (2.2).
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4.1. Observed sample mean weight (OSM)

In practice, the sample mean of available data, termed the observed sam-
ple mean by Hu and Lagakos (2007), is routinely used to summarize repeated
measures with random missing data to indicate trends along the time and dif-
ferences between treatment groups. This suggests taking W in (2.2) to be
WOSM = IK×K , the K × K identity matrix. The matrices Wi

e

in (3.1) are

then ∆i = diag
(
δi(sj) : j = 1, . . . , Jn

)
. It is easy to verify that this weight sat-

isfies Condition B in Section 2, since WOSM = A
′
A with A = IK×K . The bar

estimator and the Bn matrix in (3.3) are then

Λ̄OSM (t) =
∑n

i=1 δi(t)Ni(t)∑n
i=1 δi(t)

, t ∈ Tn = {s1, . . . , sJn}, (4.1)

and Bn(wOSM ) =
∑

∆
′
i∆i = diag

(
nj : j = 1, . . . , Jn

)
with nj =

∑
δi(sj),

the size of the observations at time sj . See Hu and Lagakos (2007) for more
discussion of Λ̄OSM (t) for an arbitrary response process with a more general
observation mechanism. For right-censored survival data, it becomes the reduced
sample estimator introduced by Kaplan and Meier (1958) as an alternative to
the product-limit estimator.

Following the definition given in Barlow et al. (1972, p.9), the estimator
Λ̂
e

(wOSM ) is the isotonic regression of Λ̄
e

(wOSM ) with weights
{
nj : j = 1, . . . , Jn

}
.

Thus Λ̂
e

(wOSM ) can be obtained directly from Λ̄
e

(wOSM ) and the given weights

by

Λ̂OSM (sl) = max
v≤l

min
r≥l

∑r
j=v njΛ̄OSM (sj)∑r

j=v nj
, l = 1, . . . , Jn.

The estimator Λ̂OSM (·) is the same as the Sun-Kalbfleisch estimator (1995).
Wellner and Zhang (2000) note that their NPMPLE is also the same as the
Sun-Kalbfleisch estimator.

4.2. Cumulative observed increment weight (COI)

Motivated by the construction of the Kaplan-Meier estimator, Hu and La-
gakos (2007) propose an estimator based on the cumulative observed increments
(COI), and show that this estimator can be more efficient than the observed
sample mean when the observations at different times from the same study indi-
vidual are correlated. Following their approach, we consider the weight matrix
W in (2.2) as WCOI = Ω

′
Ω with

Ω=
(
a(TK,j , TK,l)

)
K×K

, and a(TK,j , TK,l)=


1 for l=j with j =1, . . . ,K,

−1 for l=j−1 with j =2, . . . ,K,

0 otherwise.
(4.2)
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It is easy to verify that the weight function satisfies Condition B in Section 2.
The associated objective function Ln(Λ;wCOI) depends only on the observed
increments ∆N(TK,j) = N(TK,j) − N(TK,j−1), j = 1, . . . ,K, with TK,0 = 0.
Here the matrix Wi

e

in (3.1) becomes Ωi
e

′
Ωi
e

, where Ωi
e

is the Jn ×Jn matrix with

elements (j, l) that are zero or are the same as the corresponding elements of Ω
given in (4.2), subject to subject i not having or having observations at sj and
sl, respectively.

Hu and Lagakos (2007) note that, when using the current weight wCOI , Λ̄
e

(wCOI) is the nonparametric version of the estimator studied in Lawless and
Nadeau (1995) and Lin et al. (2000) for semi-parametric estimation of the mean
function Λ0(·) from right-censored counting process data, which is an extension
of the Nelson-Aalen estimator of the cumulative intensity function under the
Poisson assumption.

The components of Λ̄
e

(wCOI) are not in general in nondecreasing order when

used with periodic observations. The estimator Λ̂
e

(wCOI), which minimizes the

second term of (3.2) with the given weight Λ
e

∈ CJn
+ , is thus more desirable in

the current setting. The matrix Bn(wCOI) =
∑

Ωi
e

′
Ωi
e

is not in general diagonal,

and thus Λ̂n(·;wCOI) is a generalized isotonic regression of Λ̄n(·; wCOI). We can
use the procedures in Section 3.2.2 to compute Λ̂

e

(wCOI) and then to obtain

Λ̂n(·; wCOI).

4.3. Generalized estimating equation weights (GEE)

Motivated by the construction of generalized estimating equations (see Dig-
gle, Liang and Zeger (1994, Chap. 8)) for parametric estimation, consider the
weight matrix W in (2.2) to be the inverse of the covariance matrix of N =(
N(TK,1), . . . , N(TK,K)

)′
, conditional on the number of observations K and the

observation times T =
(
TK,1, . . . , TK,K

)′
; that is,

WGSM =
(
Cov

{
N(TK,j), N(TK,l)

∣∣T,K
})−1

K×K
. (4.3)

The weight matrices Wi
e

in (3.1) for evaluating the estimator are now (∆iVar(N
e

)

∆
′
i)
−, where D− denotes the Moore-Penrose generalized inverse of D, and Var(N

e

)

= (c(sj , sl)). Another option uses the weight

WGCI = Ω
′
(
Cov

{
∆N(TK,j), ∆N(TK,l)

∣∣T,K
})−1

K×K
Ω, (4.4)
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where Ω is defined in (4.2) and ∆N(TK,j) = N(TK,j) − N(TK,j−1). The weight

matrices Wi
e

in (3.1) are then WGCI,i
e

= Ωi
e

′
(
Ωi
e

Var
(
N
e

)
Ωi
e

′
)−

Ωi
e

.

Using either WGSM in (4.3) or WGCI in (4.4) requires the covariance matrix
Var

(
N
e

)
. When this is unknown, as would often occur in practice, it can be re-

placed by an estimate. Note that, with Var
(
N
e

)
substituted by the Jn×Jn identity

matrix, WGSM and WGCI reduce to WOSM (Sec. 4.1) and WCOI (Sec. 4.2),
respectively. Below we consider two approximations to the covariance matrix
Var

(
N
e

)
and the associated estimation procedures, and we compare the resulting

estimators with the Wellner-Zhang NPMPLE and NPMLE.

Approximation A: using Var
(
N
e

)
≈ diag

(
Λ0(sj) : j = 1, . . . , Jn

)
If the counting process {N(t), t > 0} is Poisson, this approximation is the

diagonal matrix of the true covariance matrix, and we plug it into either WGSM

(4.3) or WGCI (4.4) to obtain a GEE type weight.
Use of this approximation in WGSM (4.3) corresponds to the weight W∗

GSM =
diag(1/Λ0(TK,j) : j = 1, . . . ,K). Provided E{N(t)} = Λ0(t) > 0 for t > 0,
the weight matrix based on this approximation satisfies Condition B in Sec-
tion 2. The matrix Bn(w) = ∇2φ(Λ

e

) is the diagonal matrix Bn(w∗
GSM ) =

diag(nj/Λ0(sj) : j = 1, . . . , Jn). Thus, if Λ0(·) were known, the resulting es-
timator Λ̂

e

(w∗
GSM ) would be the isotonic regression of Λ̄

e

(w∗
GSM ) with weights

{nj/Λ0(sj) : j = 1, . . . , Jn}. Note that Λ̄
e

(w∗
GSM ) is the same as Λ̄

e

(wOSM ) given

by (4.1), and also that Λ̂
e

(wOSM ) is the isotonic regression of Λ̄
e

(wOSM ) in Section

4.1, the same as Λ̄
e

(w∗
GSM ), with weights {nj : j = 1, . . . , Jn}. The hat estimator

with the current weight Λ̂
e

(w∗
GSM ) is not, in general, the same as the estimator

Λ̂
e

(wOSM ), which corresponds to the estimator proposed by Sun and Kalbfleisch

(1995).
Because the weight W∗

GSM involves Λ0(·), we consider the following iterative
algorithm to implement the estimator Λ̂

e

(w∗
GSM ): given the (k − 1)th iteration

Λ
e

(k−1), obtain the kth iteration for the estimator by using the weight W∗
GSM

with Λ0 substituted by Λ
e

(k−1), for k = 1, . . . until the sequence converges.

Appendix C shows that the procedure of applying the ICM algorithm (Lemma
3 in Appendix B) to maximize the pseudo-likelihood given in Wellner and Zhang
(2000) gives the isotonic regression of Λ̄

e

(wOSM ) with weights {njΛ̄n(sj ; wOSM )/

Λ2
0(sj) : j = 1, . . . , Jn}. As pointed out in Wellner and Zhang (2000), the pro-
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cedure should converge to the Wellner-Zhang NPMPLE, which is the same as
the Sun-Kalbfleisch estimator (1995); that is, Λ̂

e

(wOSM ). Since Λ̄n(sj ; wOSM ) is

a consistent estimator of Λ0(sj), the resulting estimator from the iterative pro-
cedure is then close to the estimator Λ̂

e

(w∗
GSM ) for large n. This is confirmed for

Poisson counts via simulation in Section 5.1.

Approximation B: using Var
(
N
e

)
≈

(
σlj

)
with σlj = Λ0(sj) for j ≤ l :

j, l = 1, . . . , Jn

Applying the approximation in WGCI (4.4), the weight in the estimation is
W∗

GCI = Ω
′
diag(1/∆Λ0(TK,j) : j = 1, . . . ,K)Ω. If {N(t), t > 0} is a Poisson

process, this approximation uses the true covariance matrix of the increments
∆N(TK,j), j = 1, . . . ,K, where Cov{∆N(TK,j), ∆N(TK,l)|T, K} is ∆Λ0(TK,j) =
Λ0(TK,j)−Λ0(TK,j−1) or 0 for l = j or not, respectively. The following additional
condition, which holds in many practical situations, ensures that the weight
W∗

GCI satisfy Condition B in Theorem 1.

Condition D: The observation times are ε-separated; that is, there exists a
constant ε > 0 such that P(TK,j − TK,j−1 ≥ ε : j = 1, . . . ,K) = 1.

It appears that Wellner and Zhang (2000) need this condition in the asymp-
totics derivation for their nonparametric maximum likelihood estimator (NPMLE).

Applying Lemma 3 (the ICM algorithm) in Appendix B, we can evaluate
Λ̂
e

(w∗
GCI) as given in Section 3.2 with weight w∗

GCI , which is a generalized isotonic

regression of the corresponding bar estimator Λ̄
e

(w∗
GCI). Since the weight W∗

GCI

involves Λ0(·), an iterative algorithm similar to the one for Λ̂
e

(w∗
GSM ) is needed

to implement Λ̂
e

(w∗
GCI).

Appendix D shows the connection of Λ̂
e

(w∗
GCI) to the Wellner-Zhang NPMLE

(2000). The difference is due to Λ
e

in the matrix Bn(w∗
GCI) being fixed at the

previous estimate in evaluating Λ̂
e

(w∗
GCI), and is treated as unknown in evaluating

the Wellner-Zhang NPMLE. Section 5 compares the two estimators for various
situations via simulation.

5. Simulation Study

To study the properties of the estimators with the weights discussed in Sec-
tion 4 in finite-samples, we conducted a simulation with N(·) = {N(t), 0 < t ≤ 1}
being a Poisson or mixed-Poisson process. We used n = 100 i.i.d. realizations of
N(·), combined with one of the following two observation schemes, each chosen
to yield an average of four observations per subject.
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Observation Scheme A: Observation times for each individual were generated
from a time-homogeneous Poisson process with rate of 4. This scheme simulates
a study in which observation times vary among individuals.

Observation Scheme B: The potential observation times are tj = 0.05, 0.10,
. . ., 0.95, 1.00, with the probability of an observation at time tj being 1.05− t

1/4
j ,

and where the presence or absence of observations at the different times are
independent. This observation scheme is intended to simulate a study with pre-
scheduled observation times, but where different subjects can have missed visits
and the risk of a missed visit increases as the study proceeds.

The following estimators were considered: Λ̂n(·; w) and Λ̄n(·; w), with the
OSM, COI, and several GEE type weights. For the GEE type estimators in
Section 4.3, we used the following weights: (i) WGSM in (4.3) and WGCI in (4.4)
with the true covariance matrix, to show the best the GEE weights can achieve,
(ii) WGSM in (4.3) and WGCI in (4.4) with the covariance matrix replaced
by the sample covariance matrix obtained from a random sample with size of
30, denoted respectively by WGSM2 and WGCI2, and (iii) W∗

GSM and W∗
GCI

in Section 4.3 with Λ0(·) replaced by its current estimate at each stage in the
algorithms.

With the OSM weights, Λ̂n(·; w) corresponds to the Sun-Kalbfleisch estima-
tor (i.e., the Wellner-Zhang NPMPLE estimator), and is denoted by SK. We also
computed the Wellner-Zhang NPMLE estimator, denoted by WZMLE.

Our primary program was written in C, and we used Splus functions runif,
rpois and rgamma (the Splus generators of uniform, Poisson and Gamma random
variables) to generate the random variables needed in the simulation. Iterations
were terminated when the largest change in any component of the current es-
timate of Λ0(·) from the previous estimate is below 10−5. All simulations con-
verged. The results reported in the following are based on 200 repetitions for
each of the simulation settings.

5.1. Time-nonhomogeneous Poisson panel counts

The response process {N(t), t∈(0, 1]} was generated as a time-nonhomogene-
ous Poisson process with Λ0(·) = 6tγ , where γ was 1/2, 1, or 2. Coupled with
the two observation schemes described above, this gave six simulation settings.
In each setting, the sample means of the estimators were very close to the true
mean functions over time, except occasionally in the right tail where there were
fewer observations, confirming that the estimators studied are consistent.

By examining the simulation results, we have the following observations.

Finding 1: The bar estimators Λ̄n(·; w), obtained without a monotonicity
constraint, are usually much easier to compute than the hat estimators Λ̂n(·; w).



572 X. JOAN HU, STEPHEN W. LAGAKOS AND RICHARD A. LOCKHART

However, in addition to ensuring monotonicity, the hat estimators Λ̂n(·; w) gen-
erally had smaller sample mean squared errors.

Finding 2: The COI weights (e.g., WCOI and WGCI∗), based on observed
increments of the response process, in general led to estimators with smaller
sample mean squared errors than the estimators obtained by using the OSM
weights (e.g., WOSM and WGSM∗). This also applies to the greater efficiency
seen with the NPMLE estimator compared to the NPMPLE (i.e., SK) estimator,
since these can be viewed as being based on observed increments and on observed
responses, respectively. When the true or a sample covariance matrix is used in
GEE type weights, the resulting COI and OSM estimators, which are the GSM
and GCI or GSM2 and GCI2, are very similar.

Finding 3: By taking into account the covariance structure of the response
process, the estimators using GEE weights generally have higher efficiency. How-
ever, when the covariance or its approximation involves unknown parameters,
more computation time is needed to compute the estimates GSM* and GCI*
than the corresponding ones with the OSM or COI weight.

The Wellner-Zhang NPMLE performed the best in all the simulated settings.
All the evaluations of the SK estimator (i.e., Λ̂n(·; w) with weight WOSM ) were
very close to those of Λ̂n(·; w) with weight WGSM∗. This numerically confirms
that in Poisson situations, NPMPLE is the same as the Sun-Kalbfleisch estimator,
that the ICM algorithm gives the NPMPLE, and that the GSM* is close to
the NPMPLE. The estimates with weights WGSM or WGCI , using the true
covariance matrices Var(N

e

) or the sample covariance matrices, were similar, and

had better efficiency than the corresponding estimates with WGSM∗ or WGCI∗.
To illustrate the findings, Figure 1 presents the sample means and the sample
mean squared errors (pointwise) of the estimates under nonhomogeneous Poisson
process responses with γ = 1/2 and Observation Scheme A.

5.2. Mixed-Poisson panel counts

We next took N(·) to be a mixed-Poisson process with conditional inten-
sity function λ(t

∣∣α) = 6αt, where the random effect α was a Gamma random
variable with mean 1 and variance θ = 1, 2 or 3. This corresponds to an uncon-
ditional mean function Λ0(t) = 6t and variance function Var

{
N(t)

}
= Λ0(t)

{
1+

Var(α)Λ0(t)
}
, and a process with dependent increments (Lawless (1987)). The

overdispersion of the simulated counting processes depends on the variance of
the random effect θ = Var(α). Coupled with the two observation schemes, the
three choices of θ gave a total of six settings. Figure 2 presents the pointwise
sample means and sample mean squared errors of the estimates evaluated with
the data generated from the mixed-Poisson process for θ = 2 with Observation
Scheme B.
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Figure 1. Sample means and sample mean squared errors of estimators with
poisson panel counts under observation Scheme A.

Based on the simulation outcome, we had the same general observations with
the mixed-Poisson processes as those listed as Findings 1−3 in Section 5.1 with
time-nonhomogeneous Poisson processes. However, in this non-Poisson setting,
the Wellner-Zhang NPMLE was no longer the most efficient estimator. As θ,
a measure of the dependence of increments, increased, the proposed estimator
Λ̂(·; w) with weights WGSM and WGCI , or with weights WGSM2 and WGCI2,
showed higher efficiency. Moreover the estimate, with GEE weight and either of
Approximation A or B, which uses a Poisson covariance matrix to approximate
the true covariance, did not lead to much efficiency improvement over the OSM
or COI estimates. This indicates the need to explore alternative approximations.

Unlike the situations in Section 5.1 with Poisson response, the evaluations
of SK (that is, NPMPLE and Λ̂(·; w) with weight WOSM ), and GSM* (i.e.,
Λ̂n(·; w) with weight WGSM∗) were not in close agreement. Although GSM*
is consistent in theory, the sample means of the GSM* estimates indicate some
bias, especially in the settings with Observation Scheme B. This may be due to
fewer observations late in the study period.

6. Final Remarks

This paper presents a general class of estimators for the mean function of a
counting process based on panel counts. Special cases include the estimator pro-
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Figure 2. Sample means and sample mean squared errors of estimators with
mixed-poisson panel counts (θ = 2) under observation Scheme B.

posed by Sun and Kalbfleisch (1995), and estimators similar to the NPMLE esti-
mator considered by Wellner and Zhang (2000). Simulations suggest that the use
of GEE weights can lead to efficiency close to that of the Wellner-Zhang NPMLE
for Poisson processes and better efficiency than the Wellner-Zhang NPMLE for
non-Poisson processes. With modification, the proposed estimator can be gener-
alized to accommodate nondecreasing processes with jumps that are not neces-
sarily of size one.

Several further investigations would be worthwhile. One of theoretical and
practical interest is the determination of asymptotic variance and variance es-
timation for the estimator Λ̂(·; w). In principle, a resampling method could be
used. Another is to find the optimal weight for the estimator to achieve the
best efficiency in a given situation, and a third is to extend the estimator to the
situations where the observation mechanism can depend on the response.

The estimator Λ̂n(·; w) is an M-estimator subject to the monotonicity con-
straint. As done by Wellner and Zhang (2000), we apply the iterative convex
minorant algorithm (ICM) to implement the estimator. This may lead to exten-
sive computation time, and thus faster algorithms would be useful. Finally, the
methods can be readily extended to incorporate covariates which, among other
things, can be used to assess the dependence of the observation and the response
processes.
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Appendix. Some Technical Details

A. Proof of Theorem 1

We first state a lemma to be used in the proof, then outline the proof of
consistency. The approach utilized in the proof is similar to the one in Wellner
and Zhang (2000). The following lemma is another version of the one-sided
Glivenko-Cantelli Theorem given in Wellner and Zhang (2000) or Ferguson (1996,
Sec. 17).

Lemma 1. Suppose that U =
{
U(·; θ) : θ ∈ Θ

}
is a class of measurable functions

defined on a probability space
(
X ,A,P

)
, where Θ is compact with respect to a

metric d and U(x; θ) is lower semicontinuous in θ for all x. Suppose further that
there exists a function V (x) such that EV (X) < ∞ and U(x; θ) ≤ V (x) for all
x ∈ X , θ ∈ Θ, and for all θ and all sufficiently small ρ > 0, inf{φ:d(φ,θ)<ρ} U(x; φ)
is measurable in x. Then if X1, . . . , Xn are i.i.d. P with values in X , and Pn is
the empirical measure of the Xi’s, almost surely P

lim
n→∞

inf
θ∈Θ

PnU(X; θ) ≥ inf
θ∈Θ

PU(X; θ),

lim
n→∞

inf
θ∈Θ

(
Pn − P

)
U(X; θ) ≥ 0.

Moreover, PU(X; θ) is lower semicontinuous in θ ∈ Θ: limφ→θPU(X; φ) ≥
PU(X; θ).

Proof of Theorem 1. Denote by M(Λ; w) = E
{
m(Λ;w

∣∣X)
}

the limit of the
objective function Ln(Λ;w)

/
n = Mn(Λ;w) in (2.1).

We note first that M(Λ;w) ≥ M(Λ0; w) for ∀Λ ∈ F , and that the equality
holds if and only if Λ = Λ0 µ, since

E
{

m(Λ;w
∣∣X) − m(Λ0; w

∣∣X)
∣∣K,T

}
=

(
Λ − Λ0

)′
W

(
Λ − Λ0

)
≥ 0,

and the equality holds if and only if Λ(t) = Λ0(t) for all t = TK,j , since W is
positive definite (Condition B).

We can then show that the sequence of nondecreasing functions
{
Λ̂n(·; w)

}
is

bounded in [0, τ ] almost surely and, according to Helly’s Selection Theorem, there
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is a uniform subsequence of
{
Λ̂n(·;w)(ω)

}
∀ω, denoted by

{
Λ̂n∗(ω)(·; w)(ω)

}
, that

converges. This follows by noting that

lim
n→∞

PnΛ̂
′
nWΛ̂n ≤ 2

[
lim

n→∞
Mn(Λ0; w

∣∣X) + lim
n→∞

PnN
′
WN

]
= 2

[
E

{
m(Λ0; w

∣∣X)
}

+ E
{
N

′
WN

}]
< ∞,

because Λ̂n = argminΛ∈FMn(Λ;w) and by Conditions A and B. Thus, for ∀t ∈
[0, τ ],

lim
n→∞

Λ̂2
n(t)µ

(
[t, τ ]

)
≤ lim

n→∞
Pn

K∑
j=1

I[t,τ ](TK,j)Λ̂2
n(TK,j) ≤ lim

n→∞
PnΛ̂

′
nΛ̂n

≤ E
{
||A−1||2

}
× lim

n→∞
PnΛ̂

′
nWΛ̂n

is bounded, by Condition B, where A is the matrix in the decomposition W =
A

′
A in Condition B. Denote the bound by C, and let Λ∗(·; w) be the limit of

the subsequence
{
Λ̂n∗(ω)(·; w)

}
. We know that M(Λ∗;w) ≥ M(Λ0; w). We show

that
M(Λ∗; w) ≤ M(Λ0; w), (A.1)

and thus M(Λ∗; w) = M(Λ0; w), which implies Λ∗ = Λ0 a.e. µ, i.e., all the limits
of subsequences of

{
Λ̂n(·; w)

}
are Λ0 a.e. µ, and this proves the theorem.

Take

Fτ =
{

Λ ∈ F : Λ(τ) ≤
( C

µ({τ})

) 1
2 + 1

}
,

compact in the metric d of (2.4), and Mτ (w) =
{
m(Λ; w

∣∣X) : Λ ∈ F
}
, a class of

measurable functions indexed in Fτ for a given weight function. We note that,
for given w and X, m(Λ;w

∣∣X) ∈ Mτ (w) is lower semicontinuous in Λ ∈ Fτ ,
since

m(Λ1; w
∣∣X)

1
2 ≤ m(Λ2; w

∣∣X)
1
2 +

[
(Λ1 − Λ2)

′
W(Λ1 − Λ2)

] 1
2

and has an integrable envelope, since

m(Λ; w
∣∣X) ≤ 2

[
N

′
WN + Λ

′
WΛ

]
≤ 2

[
N

′
WN + K||Ω||2 C

µ({τ})

]
using Conditions A and B. Thus Lemma 1 yields

lim
n→∞

inf
Λ∈Fτ

(
Pn − P

)
m(Λ; w

∣∣X) ≥ 0 (A.2)

almost surely. Therefore,

lim
n∗→∞

Pn∗m(Λ;w
∣∣X)

∣∣
Λ=Λ̂n∗

≥ lim
n∗→∞

Pm(Λ; w
∣∣X)

∣∣
Λ=Λ̂n∗

= M(Λ∗;w)
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almost surely by the Dominated Convergence Theorem. Then (A.1) follows by
noting

M(Λ0; w) = lim
n∗→∞

Mn∗(Λ0; w) ≥ lim
n∗→∞

Mn∗(Λ̂n∗ ; w)

by the Strong Law of Large Numbers and the definition of Λ̂n(·; w).

B. Some known results

For the purpose of our application, we restate Theorem 2.1 of Wellner and
Zhang (2000) or Lemma 3.1 of Wellner and Zhan (1997). Write ∇φ for the
gradient of φ, ∇2φ for ∇

(
∇φ

)′
, and < ·, · > for the usual inner product in RJ .

Lemma 2. Let φ : RJ → R
⋃
{∞} be a continuous convex function, K ⊂ RJ

be a convex cone, and K0 = K
⋂

φ−1(R). Suppose K0 is nonempty and φ is
differentiable on K0. Then ẑ ∈ K0 satisfies φ(ẑ) = minz∈K φ(z) if and only if

< ẑ,∇φ(ẑ) >= 0 and < z,∇φ(ẑ) >≥ 0 for all z ∈ K.

It is easy to see that ẑ is determined by ∇φ(z). The following lemma presents
the iterative convex minorant (ICM) algorithm as stated in Jongbloed (1998).

Lemma 3. If the convex cone K is CJ =
{
y ∈ RJ : y1 ≤ . . . ≤ yJ

}
, the sequence{

z(k) : k = 1, . . .
}

converges to ẑ = argminz∈Kφ(z) where, for a fixed z(0) ∈ CJ ,
the lth component of z(k) is

z
(k)
l = max

s≤l
min
r≥l

∑r
j=s zjφjj(z) − φj(z)∑r

j=s φjj(z)

∣∣∣∣∣
z=z(k−1)

, l = 1, . . . , J,

with φj(z) = ∂φ(z)
/
∂zj and φjj(z) = ∂2φ(z)

/
∂z2

j . For K = CJ
+ =

{
y ∈ RJ : 0 ≤

y1 ≤ . . . ≤ yJ

}
, the negative components of ẑ should be set to zero.

See Jongbloed (1998), for example, for a geometric interpretation of the
algorithm. Jongbloed (1998) presents a modified iterative convex minorant algo-
rithm to avoid the problem that the ICM algorithm does not necessarily converge
globally.

C. Connection of Λ̂n(w∗
GSM ) with the Wellner-Zhang NPMPLE (2000)

Recall the nonparametric maximum pseudo-likelihood estimator (NPMPLE)
considered in Wellner and Zhang (2000) is derived by maximizing

log PL(Λ) = nPn(N
′
log Λ − 1

′
KΛ) =

n∑
i=1

∑
t:δi(t)=1

Ni(t)logΛ(t) − Λ(t),

where 1K is the K-dimensional vector with all components 1, and log z denotes
(log z1, . . . , log zk)

′
for z = (z1, . . . , zk)

′
. As indicated in Wellner and Zhang
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(2000), PL(Λ) is proportional to the pseudo-likelihood, assuming {N(t), t > 0}
is Poisson and ignoring the dependency of the events within a subject. Note that

∇ log PL(Λ) =
n∑

i=1

∆
′
i

{
Wi

e

(Λ
e

)∆iN
e i

− 1Jn

}
= Bn(w∗

GSM ;Λ
e

)
(
Λ̄n

e

(wOSM ) − Λ
e

)
,

∇2 log PL(Λ) = −
n∑

i=1

∆
′
idiag

(
Ni(sj) : j = 1, . . . , Jn

)
Wi

e

(Λ
e

)2,

with the matrix Wi
e

(Λ
e

) = diag
(
δi(sj)

/
Λ(sj) : j = 1, . . . , Jn

)
and

Bn(w∗
GSM ;Λ

e

) =
n∑

i=1

∆
′
iWi

e

(Λ
e

)∆i = diag(
nj

Λ(sj)
: j = 1, . . . , Jn).

Here Bn(w∗
GSM ; Λ0

e

) = Bn(w∗
GSM ) as given in Section 4.3. The solution of

∇ log PL(Λ) = 0 is the bar estimator with weight wOSM , Λ̄
e

(wOSM ). Thus the

procedure of applying Lemma 3 in Appendix B with φ(Λ
e

) = − log PL(Λ) to

obtain the Wellner-Zhang NPMPLE is the procedure of getting the isotonic re-
gression of Λ̄

e

(wOSM ) with weights
{
njΛ̄n(sj)

/
Λ2

0(sj) : j = 1, . . . , Jn

}
.

D. Connection of Λ̂n(w∗
GCI) with the Wellner-Zhang NPMLE (2000)

The nonparametric maximum likelihood estimator (NPMLE) of Wellner and
Zhang (2000) is from the likelihood function based on the current data with the
Poisson assumption, the log-transformation of which is

log FL(Λ) = nP
(
N

′
Ω

′
log ΩΛ − ΩΛ

)
=

n∑
i=1

∑
t:δi(t)=1

∆Ni(t) log ∆Λi(t) − ∆Λi(t)

with ∆Ni(TKi,j) = Ni(TKi,j) − Ni(TKi,j−1) for j = 1, . . . ,Ki. In our notation,

∇ log FL(Λ) =
n∑

i=1

∆
′
iWi

e

(Λ
e

)∆iNi
e

−∆
′
iΩi

e

′
1Jn = Bn(w∗

GCI ;Λ
e

)
(
Λ̄
e

(w∗
GCI ;Λ

e

)−Λ
e

)
,

where Wi
e

(Λ
e

) = Ωi
e

′
diag

(
δi(sj)

/
eij : j = 1, . . . , Jn

)
Ωi
e

, with 0/0 = 0 and eij the

jth component of Ωi
e

∆iΛ
e

, Bn(w∗
GCI ;Λ

e

) =
∑

∆
′
iWi

e

(Λ
e

)∆i with Bn(w∗
GCI ;Λ0

e

)

the same as the Bn(w) matrix with weight w∗
GCI , and

Λ̄
e

(w∗
GCI ;Λ

e

) = Bn(w∗
GCI ;Λ

e

)−1
n∑

i=1

∆
′
iWi

e

(Λ
e

)∆iNi
e

.
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We see that Λ̄
e

(w∗
GCI ;Λ

e

) is the solution of ∇ log FL(Λ) = 0 with fixed Bn(w∗
GCI ;Λ

e

),

which is the same as the bar estimator Λ̄
e

(w∗
GCI) if Bn(w∗

GCI ;Λ
e

) is evaluated at

Λ
e

= Λ0
e

.

Moreover, note that B∗
n(Λ

e

) = ∇
(
∇ log FL(Λ)

)′
is

Bn(w∗
GCI ;Λ

e

)−∇Bn(w∗
GCI ;Λ

e

)
(
Λ̄
e

(w∗
GCI ;Λ

e

)−Λ
e

)′
−Bn(w∗

GCI ;Λ
e

)∇Λ̄n
e

(w∗
GCI ;Λ

e

)
′
.

Using Lemma 3 in Appendix B with φ(Λ
e

) = − log FL(Λ), the kth iteration for the

NPMLE is the left derivative of the greatest convex minorant of the cumulative
sum of diagram

( j∑
r=1

a∗rr(Λ
e

),
j∑

r=1

b∗r(Λ
e

)
)∣∣∣∣∣

Λ
e

=Λ
e

(k−1)

, j = 1, . . . , Jn,

with a∗rr the (r, r) element of the matrix B∗
n(Λ

e

), and b∗r(Λ
e

) the rth component

of the vector

Bn(w∗
GCI ;Λ

e

)Λ̄n
e

(w∗
GCI ;Λ

e

) +
{
diag(B∗

n(Λ
e

)) − Bn(w∗
GCI ;Λ

e

)
}
Λ
e

.

The difference between B∗
n(Λ

e

) and Bn(w∗
GCI ;Λ

e

) leads to the difference between

Λ̂
e

(w∗
GCI) and the Wellner-Zhang NPMLE (2000).

References

Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1992). Statistical Models Based on

Counting Processes. Springer-Verlag, New York.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference

Under Order Restrictions: The Theory and Applications of Isotonic Regression. Wiley, New

York.

Diggle, P. J., Liang, K. Y. and Zeger, S. L. (1994). Analysis of Longitudinal Data. Clarendon

Press, Oxford.

Ferguson, T. S. (1996). A Course in Large Sample Theory. Chapman & Hall, London.

Hu, X. J. and Lagakos, S. W. (2007). Nonparametric estimation of the mean function of a

stochastic process with missing observations. Lifetime Data Anal. 13, 51-73.

Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation.

J. Comput. Graph. Statist. 28, 161-183.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations.

J. Amer. Statist. Assoc. 53, 457-481.

Lawless, J. F. (1987). Negative binomial regression models. Canad. J. Statist. 15, 209-226.



580 X. JOAN HU, STEPHEN W. LAGAKOS AND RICHARD A. LOCKHART

Lawless, J. F. (1995). The analysis of recurrent events for multiple subjects. Appl. Statist. 44,

487-498.

Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent

events. Technometrics 37, 158-168.

Lin, D. Y., Wei, L. J., Yang, I. and Ying, Z. (2000). Semiparametric regression for the mean

and rate functions of recurrent events. J. Roy. Statist. Soc. Ser. B 62, 711-730.

Sun, J. and Kalbfleisch, J. D. (1995). Estimation of the mean function of point processes based

on panel count data. Statist. Sinica 5, 279-290.

Wellner, J. A. and Zhan, Y. (1997). A hybrid algorithm for computation of the nonparametric

maximum likelihood estimator from censored data. J. Amer. Statist. Assoc. 92, 945-959.

Wellner, J. A. and Zhang, Y. (2000). Two estimators of the mean of a counting process with

panel count data. Ann. Statist. 28, 779-814.

Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A

1S6, Canada.

E-mail: joanh@stat.sfu.ca

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, U.S.A.

E-mail: lagakos@biostat.harvard.edu

Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A

1S6, Canada.

E-mail: lockhart@stat.sfu.ca

(Received November 2006; accepted October 2007)


	1. Introduction
	2. A Generalized Least Squares Monotonic Estimator
	3. Implementation of Estimator
	3.1. Preparation
	3.2. Procedures to implement

	4. Choices of Weight Function
	4.1. Observed sample mean weight (OSM)
	4.2. Cumulative observed increment weight (COI)
	4.3. Generalized estimating equation weights (GEE)

	5. Simulation Study
	5.1. Time-nonhomogeneous Poisson panel counts
	5.2. Mixed-Poisson panel counts

	6. Final Remarks
	Appendix. Some Technical Details
	A. Proof of Theorem 1

	B. Some known results

