PROOFS OF THEOREMS OF THE PAPER "RUN LENGTH PROPERTIES OF THE CUSUM AND EWMA SCHEMES FOR THE STATIONARY LINEAR PROCESSES"

DONG HAN AND FUGEE TSUNG¹
Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Hong Kong.

April 22, 2015

1 Tow Theorems.

To obtain the asymptotic ARL for the two control charts, we need three conditions presented in the following.

Let $h(\theta)=\mathbf{E}\left(e^{\theta \xi_{j}}\right)$ denote the moment-generating functions of ξ_{j}. We suppose that the white noise $\left\{\xi_{j}\right\}$ satisfies the following two conditions:
(I) The distribution of ξ_{1} is not a point mass at $\mathbf{E}\left(\xi_{1}\right)$.
(II) The moment-generating function of ξ_{1} satisfies $h(\theta)<\infty$ for some $\theta>0$ and $\bar{h}=\sup \left\{h^{\prime}(\theta) / h(\theta): \theta<\bar{\theta}\right\}>0$, where $\bar{\theta}=\sup \{\theta: h(\theta)<\infty\}$.

Note that, from condition II, it follows that $h(\theta)$ is the analytic function for $|\theta|<\bar{\theta}$. It can be shown that many distributions, such as normal, exponential, uniform and Poisson, satisfy conditions I and II.

Another condition is about $\left\{a_{k}\right\}$.

$$
\text { (III) } \quad \sum_{k=1}^{\infty} k\left|a_{k}\right|<\infty .
$$

[^0]This condition implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \sum_{k=n+1}^{\infty}\left|a_{k}\right|=0 \tag{1}
\end{equation*}
$$

Let $\eta_{j}=\delta\left(A \xi_{j}-\frac{\delta}{2}\right)$ and $h_{\eta}(\theta)=\mathbf{E}\left(e^{\theta \eta_{1}}\right)$ denote the moment-generating functions of η_{1}. Let $\theta(y)$ satisfy $y=h_{\eta}^{\prime}(\theta(y)) / h_{\eta}(\theta(y))$.

Now we present the asymptotic ARLs of the CUSUM chart.
Theorem 1. Suppose conditions (I), (II) and (III) hold. Let $\hat{\mu}=\delta(\mu-\delta / 2)$.
(i) If $0 \leq \mu<\delta / 2$, then

$$
\begin{equation*}
\frac{1}{b c} e^{c\left(\theta^{*}+o(1)\right)} \leq \mathbf{A R L}_{\mu}\left(T_{C}(c)\right) \leq \frac{2 c}{u} e^{c\left(\theta^{*}+o(1)\right)} \tag{2}
\end{equation*}
$$

for a large control limit, c, where $\theta^{*}>0$ is a unique positive root of the equation $\log h(\delta A \theta)-\delta^{2} \theta / 2=$ 0 on $\theta>0, u=\delta A h^{\prime}\left(\delta A \theta^{*}\right) / h\left(\delta A \theta^{*}\right)-\delta^{2} / 2>0$ and b is a positive constant defined by

$$
\begin{equation*}
b=\inf \left\{x>1 / u: \theta\left(\frac{1}{x}\right)-x \log h_{\eta}\left(\theta\left(\frac{1}{x}\right)\right) \geq 2 \theta^{*}\right\} . \tag{3}
\end{equation*}
$$

(ii) If $\mu>\delta / 2$, then

$$
\begin{equation*}
-(1+o(1)) \frac{3 \sqrt{c} \log c}{(\hat{\mu})^{3 / 2}}+\frac{c}{\hat{\mu}} \leq \mathbf{A R L}_{\mu}\left(T_{C}(c)\right) \leq \frac{c}{\hat{\mu}}+\frac{2 \sqrt{c} \log c}{(\hat{\mu})^{3 / 2}}+\frac{e^{(\delta \sigma A)^{2} / 2}}{\hat{\mu} c^{\sqrt{2}-1}}(1+o(1)) \tag{4}
\end{equation*}
$$

for large c.
For the EWMA chart, we let the control limit, \tilde{c}, be fixed and the weight parameter, r, be small such that the ARL_{0} becomes large. In the following theorem, we see that the role of the control limit, \tilde{c}, in the EWMA chart is the same as the reference value $\delta / 2$ in the CUSUM chart, and the weight parameter, r, in the EWMA chart is like the control limit, c, in the CUSUM chart.

Theorem 2. Suppose that conditions (I), (II) and (III) hold.
(i) If $0 \leq \mu<\tilde{c}$, then

$$
\begin{equation*}
e^{\frac{1}{r}\left(\theta^{*}(\tilde{c})+o(1)\right)} \leq \mathbf{A R L}_{\mu}\left(T_{E}(r)\right) \leq \frac{3 \log r^{-1}}{r} e^{\frac{1}{r}\left(\theta^{*}(\tilde{c})+o(1)\right)} \tag{5}
\end{equation*}
$$

for a small weighting parameter r, where $\theta^{*}(\tilde{c})=\tilde{c} \theta_{\tilde{c}}-\log h_{\zeta}\left(\theta_{\tilde{c}}\right), \theta_{\tilde{c}}$ is a unique positive root of the equation $\tilde{c} \theta-\log h(A \theta)=0$ on $\theta>0$ and $h_{\zeta}(\theta)$ is defined by

$$
\begin{equation*}
h_{\zeta}(\theta)=\exp \left\{\int_{0}^{\theta} \frac{\log h(A x)}{x} d x\right\} . \tag{6}
\end{equation*}
$$

(ii) If $\mu>\tilde{c}$, then

$$
\begin{equation*}
(1+o(1))\left(1-\frac{1}{\left(\log r^{-1}\right)^{p}}\right) \frac{1}{r} \log \frac{\mu}{\mu-\tilde{c}} \leq \mathbf{A R L}_{\mu}\left(T_{E}(r)\right) \leq(1+o(1)) \frac{1}{r} \log \frac{\mu}{\mu-\tilde{c}} \tag{7}
\end{equation*}
$$

for small r, where p is a positive number.
Remark 1. It is convenient to rewrite the results of the two theorems in the following expressions. For large c and small r we have

$$
\begin{equation*}
\mathbf{A R L}_{\mu}\left(T_{C}(c)\right)=L_{C} e^{c\left(\theta^{*}+o(1)\right)}, \quad \mathbf{A R L}_{\mu}\left(T_{E}(r)\right)=L_{E} e^{\frac{1}{r}\left(\theta^{*}(\tilde{c})+o(1)\right)} \tag{8}
\end{equation*}
$$

for $0 \leq \mu<\delta / 2$ and $0 \leq \mu<\tilde{c}$ respectively, and

$$
\begin{equation*}
\mathbf{A R L}_{\mu}\left(T_{C}(c)\right)=(1+o(1)) \frac{c}{\delta(\mu-\delta / 2)}, \quad \mathbf{A R L}_{\mu}\left(T_{E}(r)\right)=(1+o(1)) \frac{1}{r} \log \frac{\mu}{\mu-\tilde{c}} \tag{9}
\end{equation*}
$$

for $\mu>\delta / 2$ and $\mu>\tilde{c}$, respectively, where c and \tilde{c} are the control limits of the CUSUM and EWMA, respectively, and L_{C} and L_{E} satisfy $1 /(b c) \leq L_{C} \leq 2 c / u$ and $1 \leq L_{E} \leq 3 \log r^{-1} / r$, respectively.

2 Proofs of Theorem 1

We first present two lemmas. Here, lemma 1 in the following is a slight generalization of the lemma given in Durrett (2005, P.73) and lemma 2 is the same as Lemma 2 in Han and Tsung (2006). We omit the proofs of lemma 2 .

Lemma 1. Let $Z_{k}, 1 \leq k \leq n$, be independent with distributions $F_{k}(x)$ and the momentgenerating functions $h_{k}(\lambda)$, and let $Z_{k}^{\lambda}, 1 \leq k \leq n$, be independent with the distributions $F_{k}^{\lambda}(y)$ and the moment-generating functions $h_{k}^{\lambda}(\theta)$, where $h_{k}(\lambda)<\infty, 1 \leq k \leq n$, for some $\lambda>0$ and

$$
\begin{equation*}
F_{k}^{\lambda}(y)=\frac{1}{h_{k}(\lambda)} \int_{-\infty}^{y} e^{\lambda x} d F_{k}(x), \quad h_{k}^{\lambda}(\theta)=\mathbf{E}_{k}^{\lambda}\left(e^{\theta Z_{k}^{\lambda}}\right) \tag{10}
\end{equation*}
$$

for some $\lambda>0$. Let F^{n} and F_{λ}^{n} denote the distributions of $S_{n}=Z_{1}+\ldots+Z_{n}$ and $S_{n}^{\lambda}=Z_{1}^{\lambda}+\ldots+Z_{n}^{\lambda}$ respectively. Then,

$$
\begin{equation*}
\frac{d F^{n}}{d F_{\lambda}^{n}}=e^{-\lambda z} h_{1}(\lambda) \ldots h_{n}(\lambda) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{P}\left(S_{n} \geq m a\right) \geq \exp \left\{-m \lambda b+\sum_{k=1}^{n} \log h_{k}(\lambda)+\log \left(F_{\lambda}^{n}(m b)-F_{\lambda}^{n}(m a)\right)\right\} \tag{12}
\end{equation*}
$$

for $b>0$ and $m>0$.
Proof. Since

$$
\begin{aligned}
F^{2}(z) & =\int_{-\infty}^{\infty} d F_{1}(x) \int_{-\infty}^{z-x} d F_{2}(y) \\
& =\int_{-\infty}^{\infty} e^{-\lambda x} h_{1}(\lambda) d F_{1}^{\lambda}(x) \int_{-\infty}^{z-x} e^{-\lambda y} h_{2}(\lambda) d F_{2}^{\lambda}(y) \\
& =h_{1}(\lambda) h_{2}(\lambda) \iint_{x+y<z} e^{-\lambda(x+y)} d F_{1}^{\lambda}(x) d F_{2}^{\lambda}(y) \\
& =h_{1}(\lambda) h_{2}(\lambda) \int_{-\infty}^{z} e^{-\lambda u} d F_{\lambda}^{2}(u),
\end{aligned}
$$

the result holds for $n=1,2$. By mathematical induction, we can similarly show that (11) holds for $n \geq 1$.

From (11), it follows that

$$
\begin{aligned}
\mathbf{P}\left(S_{n} \geq m a\right) & =\int_{m a}^{\infty} e^{-\lambda z} h_{1}(\lambda) \ldots h_{n}(\lambda) d F_{\lambda}^{n} \\
& \geq h_{1}(\lambda) \ldots h_{n}(\lambda) \int_{m a}^{m b} e^{-\lambda z} d F_{\lambda}^{n} \\
& \geq h_{1}(\lambda) \ldots h_{n}(\lambda) e^{-\lambda m b} \int_{m a}^{m b} d F_{\lambda}^{n} \\
& =h_{1}(\lambda) \ldots h_{n}(\lambda) e^{-\lambda m b}\left[F_{\lambda}^{n}(m b)-F_{\lambda}^{n}(m a)\right] \\
& =\exp \left\{-m \lambda b+\sum_{k=1}^{n} \log h_{k}(\lambda)+\log \left(F_{\lambda}^{n}(m b)-F_{\lambda}^{n}(m a)\right)\right\} .
\end{aligned}
$$

This completes the proof.
Note that, by (10), the mean and the moment-generating function of Z_{k}^{λ} can be, respectively, expressed as

$$
\begin{equation*}
\mathbf{E}_{k}^{\lambda}\left(Z_{k}^{\lambda}\right)=\frac{h_{k}^{\prime}(\lambda)}{h_{k}(\lambda)}, \quad h_{k}^{\lambda}(\theta)=\mathbf{E}_{k}^{\lambda}\left(e^{\theta Z_{k}^{\lambda}}\right)=\frac{h_{k}(\lambda+\theta)}{h_{k}(\lambda)} . \tag{13}
\end{equation*}
$$

Let $\eta_{j}=\delta\left(A \xi_{j}-\frac{\delta}{2}\right)$ and $h_{\eta}(\theta)=\mathbf{E}\left(e^{\theta \eta_{1}}\right)$ denote the moment-generating functions of η_{1}. Let $\theta(y)$ satisfy $y=h_{\eta}^{\prime}(\theta(y)) / h_{\eta}(\theta(y))$.

Lemma 2. Suppose that the two conditions, (I) and (II), hold. Let $\mu<\delta / 2$; that is, $\mathbf{E}\left(\eta_{j}\right)=$ $\delta(\mu-\delta / 2)<0$. Then, there exists at most one $\theta^{*} \in(\theta(0), \bar{\theta})$ such that $h_{\eta}\left(\theta^{*}\right)=1$; that is, $\log h\left(\delta A \theta^{*}\right)-\delta^{2} \theta^{*} / 2=0$, where $\theta(0)>0$ satisfies $0=h_{\eta}^{\prime}(\theta(0)) / h_{\eta}(\theta(0))$. Moreover, $u=h_{\eta}^{\prime}\left(\theta^{*}\right)>0$, $\log h_{\eta}(\theta(x))<0$ for $x<u$ and $\log h_{\eta}(\theta(x))>0$ for $x>u$, and

$$
\begin{equation*}
\theta\left(\frac{1}{x}\right)-x \log h_{\eta}\left(\theta\left(\frac{1}{x}\right)\right) \geq \theta^{*} \tag{14}
\end{equation*}
$$

for $x>0$ and

$$
\begin{equation*}
\theta\left(\frac{1}{x}\right)-x \log h_{\eta}\left(\theta\left(\frac{1}{x}\right)\right) \geq 2 \theta^{*} \tag{15}
\end{equation*}
$$

for $x \geq b$, where the number b is defined by

$$
\begin{equation*}
b=\inf \left\{x>1 / u: \theta\left(\frac{1}{x}\right)-x \log h_{\eta}\left(\theta\left(\frac{1}{x}\right)\right) \geq 2 \theta^{*}\right\} \tag{16}
\end{equation*}
$$

Proof of Theorem 1. (i). We first prove the upward inequality of (2). Without loss of generality, the number x is considered to be the same as $[x]$ when x is large, where the number $[x]$ denotes the smallest integer greater than or equal to x. Let $A_{k}=\sum_{j=1}^{k} a_{j-1}$. It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{n}=A, \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} A_{k}=A, \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|A_{n+k}-A_{k}\right|=0, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=n+1}^{\infty}\left|A_{n+k}-A_{k}\right| \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sum_{j=n}^{\infty}\left|a_{k+j}\right| \leq \lim _{n \rightarrow \infty} n \sum_{k=n+1}^{\infty}\left|a_{k}\right|=0 . \tag{18}
\end{equation*}
$$

Here, the last limit follows from (1). For $n \leq m$, we have

$$
\sum_{k=m-n+1}^{m} \delta\left(X_{k}-\frac{\delta}{2}\right)=Y_{m, n}+Z_{m, n}+U_{m, n}
$$

where

$$
Y_{m, n}=\sum_{k=1}^{n} \delta\left(A_{k} \xi_{m+1-k}-\frac{\delta}{2}\right), \quad Z_{m, n}=\delta \sum_{k=1}^{n}\left(A_{n+k}-A_{k}\right) \xi_{m+1-n-k}
$$

and

$$
U_{m, n}=\delta \sum_{k=n+1}^{\infty}\left(A_{n+k}-A_{k}\right) \xi_{m+1-n-k} .
$$

Since $Y_{(2 k-1) n, n}+Z_{(2 k-1) n, n}, k \geq 1$, are mutually independent and identically distributed, and

$$
\begin{aligned}
\mathbf{P}_{\mu}\left(T_{C}>m\right) & =\mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c, \quad 1 \leq k \leq n, 1 \leq n \leq m\right) \\
& =\mathbf{P}_{\mu}\left(Y_{n, k}+Z_{n, k}+U_{n, k}<c, \quad 1 \leq k \leq n, 1 \leq n \leq m\right) \\
& \leq \mathbf{P}_{\mu}\left(Y_{(2 k-1) n, n}+Z_{(2 k-1) n, n}+U_{(2 k-1) n, n}<c, \quad 1 \leq k \leq K\right)
\end{aligned}
$$

for large m, where K is a natural number such that $K=\max \{k:(2 k-1) n \leq m\}$, it follows that

$$
\begin{aligned}
& \mathbf{P}_{\mu}\left(T_{C}>m\right) \\
\leq & \mathbf{P}_{\mu}\left(Y_{(2 k-1) n, n}+Z_{(2 k-1) n, n}<c+\epsilon, \quad 1 \leq k \leq K,\right)+\mathbf{P}_{\mu}\left(\max _{1 \leq k \leq K}\left|U_{(2 k-1) n, n}\right| \geq \epsilon\right) \\
\leq & {\left[\mathbf{P}_{\mu}\left(Y_{n, n}+Z_{n, n}<c+\epsilon\right)\right]^{K}+\sum_{k=1}^{K}\left[\mathbf{P}_{\mu}\left(U_{(2 k-1) n, n} \geq \epsilon\right)+\mathbf{P}_{\mu}\left(-U_{(2 k-1) n, n} \geq \epsilon\right)\right] }
\end{aligned}
$$

for any small positive number, ϵ.
Next, we estimate $\mathbf{P}_{\mu}\left(Y_{n, n}+Z_{n, n}<c+\epsilon\right)$. Let

$$
\begin{aligned}
& Y_{j}(n)=\delta\left(A_{j} \xi_{n+1-j}-\frac{\delta}{2}\right), \quad 1 \leq j \leq n \\
& Z_{j}(n)=\left(A_{n+j}-A_{j}\right) \xi_{1-j}, \quad 1 \leq j \leq n
\end{aligned}
$$

Then, $Y_{n, n}+Z_{n, n}=\sum_{j=1}^{n} Y_{j}(n)+\sum_{j=1}^{n} Z_{j}(n)$. Let $F_{j}(x)$ and $G_{j}(x)$ denote, respectively, the distributions of $Y_{j}(n)$ and $Z_{j}(n)$, and let $h_{j}(\lambda)$ and $I_{j}(\lambda)$ be, respectively, the moment-generating
functions of $Y_{j}(n)$ and $Z_{j}(n)$ for some $\lambda>\theta^{*}=\theta(u)$, where θ^{*} and u are defined in Lemma 2. Let $Y_{j}^{\lambda}(n), Z_{j}^{\lambda}(n), 1 \leq j \leq n$, be independent variables with the distributions $F_{j}^{\lambda}(y)$ and $G_{j}^{\lambda}(y)$, respectively, where $F_{j}^{\lambda}(y), G_{j}^{\lambda}(y)$ and the corresponding moment-generating functions $h_{j}^{\lambda}(\theta)$ and $I_{j}^{\lambda}(\theta)$ are defined in (15). Denote by $F^{2 n}$ and $F_{\lambda}^{2 n}$ the distributions of $S_{2 n}=\sum_{j=1}^{n} Y_{j}(n)+$ $\sum_{j=1}^{n} Z_{j}(n)$ and $S_{2 n}^{\lambda}=\sum_{j=1}^{n} Y_{j}^{\lambda}(n)+\sum_{j=1}^{n} Z_{j}^{\lambda}(n)$ respectively.

Taking $n=(c+\epsilon) / u$ and $v>u$, it follows from Lemma 1 that

$$
\begin{align*}
& \mathbf{P}_{\mu}\left(Y_{n, n}+Z_{n, n} \geq c+\epsilon\right)=\mathbf{P}_{\mu}\left(S_{2 n} \geq u n\right) \\
& \geq \exp \left\{-n \lambda v+\sum_{j=1}^{n} \log h_{j}(\lambda)+\sum_{j=1}^{n} \log I_{j}(\lambda)+\log \left(F_{\lambda}^{2 n}(n v)-F_{\lambda}^{2 n}(n u)\right)\right\} . \tag{19}
\end{align*}
$$

We now prove

$$
\begin{equation*}
F_{\lambda}^{2 n}(n v)-F_{\lambda}^{2 n}(n u) \rightarrow 1 \tag{20}
\end{equation*}
$$

or equality

$$
\mathbf{P}\left(\left\{S_{2 n}^{\lambda}>n v\right\} \cup\left\{S_{2 n}^{\lambda}<n u\right\}\right) \rightarrow 0
$$

for $u<h_{\eta}^{\prime}(\lambda) / h_{\eta}(\lambda)<v$ as $n \rightarrow \infty$, where $h_{\eta}(\lambda)$ is the moment-generating function of $\delta\left(A \xi_{1}-\delta / 2\right)$.
It follows from (13) and (17) that

$$
\lim _{j \rightarrow \infty} \log h_{j}(\lambda)=\lim _{j \rightarrow \infty} \log h\left(\delta A_{j} \lambda\right)-\frac{\delta^{2} \lambda}{2}=\log h_{\eta}(\lambda), \quad \lim _{j \rightarrow \infty} \frac{h_{j}^{\prime}(\lambda)}{h_{j}(\lambda)}=\frac{h_{\eta}^{\prime}(\lambda)}{h_{\eta}(\lambda)}
$$

and

$$
\begin{aligned}
\frac{\left(h_{j}^{\lambda}(0)\right)^{\prime}}{h_{j}^{\lambda}(0)} & =\lim _{\theta \searrow 0} \frac{1}{\theta} \log h_{j}^{\lambda}(\theta)=\lim _{\theta \searrow 0} \frac{1}{\theta} \log \frac{h_{j}(\lambda+\theta)}{h_{j}(\lambda)} \\
& =\lim _{\theta \searrow 0} \frac{1}{\theta} \log \left[1+\frac{h_{j}(\lambda+\theta)-h_{j}(\lambda)}{h_{j}(\lambda)}\right]=\lim _{\theta \searrow 0} \frac{1}{\theta} \frac{h_{j}(\lambda+\theta)-h_{j}(\lambda)}{h_{j}(\lambda)}=\frac{h_{j}^{\prime}(\lambda)}{h_{j}(\lambda)} .
\end{aligned}
$$

Similarly,

$$
\left.\lim _{j \rightarrow \infty} I_{j}(\lambda)=\lim _{j \rightarrow \infty} h\left(\delta\left(A_{n+j}-A_{j}\right) \lambda\right)\right)=h(0)=1, \quad \frac{\left(I_{j}^{\lambda}(0)\right)^{\prime}}{I_{j}^{\lambda}(0)}=\frac{I_{j}^{\prime}(\lambda)}{I_{j}(\lambda)}
$$

and

$$
\lim _{j \rightarrow \infty} \frac{I_{j}^{\prime}(\lambda)}{I_{j}(\lambda)}=\lim _{j \rightarrow \infty} \frac{\left.\delta\left(A_{n+j}-A_{j}\right) h^{\prime}\left(\delta\left(A_{n+j}-A_{j}\right) \lambda\right)\right)}{\left.h\left(\delta\left(A_{n+j}-A_{j}\right) \lambda\right)\right)}=0
$$

Hence

$$
\begin{equation*}
\log h_{j}^{\lambda}(\theta)=\frac{\left(h_{j}^{\lambda}(0)\right)^{\prime}}{h_{j}^{\lambda}(0)} \theta+o(\theta)=\frac{h_{j}^{\prime}(\lambda)}{h_{j}(\lambda)} \theta+o(\theta), \quad \log I_{j}^{\lambda}(\theta)=\frac{I_{j}^{\prime}(\lambda)}{I_{j}(\lambda)} \theta+o(\theta) . \tag{21}
\end{equation*}
$$

By Chebyshev's inequality, we have

$$
\begin{aligned}
\mathbf{P}\left(S_{2 n}^{\lambda}>n v\right) & \leq \exp \left\{-n \theta\left(v-\frac{1}{n \theta} \sum_{j=1}^{n} \log h_{j}^{\lambda}(\theta)+\frac{1}{n \theta} \sum_{j=1}^{n} \log I_{j}^{\lambda}(\theta)\right)\right\} \\
& =\exp \left\{-n \theta\left(v-\frac{1}{n} \sum_{j=1}^{n} \frac{h_{j}^{\prime}(\lambda)}{h_{j}(\lambda)}+\frac{1}{n} \sum_{j=1}^{n} \frac{I_{j}^{\prime}(\lambda)}{I_{j}(\lambda)}+o(1)\right)\right\} \\
& =\exp \left\{-n \theta\left(v-\frac{h_{\eta}^{\prime}(\lambda)}{h_{\eta}(\lambda)}+o(1)\right)\right\} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ for small θ. Similarly, we have

$$
\begin{aligned}
\mathbf{P}\left(-S_{2 n}^{\lambda}>-n u\right) & \leq \exp \left\{-n \theta\left(-u-\frac{1}{n} \sum_{j=1}^{n} \log h_{j}^{\lambda}(-\theta)+\frac{1}{n} \sum_{j=1}^{n} \log I_{j}^{\lambda}(-\theta)+o(1)\right)\right\} \\
& =\exp \left\{-n \theta\left(-u+\frac{h_{\eta}^{\prime}(\lambda)}{h_{\eta}(\lambda)}+o(1)\right)\right\} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ for small θ. This proves (20).
Note that $\log h_{j}(\lambda) \rightarrow \log h_{\eta}(\lambda)$ and $\log I_{j}(\lambda) \rightarrow 0$ as $j \rightarrow \infty$. It follows from (19) that

$$
\begin{aligned}
& \mathbf{P}_{\mu}\left(Y_{n, n}+Z_{n, n} \geq c+\epsilon\right) \\
\geq & \exp \left\{-n\left(\lambda v-\frac{1}{n} \sum_{j=1}^{n} \log h_{j}(\lambda)-\frac{1}{n} \sum_{j=1}^{n} \log I_{j}(\lambda)-\frac{1}{n} \log \left(F_{\lambda}^{2 n}(n v)-F_{\lambda}^{2 n}(n u)\right)\right)\right\} \\
= & \exp \left\{-(c+\epsilon)\left(\frac{1}{u} \lambda v-\frac{1}{u} \log h_{\eta}(\lambda)+o(1)\right)\right\}
\end{aligned}
$$

for large c, where $n=(c+\epsilon) / u$. Since $\lambda, v\left(\lambda>\theta^{*}, v>h_{\eta}^{\prime}(\lambda) / h_{\eta}(\lambda)\right)$ are arbitrary and $h_{\eta}\left(\theta^{*}\right)=1$, $h_{\eta}^{\prime}\left(\theta^{*}\right) / h_{\eta}\left(\theta^{*}\right)=u$. Taking $\lambda \searrow \theta^{*}$ and $v \searrow h^{\prime}(\lambda) / h(\lambda)$, we have

$$
\begin{equation*}
\mathbf{P}_{\mu}\left(Y_{n, n}+Z_{n, n} \geq c+\epsilon\right) \geq e^{-(c+\epsilon)\left(\theta^{*}+o(1)\right)} \tag{22}
\end{equation*}
$$

for large c.
Let $m=t(c+\epsilon)\left(2 e^{(c+\epsilon)\left(\theta^{*}+o(1)\right)}-1\right) / u$ for $t>0$ and large c. Then, $K=t e^{(c+\epsilon)\left(\theta^{*}+o(1)\right)}$. It follows from (22) that

$$
\begin{equation*}
\left[\mathbf{P}_{\mu}\left(Y_{n, n}+Z_{n, n}<c+\epsilon\right)\right]^{K} \leq\left(1-e^{-(c+\epsilon)\left(\theta^{*}+o(1)\right)}\right)^{K} \rightarrow e^{-t} \tag{23}
\end{equation*}
$$

as $c \rightarrow \infty$. On the other hand, by Chebyshev's inequality we have

$$
\begin{aligned}
\mathbf{P}_{\mu}\left(U_{n, n} \geq \epsilon\right) & \leq \exp \left\{-\theta \epsilon+\sum_{k=n+1}^{\infty} \log h\left(\delta\left(A_{n+k}-A_{k}\right) \theta\right)\right\} \\
& =\exp \left\{-\theta \epsilon+\delta \sum_{k=n+1}^{\infty}(1+o(1)) h^{\prime}(0)\left(A_{n+k}-A_{k}\right) \theta\right\}
\end{aligned}
$$

for large n. Note that $n=(c+\epsilon) / u$. Taking $\theta=(c+\epsilon)\left(\theta^{*}+a\right) / \epsilon$, where a is a positive constant, by (18), we have

$$
\begin{aligned}
\mathbf{P}_{\mu}\left(U_{n, n} \geq \epsilon\right) & \leq \exp \left\{-(c+\epsilon)\left(\theta^{*}+a-\frac{\theta^{*}+a}{\epsilon}\left|h^{\prime}(0)\right| \delta \sum_{k=n+1}^{\infty}(1+o(1))\left|\left(A_{n+k}-A_{k}\right)\right|\right)\right\} \\
& =\exp \left\{-(c+\epsilon)\left(\theta^{*}+a-o(1)\right)\right\}
\end{aligned}
$$

for large c. Since $U_{(2 k-1) n, n}, k \geq 1$ are identically distributed, it follows that

$$
\begin{equation*}
\sum_{k=1}^{K} \mathbf{P}_{\mu}\left(U_{(2 k-1) n, n} \geq \epsilon\right)=K \mathbf{P}_{\mu}\left(U_{n, n} \geq \epsilon\right) \leq K \exp \left\{-(c+\epsilon)\left(\theta^{*}+a+o(1)\right)\right\} \rightarrow 0 \tag{24}
\end{equation*}
$$

as $c \rightarrow \infty$. Similarly, we can prove that

$$
\begin{equation*}
\sum_{k=1}^{K} \mathbf{P}_{\mu}\left(-U_{(2 k-1) n, n} \geq \epsilon\right) \leq K \exp \left\{-(c+\epsilon)\left(\theta^{*}+a-o(1)\right)\right\} \rightarrow 0 \tag{25}
\end{equation*}
$$

as $c \rightarrow \infty$. From (23) (24) and (25) it follows that $\mathbf{P}_{\mu}\left(T_{C}>m\right) \leq e^{-t}(1+o(1))$ for large c. Thus, by the properties of exponential distribution, we have

$$
\mathbf{E}_{\mu}\left(T_{C}\right) \leq(1+o(1))(c+\epsilon)\left(2 e^{(c+\epsilon)\left(\theta^{*}+o(1)\right)}-1\right) / u
$$

for large c. Since ϵ is arbitrary, the upward inequality of (2) is true.
To prove the downward inequality of (2), let

$$
V_{m}=\left\{\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c, 1 \leq k \leq \min \{n, b c-1\}, 1 \leq n \leq m\right\}
$$

and

$$
W_{m}=\left\{\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c, \quad b c \leq k \leq n, b c \leq n \leq m\right\}
$$

for large c, where b is defined in (16). Then $\left\{T_{C}>m\right\}=V_{m} W_{m}$. Since $\left\{X_{i}\right\}$ is the linear combination of the i.i.d. $\left\{\xi_{j}\right\}$, it follows from Theorem 5.1 in Esary, Proschan and Walkup (1967) that $\mathbf{P}_{\mu}\left(T_{C}>m\right) \geq \mathbf{P}_{\mu}\left(W_{m}\right) \mathbf{P}_{\mu}\left(V_{m}\right)$,

$$
\mathbf{P}_{\mu}\left(V_{m}\right) \geq \prod_{n=1}^{m} \prod_{k=1}^{\min \{n, b c\}} \mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c\right)
$$

and

$$
\mathbf{P}_{\mu}\left(W_{m}\right) \geq \prod_{n=b c}^{m} \prod_{k=b c}^{n} \mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c\right)
$$

Note that $\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\delta / 2\right)$ can be rewritten as

$$
\sum_{k=n-k+1}^{n} \delta\left(X_{k}-\frac{\delta}{2}\right)=Y_{n, k}+Z_{n, k, c}+U_{n, k, c}
$$

where

$$
Y_{n, k}=\sum_{j=1}^{k} \delta\left(A_{j} \xi_{n+1-j}-\frac{\delta}{2}\right), \quad Z_{n, k, c}=\sum_{j=1}^{c} \delta\left(A_{k+j}-A_{j}\right) \xi_{n+1-k-j}
$$

and

$$
U_{n, k, c}=\sum_{j=c+1}^{\infty} \delta\left(A_{k+j}-A_{j}\right) \xi_{n+1-k-j}
$$

Let $f_{k}(\theta), g_{k, c}(\theta)$ and $h_{k, c}(\theta)$ be the moment-generating functions of $Y_{n, k}, Z_{n, k, c}$ and $U_{n, k, c}$, respectively. It follows from (17) and (18) that

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \frac{\log f_{k}(\theta)}{k}=\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{j=1}^{k}\left[\log h\left(\delta A_{j} \theta\right)-\frac{\delta^{2} \theta}{2}\right]=h_{\eta}(\theta) \tag{26}\\
& \lim _{c \rightarrow \infty} \frac{\log g_{k, c}(\theta)}{c}=\lim _{c \rightarrow \infty} \frac{1}{c} \sum_{j=1}^{c} \log h\left(\delta\left(A_{k+j}-A_{j}\right) \theta\right)=0 \quad(\quad \text { uniformly for } k \geq 1) \tag{27}
\end{align*}
$$

and

$$
\begin{align*}
\lim _{c \rightarrow \infty} \log h_{k, c}(\theta) & =\lim _{c \rightarrow \infty} \sum_{j=c+1}^{\infty} \log h\left(\delta\left(A_{k+j}-A_{j}\right) \theta\right) \\
& =\lim _{c \rightarrow \infty} \delta \sum_{j=c+1}^{\infty}(1+o(1)) h^{\prime}(0)\left(A_{k+j}-A_{j}\right) \theta \\
& \leq \lim _{c \rightarrow \infty} \delta \sum_{j=c+1}^{\infty}(1+o(1))\left|h^{\prime}(0)\right|\left|A_{k+j}-A_{j} \| \theta\right| \\
& \leq(1+o(1)) \lim _{c \rightarrow \infty} \frac{k}{c} c \delta \sum_{j=c+1}^{\infty}\left|a_{j}\right|=0 \tag{28}
\end{align*}
$$

uniformly for $k \leq M c$, where $M>0$ is a constant.
For $k \geq 1$, let $x=k / c$. By Chebyshev's inequality, we have

$$
\begin{aligned}
& \mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right) \geq c\right) \\
\leq & \exp \left\{-c\left(\theta-\frac{1}{c} \log f_{k}(\theta)-\frac{1}{c} \log g_{k, c}(\theta)-\frac{1}{c} \log h_{k, c}(\theta)\right)\right\}
\end{aligned}
$$

If $x=k / c \rightarrow 0$ as $c \rightarrow \infty$, taking $\theta \geq \theta^{*}$ it follows from (26), (27) and (28) that

$$
\begin{aligned}
& \mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right) \geq c\right) \\
\leq & \exp \left\{-c\left(\theta-\frac{1}{c} \log f_{k}(\theta)-\frac{1}{c} \log g_{k, c}(\theta)-\frac{1}{c} \log h_{k, c}(\theta)\right)\right\} \leq e^{-c\left(\theta^{*}-o(1)\right)}
\end{aligned}
$$

for large c. If $b>x=k / c \geq a>0$, where a is a small positive constant, taking $\theta(1 / x))$ such that $1 / x=h^{\prime}(\theta(1 / x)) / h(\theta(1 / x))$, we have

$$
\begin{aligned}
& \mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right) \geq c\right)=\mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right) \geq k / x\right) \\
\leq & \exp \left\{-k\left(\theta(1 / x) / x-\frac{1}{k} \log f_{k}(\theta(1 / x))-\frac{1}{k} \log g_{k, c}(\theta(1 / x))-\frac{1}{k} \log h_{k, c}(\theta(1 / x))\right)\right\} \\
= & \exp \left\{-c\left(\theta(1 / x)-x \frac{1}{k} \log f_{k}(\theta(1 / x))-\frac{1}{c} \log g_{k, c}(\theta(1 / x))-\frac{1}{c} \log h_{k, c}(\theta(1 / x))\right)\right\} \\
= & \exp \left\{-c\left(\theta(1 / x)-x \log h_{\eta}(\theta(1 / x))+o(1)\right)\right\} \leq e^{-c\left(\theta^{*}+o(1)\right)}
\end{aligned}
$$

for large c, where the last equality follows from (14). Thus, taking $m=t e^{c\left(\theta^{*}+o(1)\right)} / b c$ for $t>0$, we have

$$
\begin{aligned}
\mathbf{P}_{\mu}\left(V_{m}\right) & \geq \prod_{n=1}^{m} \prod_{k=1}^{\min \{n, b c\}} \mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c\right) \\
& =\prod_{n=1}^{m} \prod_{k=1}^{\min \{n, b c\}}\left[1-\mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right) \geq c\right)\right] \\
& \geq\left[1-e^{-c\left(\theta^{*}+o(1)\right)}\right]^{b c m} \rightarrow e^{-t}
\end{aligned}
$$

as $c \rightarrow+\infty$.
Similarly, for $x \geq b$, that is, $k \geq b c$, we have

$$
\begin{aligned}
\mathbf{P}_{\mu}\left(W_{m}\right) & \geq \prod_{n=b c}^{m} \prod_{k=b c}^{n} \mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c\right) \\
& \geq \prod_{n=b c} \prod_{k=b c}^{n}\left(1-\exp \left\{-c\left[\theta(1 / x)-x \log h_{\eta}(\theta(1 / x))+o(1)\right]\right\}\right) \\
& \geq\left[1-e^{-2 c\left(\theta^{*}+o(1)\right)}\right]^{(m-b c)^{2}} \rightarrow 1
\end{aligned}
$$

as $c \rightarrow+\infty$, where the last equality follows from (15). Hence, $P(T>m) \geq P\left(U_{m}\right) P\left(V_{m}\right) \rightarrow e^{-t}$ as $c \rightarrow+\infty$. This implies the downward inequality of (2).
(ii) Let $\hat{\mu}=\delta(\mu-\delta / 2)$. Then

$$
\begin{aligned}
\left\{T_{C}>m\right\} & =\left\{\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c, \quad 1 \leq k \leq n, 1 \leq n \leq m\right\} \\
& \subset\left\{\sum_{i=1}^{m} \delta\left(X_{i}-\frac{\delta}{2}\right)<c\right\}=\left\{\sum_{i=1}^{m} \delta\left(X_{i}-\mu\right)<c-m \hat{\mu}\right\} \\
& =\left\{Y_{m, m}(\mu)+Z_{m, m}+U_{m, m}<c-m \hat{\mu}\right\}
\end{aligned}
$$

where

$$
Y_{m, m}(\mu)=\sum_{i=1}^{m} \delta\left(A_{i} \xi_{m+1-i}-\mu\right) .
$$

Let $f_{Y, m}(\theta), f_{Z, m}(\theta)$ and $f_{U, m}(\theta)$ denote the moment-generating functions of $Y_{m, m}(\mu), Z_{m, m}$ and $U_{m, m}$, respectively. Note that $\hat{\mu}>0$. Let $N=c / \hat{\mu}+2 \sqrt{c} \log c /(\hat{\mu})^{3 / 2}$. We have

$$
\begin{aligned}
\mathbf{E}_{\mu}\left(T_{C}\right) & =\sum_{m=1}^{N} \mathbf{P}_{\mu}\left(T_{C}>m\right)+\sum_{m=N+1}^{\infty} \mathbf{P}_{\mu}\left(T_{C}>m\right) \\
& \leq N+\sum_{m=N+1}^{\infty} \mathbf{P}_{\mu}\left(Y_{m, m}(\mu)+Z_{m, m}+U_{m, m}<c-m \hat{\mu}\right) \\
& =N+\sum_{k=1}^{\infty} \mathbf{P}_{\mu}\left(Y_{N+k, N+k}(\mu)+Z_{N+k, N+k}+U_{N+k, N+k}<-\hat{\mu}\left[\frac{2 \sqrt{c} \log c}{(\hat{\mu})^{3 / 2}}+k\right]\right) \\
& \leq N+\sum_{k=1}^{\infty} \exp \left\{-\theta \hat{\mu}\left[\frac{2 \sqrt{c} \log c}{(\hat{\mu})^{3 / 2}}+k\right]+\log f_{Y, N+k}(-\theta)+\log f_{Z, N+k}(-\theta)+\log f_{U, N+k}(-\theta)\right\},
\end{aligned}
$$

where the last equality follows from Chebyshev's inequality. Note that $\mu=\bar{\xi} A$,

$$
\begin{aligned}
\frac{d}{d \theta} \log f_{Y, N+k}(-\theta)_{\mid \theta=0} & =-\mathbf{E}\left(Y_{N+k, N+k}(\mu)\right)=-\delta \bar{\xi} \sum_{j=1}^{N+k}\left(A_{j}-A\right)=\delta \bar{\xi} \sum_{j=1}^{N+k} k a_{k} \\
\frac{d^{2}}{d^{2} \theta} \log f_{Y, N+k}(-\theta)_{\mid \theta=0} & =\operatorname{Var}\left(Y_{N+k, N+k}(\mu)\right)=(\delta \sigma)^{2} \sum_{j=1}^{N+k} A_{j}^{2}
\end{aligned}
$$

and

$$
\log f_{Y, N+k}(-\theta)=\theta \delta \bar{\xi} \sum_{j=1}^{N+k} k a_{k}+\frac{\theta^{2}}{2}(\delta \sigma)^{2} \sum_{j=1}^{N+k} A_{j}^{2}+o\left(\theta^{2}\right) .
$$

Taking $\theta=(\sqrt{N+k})^{-1}$, by Condition (III) and (17), we have

$$
\log f_{Y, N+k}\left(-\frac{1}{\sqrt{N+k}}\right)=\delta \bar{\xi} \frac{1}{\sqrt{N+k}} \sum_{j=1}^{N+k} k a_{k}+\frac{(\delta \sigma)^{2}}{2} \frac{1}{N+k} \sum_{j=1}^{N+k} A_{j}^{2} \rightarrow \frac{(\delta \sigma A)^{2}}{2}
$$

uniformly for $k \geq 1$ as $c \rightarrow \infty$. Similarly, by (18) we can show that both $\log f_{Z, N+k}\left(-(\sqrt{N+k})^{-1}\right)$ and $\log f_{U, N+k}\left(-(\sqrt{N+k})^{-1}\right)$ go to 0 uniformly for $k \geq 1$ as $c \rightarrow \infty$. Thus, by taking a positive constant α such that $\alpha \hat{\mu}<1$, it follows that

$$
\begin{align*}
\mathbf{E}_{\mu}\left(T_{C}\right) \leq & N+e^{(\delta \sigma A)^{2} / 2} \sum_{k=1}^{\infty} \exp \left\{-\frac{\hat{\mu}}{\sqrt{N+k}}\left[\frac{2 \sqrt{c} \log c}{(\hat{\mu})^{3 / 2}}+k\right]+o(1)\right\} \\
= & N+e^{(\delta \sigma A)^{2} / 2} \sum_{k=1}^{\alpha c} \exp \left\{-\frac{2 \sqrt{c} \log c+(\hat{\mu})^{3 / 2} k}{\sqrt{c+2 \sqrt{c} \log c / \sqrt{\hat{\mu}}+\hat{\mu} k}}+o(1)\right\} \\
& +e^{(\delta \sigma A)^{2} / 2} \sum_{k=\alpha c+1}^{\infty} \exp \left\{-\frac{2 \sqrt{c} \log c+(\hat{\mu})^{3 / 2} k}{\sqrt{c+2 \sqrt{c} \log c / \sqrt{\hat{\mu}}+\hat{\mu} k}}+o(1)\right\} \\
\leq & N+\frac{1}{\hat{\mu} c^{\sqrt{2}-1}} e^{(\delta \sigma A)^{2} / 2}+e^{(\delta \sigma A)^{2} / 2} \sum_{k=\alpha c+1}^{\infty} \exp \left\{-\frac{(\hat{\mu})^{3 / 2} \sqrt{k}}{\sqrt{(\alpha \hat{\mu})^{-1}+2}}+o(1)\right\} \\
\leq & N+\frac{e^{(\delta \sigma A)^{2} / 2}}{\hat{\mu} c^{\sqrt{2}-1}}(1+o(1)) \tag{29}
\end{align*}
$$

for large c. This proves the upward inequality of (4).
To prove the downward inequality of (4), let $M=c / \hat{\mu}-3 \sqrt{c} \log c /(\hat{\mu})^{3 / 2}$. Then,

$$
\begin{aligned}
\mathbf{E}_{\mu}\left(T_{C}\right) & \geq \sum_{m=1}^{M} \mathbf{P}_{\mu}\left(T_{C}>m\right) \\
& \geq \sum_{m=1}^{M} \prod_{n=1}^{m} \prod_{k=1}^{n} \mathbf{P}_{\mu}\left(\sum_{i=n-k+1}^{n} \delta\left(X_{i}-\frac{\delta}{2}\right)<c\right) \\
& =\sum_{m=1}^{M} \prod_{n=1}^{m} \prod_{k=1}^{n} \mathbf{P}_{\mu}\left(Y_{n, k}(\mu)+Z_{n, k}+U_{n, k}<c-k \hat{\mu}\right) \\
& \geq \sum_{m=1}^{M}\left[\mathbf{P}_{\mu}\left(Y_{M, M}(\mu)+Z_{M, M}+U_{M, M}<c-M \hat{\mu}\right)\right]^{m M} \\
& =\sum_{m=1}^{M}\left[1-\mathbf{P}_{\mu}\left(Y_{M, M}(\mu)+Z_{M, M}+U_{M, M} \geq \frac{3 \sqrt{c} \log c}{(\hat{\mu})^{1 / 2}}\right)\right]^{m M} .
\end{aligned}
$$

As in (29), we can similarly check that

$$
\begin{aligned}
& \mathbf{P}_{\mu}\left(Y_{M, M}(\mu)+Z_{M, M}+U_{M, M} \geq \frac{3 \sqrt{c} \log c}{(\hat{\mu})^{1 / 2}}\right) \\
& \leq e^{(\delta \sigma A)^{2} / 2} \exp \left\{-\frac{\hat{\mu}}{\sqrt{M}} \frac{3 \sqrt{c} \log c}{(\hat{\mu})^{3 / 2}}+o(1)\right\} \\
& =e^{(\delta \sigma A)^{2} / 2} \exp \{-3 \log c+o(1)\}=\frac{e^{(\delta \sigma A)^{2} / 2}}{c^{3}}(1+o(1))
\end{aligned}
$$

for large c. Note that if $x / c^{3} \rightarrow 0$ for $x>0$ as $c \rightarrow \infty$, then

$$
1-\left(1-\frac{e^{(\delta \sigma A)^{2} / 2}}{c^{3}}\right)^{x}=\frac{x e^{(\delta \sigma A)^{2} / 2}}{c^{3}}(1+o(1))
$$

as $c \rightarrow \infty$. Thus, taking $x=M$ or $x=M^{2}$, we have

$$
\begin{aligned}
\mathbf{E}_{\mu}\left(T_{C}\right) & \geq \sum_{m=1}^{M}\left[1-\frac{e^{(\delta \sigma A)^{2} / 2}}{c^{3}}\right]^{m M} \\
& =\frac{\left[1-\frac{e^{(\delta \sigma A)^{2} / 2}}{c^{3}}\right]^{M}}{1-\left[1-\frac{e^{(\delta \sigma A)^{2} / 2}}{c^{3}}\right]^{M}}\left(1-\left[1-\frac{e^{(\delta \sigma A)^{2} / 2}}{c^{3}}\right]^{M^{2}}\right) \rightarrow M
\end{aligned}
$$

as $c \rightarrow \infty$. That is, the downward inequality of (4) holds. This completes the proof of Theorem 1.

3 Proof of Theorem 2

We will first prove a lemma before proving Theorem 2. In the following proofs we shall use c simply to replace \tilde{c} which is the control limit of EWMA chart.

Lemma 3. Let $Y_{n}=\sum_{k=0}^{n-1} C_{k}(r) \xi_{n-k}$ and $\zeta_{n}=A \sum_{k=0}^{n-1}(1-r)^{k} \xi_{n-k}$, where $C_{k}(r)=\sum_{j=0}^{k} a_{k-j}(1-$ $r)^{j}, 0<r \leq 1$. Let $h_{Y, n}(\theta)$ and $h_{\zeta, n}(\theta)$ denote the moment-generating functions of Y_{n} and ζ_{n}, respectively. Let $n=(a r)^{-1}$, where a is a positive number. Then

$$
\begin{equation*}
\lim _{r \rightarrow 0} r \log h_{Y, n}(\theta)=\lim _{r \rightarrow 0} r \log h_{\zeta, n}(\theta)=\log h_{\zeta, a}(\theta) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\log h_{\zeta, a}(\theta)=\sum_{m=1}^{\infty}\left(1-e^{-m / a}\right) \frac{A^{m}}{m} \frac{(\log h(0))^{(m)}}{m!} \theta^{m} \tag{31}
\end{equation*}
$$

$(\log h(0))^{(m)}$ denotes the m th derivative of the function $\log h(\theta)$ at $\theta=0$. Moreover, if $a=a(r) \leq$ $C(-\log r)^{-1}$ for some constant C and any $0<r<1$, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} r \log h_{Y, n}(\theta)=\lim _{r \rightarrow 0} r \log h_{\zeta, n}(\theta)=\log h_{\zeta, 0}(\theta)=\int_{0}^{\theta} \frac{\log h(A x)}{x} d x \tag{32}
\end{equation*}
$$

and $c \theta-\log h_{\zeta, 0}(\theta)$ attains its maximal value at θ_{c} for $\mu<c$, where θ_{c} is the unique positive root of the equation $c \theta-\log h(A \theta)=0$ on $\theta>0$.

Proof. Let $\log h_{\zeta}(\theta)=\log h_{\zeta, 0}(\theta)$. Since

$$
\begin{aligned}
\log h_{\zeta, n}(\theta) & =\sum_{k=0}^{n-1} \log h\left(A(1-r)^{k} \theta\right)=\sum_{k=0}^{n-1} \sum_{m=1}^{\infty}\left[(1-r)^{k} A\right]^{m} \frac{(\log h(0))^{(m)}}{m!} \theta^{m} \\
& =\sum_{m=1}^{\infty} \sum_{k=0}^{n-1}\left[(1-r)^{k} A\right]^{m} \frac{(\log h(0))^{(m)}}{m!} \theta^{m}
\end{aligned}
$$

and

$$
\lim _{r \rightarrow 0} r \sum_{k=0}^{n-1}\left((1-r)^{k} A\right)^{m}=\left(1-e^{-m / a}\right) \frac{A^{m}}{m}
$$

it follows that the second equality of (30) holds for $\log h_{\zeta, n}$. Thus, the first equality of (30) is true as long as we prove that

$$
\begin{equation*}
\lim _{r \rightarrow 0} r \sum_{k=0}^{n-1}\left|\left(C_{k}(r)\right)^{m}-\left((1-r)^{k} A\right)^{m}\right|=0 \tag{33}
\end{equation*}
$$

for $m \geq 1$, since

$$
\begin{aligned}
\log h_{Y, n}(\theta) & =\sum_{k=0}^{n-1} \log h\left(C_{k}(r) \theta\right)=\sum_{k=0}^{n-1} \sum_{m=1}^{\infty}\left(C_{k}(r)\right)^{m} \frac{(\log h(0))^{(m)}}{m!} \theta^{m} \\
& =\sum_{m=1}^{\infty} \sum_{k=0}^{n-1}\left(C_{k}(r)\right)^{m} \frac{(\log h(0))^{(m)}}{m!} \theta^{m}
\end{aligned}
$$

We first prove that

$$
\begin{equation*}
r \sum_{k=0}^{n-1}\left|C_{k}(r)-(1-r)^{k} A\right| \rightarrow 0 \tag{34}
\end{equation*}
$$

as $r \rightarrow 0$.
Let $R(p)=\left(\log r^{-1}\right)^{p}$ for $p \geq 1$. Taking a small r such that $n>1 /(r R(2 p))$, we have

$$
\begin{aligned}
\sum_{k=0}^{n-1} C_{k}(r) & =\sum_{k=0}^{1 /(r R(2 p))-1} C_{k}(r)+\sum_{k=1 /(r R(2 p))}^{n-1} C_{k}(r) \\
& =\sum_{k=0}^{1 /(r R(2 p))-1} a_{k} \sum_{j=0}^{1 /(r R(2 p))-1-k}(1-r)^{j}+\sum_{k=1 /(r R(2 p))}^{n-1} C_{k}(r)
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& r\left|\sum_{k=0}^{1 /(r R(2 p))-1} a_{k} \sum_{j=0}^{1 /(r R(2 p))-1-k}(1-r)^{j}\right| \\
& \leq \sum_{k=0}^{R(p)}\left|a_{k}\right|\left[1-(1-r)^{1 /(r R(2 p))-k}\right]+\sum_{k=R(p)+1}^{1 /(r R(2 p))-1}\left|a_{k}\right| \\
& \leq\|A\| R(p)\left[1-e^{-1 / R(2 p)}\right]+\frac{1}{R(p)} R(p) \sum_{k=R(p)+1}^{\infty}\left|a_{k}\right| \leq \frac{2\|A\|}{R(p)} \rightarrow 0
\end{aligned}
$$

as $r \rightarrow 0$. Similarly,

$$
r \sum_{k=0}^{1 /(r R(2 p)-1}(1-r)^{k}|A| \leq|A|\left[1-e^{-1 / R(2 p)}\right] \leq \frac{|A|}{R(2 p)} \rightarrow 0
$$

Thus,

$$
\begin{align*}
& r \sum_{k=0}^{n-1}\left|C_{k}(r)-(1-r)^{k} A\right| \\
\leq & \frac{2||A||+|A|}{R(p)}+r \sum_{k=1 /(r R(2 p))}^{n-1}\left|C_{k}(r)-(1-r)^{k} A\right| \\
\leq & \frac{2||A||+|A|}{R(p)}+r \sum_{k=1 /(r R(2 p))}^{n-1}\left((1-r)^{k} \sum_{j=1}^{R(p)}\left|a_{j}\right|\left[(1-r)^{-j}-1\right]+\sum_{j=R(p)+1}^{k}\left|a_{j}\right|\left[(1-r)^{k-j}-(1-r)^{k}\right]\right) \\
\leq & \frac{2||A||+|A|}{R(p)}+r \sum_{k=1 /(r R(2 p))}^{n-1}(1-r)^{k} r R(2 p) \| A| |(1-r)^{-R(p)}+\sum_{j=R(p)+1}^{\infty}\left|a_{k}\right| \\
\leq & \frac{2||A \|+|A|}{R(p)}+2 r R(2 p)\|A\|+\frac{1}{R(p)} R(p) \sum_{k=R(p)+1}^{\infty}\left|a_{k}\right| \\
\leq & \frac{5||A \|+|A|+1}{R(p)} \rightarrow 0 \tag{35}
\end{align*}
$$

as $r \rightarrow 0$ for $n>1 /(r R(2 p)$. This implies (34). Furthermore, (33) follows from

$$
\begin{aligned}
r \sum_{k=0}^{n-1}\left|\left(C_{k}(r)\right)^{m}-\left((1-r)^{k} A\right)^{m}\right| & =r \sum_{k=0}^{n-1}\left|\left(C_{k}(r)-(1-r)^{k} A\right)\left(\sum_{j=0}^{m-1}\left(C_{k}(r)\right)^{m-1-j}\left[(1-r)^{k} A\right]^{j}\right)\right| \\
& \leq m \|\left. A\right|^{m-1} r \sum_{k=0}^{n-1} \mid\left(C_{k}(r)-(1-r)^{k} A \mid \rightarrow 0\right.
\end{aligned}
$$

as $r \rightarrow 0$ for each $m>1$.
Similarly, it can be checked that

$$
\begin{equation*}
\lim _{r \rightarrow 0} r\left(\log h_{Y, n}(\theta)\right)^{\prime}=\lim _{r \rightarrow 0} r\left(\log h_{\zeta, n}(\theta)\right)^{\prime}=\left(\log h_{\zeta, a}(\theta)\right)^{\prime} \tag{36}
\end{equation*}
$$

Moreover, by (30), (31) and (36) we have

$$
h_{\zeta}^{\prime}(\theta) / h_{\zeta}(\theta)=\frac{1}{\theta} \log h(A \theta)
$$

This means (32). Note that $c-h_{\zeta}^{\prime}(0) / h_{\zeta}(0)=c-\mu>0$ and $h_{\zeta}^{\prime}(\theta) / h_{\zeta}(\theta)$ is strictly increasing since $h^{\prime}(\theta) / h(\theta)$ is strictly increasing (see Durrett (2005, P.70-73)). Then, there is a unique positive number, θ_{c}, such that $c-h_{\zeta}^{\prime}\left(\theta_{c}\right) / h_{\zeta}\left(\theta_{c}\right)=0$, or equality, $c \theta_{c}-\log h\left(A \theta_{c}\right)=0$, and therefore, $c \theta-\log h_{\zeta}(\theta)$ attains its maximal value at θ_{c}. This completes the proofs.

Proof of Theorem 2. (i). Let $D_{n, k}(r)=\sum_{j=0}^{n-1} a_{n+k-j}(1-r)^{j}$. The statistics $E_{m}(r)$ of the EWMA can be rewritten as

$$
E_{m}(r)=r X_{m}+(1-r) E_{m-1}(r)=r \sum_{k=0}^{m-1}(1-r)^{k} X_{m-k}=r\left[Y_{m, n}+Z_{m, n}+R_{m, n}\right]
$$

where

$$
Y_{m, n}=\sum_{k=0}^{n-1} C_{k}(r) \xi_{m-k}, \quad Z_{m, n}=\sum_{k=0}^{\infty} D_{n, k}(r) \xi_{m-n-k}
$$

and

$$
R_{m, n}=(1-r)^{n} \sum_{k=0}^{m-n-1}(1-r)^{k} X_{m-n-k}, \quad R_{m, m}=0
$$

for $m \geq n$. Let $n=3 r^{-1} \log r^{-1}$ for small r. Note that $Y_{k n, n}, k \geq 1$, are i.i.d. random variables and $Z_{k n, n}, k \geq 1$, are identically distributed. For large m and any small $\epsilon>0$, we have

$$
\begin{align*}
& \mathbf{P}_{\mu}\left(T_{E}>m\right) \leq \mathbf{P}_{\mu}\left(Y_{k n, n}+Z_{k n, n}+R_{k n, n}<\frac{c}{r}, \quad 1 \leq k \leq m / n,\right) \\
\leq & \mathbf{P}_{\mu}\left(Y_{k n, n}<\frac{c}{r}+\epsilon, \quad 1 \leq k \leq m / n,\right)+\mathbf{P}_{\mu}\left(\max _{1 \leq k \leq m / n}\left|Z_{k n, n}+R_{k n, n}\right| \geq \epsilon\right) \\
\leq & {\left[\mathbf{P}_{\mu}\left(Y_{n, n}<\frac{c}{r}+\epsilon\right)\right]^{m / n}+m / n \mathbf{P}_{\mu}\left(\left|Z_{n, n}\right| \geq \epsilon / 2\right)+\sum_{k=1}^{m / n} \mathbf{P}_{\mu}\left(\left|R_{k n, n}\right| \geq \epsilon / 2\right) . } \tag{37}
\end{align*}
$$

Next, we prove that

$$
\begin{equation*}
\mathbf{P}_{\mu}\left(Y_{n, n}<\frac{c}{r}+\epsilon\right) \leq 1-\exp \left\{-\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)\right)+o(1)\right\} \tag{38}
\end{equation*}
$$

for small $r>0$.
Let $F_{j}(x)$ denote the distributions of $C_{j}(r) \xi_{j+1}, 0 \leq j \leq n-1$. Let $Y_{j}^{\lambda}, 0 \leq j \leq n-1$, be independent variables with the distributions $F_{j}^{\lambda}(y)$ for some $\lambda>\theta_{c}+r \epsilon$ and the moment-generating functions $h_{j}^{\lambda}(\theta)$ defined in (10). Denote by F^{n} and F_{λ}^{n} the distributions of $S_{n}=\sum_{j=0}^{n-1} C_{j}(r) \xi_{j+1}$ and $S_{n}^{\lambda}=\sum_{j=0}^{n-1} Y_{j}^{\lambda}$, respectively.

Taking $v>c+r \epsilon$ and $\tilde{n}=1 / r$, it follows from Lemma 1 that

$$
\begin{align*}
& \mathbf{P}_{\mu}\left(Y_{n, n} \geq \frac{c}{r}+\epsilon\right) \geq \exp \left\{-\tilde{n} \lambda v+\sum_{j=0}^{n-1} \log h\left(C_{j}(r) \lambda\right)+\log \left(F_{\lambda}^{n}(\tilde{n} v)-F_{\lambda}^{n}(\tilde{n}(c+r \epsilon))\right\}\right. \\
= & \exp \left\{-\frac{1}{r}\left(\lambda v+r \sum_{j=0}^{n-1} \log h\left(C_{j}(r) \lambda\right)+r \log \left(F_{\lambda}^{n}(\tilde{n} v)-F_{\lambda}^{n}(\tilde{n}(c+r \epsilon))\right\}\right.\right. \tag{39}
\end{align*}
$$

By (21), we have

$$
\log h_{j}^{\lambda}(\theta)=C_{j}(r) \frac{h^{\prime}\left(C_{j}(r) \lambda\right)}{h\left(C_{j}(r) \lambda\right)} \theta+o(\theta)
$$

and

$$
r \sum_{j=0}^{n-1} C_{j}(r) \frac{h^{\prime}\left(C_{j}(r) \lambda\right)}{h\left(C_{j}(r) \lambda\right)} \rightarrow \frac{h_{\zeta}^{\prime}(\lambda)}{h_{\zeta}(\lambda)}
$$

as $r \rightarrow 0$. Hence, as in (20), we can show that

$$
\mathbf{P}\left(\left\{S_{n}^{\lambda}>\tilde{n} v\right\} \cup\left\{S_{n}^{\lambda}<\tilde{n}(c+r \epsilon)\right\}\right) \rightarrow 0
$$

that is,

$$
F_{\lambda}^{n}(\tilde{n} v)-F_{\lambda}^{n}(\tilde{n}(c+r \epsilon)) \rightarrow 1
$$

as $r \rightarrow 0$ for $\theta_{c}<h_{\zeta}^{\prime}(\lambda) / h_{\zeta}(\lambda)<v$.
It follows from (39) and Lemma 3 that

$$
\begin{equation*}
\mathbf{P}_{\mu}\left(Y_{n, n} \geq \frac{c}{r}+\epsilon\right) \geq \exp \left\{-\frac{1}{r}\left(\lambda v-\log h_{\zeta}(\lambda)+o(1)\right)\right\} . \tag{40}
\end{equation*}
$$

Moreover, $\lambda, v\left(\lambda>\theta_{c}, v>h_{\zeta}^{\prime}(\lambda) / h_{\zeta}(\lambda)\right)$ are arbitrary and $h_{\zeta}^{\prime}\left(\theta_{c}\right) / h_{\zeta}\left(\theta_{c}\right)=c$. Let $\lambda \searrow \theta_{c}$ and $v \searrow h_{\zeta}^{\prime}(\lambda) / h_{\zeta}(\lambda)$ in (40), we obtain (38).

Let $m=3 t r^{-1} \log (1 / r) \exp \left\{\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)\right)\right\}$ for $t>0$. By (38), we have

$$
\begin{equation*}
\left[\mathbf{P}_{\mu}\left(Y_{n, n}<\frac{c}{r}+\epsilon\right)\right]^{m / n} \leq\left(1-\exp \left\{-\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)\right)+o(1)\right\}\right)^{m / n} \rightarrow e^{-t} \tag{41}
\end{equation*}
$$

as $r \rightarrow 0$.
Note that

$$
\begin{align*}
\frac{1}{r} \sum_{k=0}^{\infty}\left|D_{n, k}(r)\right| & \leq \frac{1}{r} \sum_{k=0}^{\infty} \sum_{j=0}^{n-1}\left|a_{n+k-j}\right|(1-r)^{j} \\
& =\frac{1}{r} \sum_{j=0}^{1 / r}\left(\|A\|-\left\|A_{j}\right\|\right)(1-r)^{n-1-j}+\frac{1}{r} \sum_{j=1 / r+1}^{n-1}\left(\|A\|-\left\|A_{j}\right\|\right)(1-r)^{n-1-j} \\
& \leq\|A\| \frac{1}{r^{2}}(1-r)^{3 r^{-1} \log r^{-1}}+\frac{1}{r} \sum_{j=1 / r+1}^{\infty}\left|a_{j}\right| \rightarrow 0 \tag{42}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{r}(1-r)^{n} \sum_{j=0}^{k n-n-1}(1-r)^{j} \rightarrow 0 \tag{43}
\end{equation*}
$$

as $r \rightarrow 0$. As in (24) and (25), it can be shown that

$$
\begin{equation*}
m / n \mathbf{P}_{\mu}\left(\left|Z_{n, n}\right| \geq \epsilon / 2\right) \rightarrow 0, \quad m / n \mathbf{P}_{\mu}\left(\left|R_{m, n}\right| \geq \epsilon / 2\right) \rightarrow 0 \tag{44}
\end{equation*}
$$

as $r \rightarrow 0$. Thus, by (37), (41) and (44) we have

$$
\begin{equation*}
\mathbf{P}_{\mu}\left(T_{E}>m\right) \leq e^{-t} \tag{45}
\end{equation*}
$$

as $r \rightarrow 0$ for $m=3 t r^{-1} \log (1 / r) \exp \left\{\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)\right)\right\}$. This implies the upward inequality of (5).

Let $n=r^{-1} \log r^{-1}$ and $m=t \exp \left\{\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)\right)\right\}$ for $t>0$. Using Theorem 5.1 in Esary, Proschan and Walkup (1967), we have

$$
\begin{aligned}
\mathbf{P}_{\mu}\left(T_{E}>m\right) & \geq \prod_{k=1}^{m} \mathbf{P}_{\mu}\left(E_{k}(r)<c\right) \\
& =\prod_{k=1}^{n-1} \mathbf{P}_{\mu}\left(Y_{k, k}+Z_{k, k}<c / r\right) \prod_{k=n}^{m} \mathbf{P}_{\mu}\left(Y_{k, n}+Z_{k, n}+R_{k, n}<c / r\right)
\end{aligned}
$$

Furthermore, by Chebyshev's inequality and as in (38) and (44), it follows that

$$
\mathbf{P}_{\mu}\left(Y_{k, n}+Z_{k, n}+R_{k, n} \geq c / r\right) \leq \exp \left\{-\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)+o(1)\right)\right\}
$$

for $k \geq n$ and small r. Hence

$$
\prod_{k=n}^{m} \mathbf{P}_{\mu}\left(Y_{k, n}+Z_{k, n}+R_{k, n}<c / r\right) \geq\left(1-\exp \left\{-\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)+o(1)\right)\right\}\right)^{m-n} \rightarrow e^{-t}
$$

as $r \rightarrow 0$.
On the other hand, by Lemma 3, we know that $c \theta-\log h_{\zeta}(\theta)$ attains its maximal value at θ_{c} since $h_{\zeta}^{\prime}(\theta) / h_{\zeta}(\theta)$ is strictly increasing and $c-h_{\zeta}^{\prime}(0) / h_{\zeta}(0)=c-\mu>0$. As in (38) and (44), we can similarly obtain

$$
\begin{equation*}
\mathbf{P}_{\mu}\left(Y_{k, k}+Z_{k, k}<c / r\right) \geq\left(1-\exp \left\{-\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)+o(1)\right)\right\}\right), \tag{46}
\end{equation*}
$$

and therefore

$$
\prod_{k=1}^{n-1} \mathbf{P}_{\mu}\left(Y_{k, k}+Z_{k, k}<c / r\right) \geq\left(1-\exp \left\{-\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)+o(1)\right)\right\}\right)^{n-1} \rightarrow 1
$$

as $r \rightarrow 0$. Thus, $\mathbf{P}_{\mu}\left(T_{E}>m\right) \geq e^{-t}$ for $m=t \exp \left\{\frac{1}{r}\left(c \theta_{c}-\log h_{\zeta}\left(\theta_{c}\right)\right)\right\}$ as $r \rightarrow 0$. This proves the downward inequality of (5).
(ii). Let $Y_{m, m}(r)=\sum_{j=0}^{m-1}\left[C_{j}(r) \xi_{m-k}-\mu(1-r)^{j}\right]$. Take $N=r^{-1} \log (1-c / \mu)^{-1}$ and $m=N t$ for $t>1$. It follows that

$$
\mu \sum_{j=0}^{m-1}(1-r)^{j}=\frac{\mu}{r}\left[1-(1-r)^{N t}\right] \geq \frac{\mu}{r}\left[1-\left(1-\frac{c}{\mu}\right)^{t}\right]
$$

for small r. Then,

$$
\begin{aligned}
\mathbf{P}_{\mu}\left(T_{E}>m\right) & \leq \mathbf{P}_{\mu}\left(Y_{m, m}(r)+Z_{m, m}<\frac{c}{r}-\mu \sum_{j=0}^{m-1}(1-r)^{j}\right) \\
& \leq \mathbf{P}_{\mu}\left(Y_{m, m}(r)+Z_{m, m}<\frac{c}{r}-\frac{\mu}{r}\left[1-\left(1-\frac{c}{\mu}\right)^{t}\right]\right) \\
& =\mathbf{P}_{\mu}\left(-Y_{m, m}(r)-Z_{m, m}>\frac{\mu}{r}\left[1-\frac{c}{\mu}-\left(1-\frac{c}{\mu}\right)^{t}\right]\right) \\
& \leq \exp \left\{-\theta \frac{\mu}{r}\left[1-\frac{c}{\mu}-\left(1-\frac{c}{\mu}\right)^{t}\right]+\log f_{Y, m}(-\theta)+\log f_{Z, m}(-\theta)\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& \log f_{Y, m}(-\theta)=\sum_{j=0}^{m-1}\left[\log h\left(-C_{j}(r) \theta\right)+\theta \mu(1-r)^{j}\right] \\
& \log f_{Z, m}(-\theta)=\sum_{j=0}^{\infty} \log h\left(-D_{m, j}(r) \theta\right) .
\end{aligned}
$$

Let $d=t\left(\mu\left[1-c / \mu-(1-c / \mu)^{t}\right]\right)^{-1}$. Taking $\theta=r d$, it follows from (33) and (42) that

$$
\begin{aligned}
& \sum_{j=0}^{m-1}\left[\log h\left(-C_{j}(r) r d\right)+r d \mu(1-r)^{j}\right]=(1+o(1)) r d \sum_{j=0}^{m-1}\left[A(1-r)^{j}-C_{j}(r)\right] \rightarrow 0 \\
& \sum_{j=0}^{\infty} \log h\left(-D_{m, j}(r) r d\right)=-(1+o(1)) r d \sum_{j=0}^{\infty} D_{m, j}(r) \rightarrow 0
\end{aligned}
$$

as $r \rightarrow 0$. Thus,

$$
\mathbf{P}_{\mu}\left(T_{E}>m\right) \leq e^{-t(1+o(1))}
$$

as $r \rightarrow 0$. This implies the upward equality of (7).
Let $M=r^{-1} \log (1-c / \mu)^{-1}\left(1-\left[\log r^{-1}\right]^{-p}\right)$, where $p>0$. Then,

$$
\begin{aligned}
\mathbf{E}_{\mu}\left(T_{E}\right) & \geq \sum_{m=1}^{M} \mathbf{P}_{\mu}\left(T_{E}>m\right) \\
& \geq \sum_{m=1}^{M} \prod_{n=1}^{m} \mathbf{P}_{\mu}\left(Y_{n, n}(r)+Z_{n, n}<\frac{c}{r}\right) \\
& =\sum_{m=1}^{M} \prod_{n=1}^{m} \mathbf{P}_{\mu}\left(Y_{n, n}(r)+Z_{n, n}<\frac{c}{r}-\frac{\mu}{r}\left[1-(1-r)^{n}\right]\right) \\
& \geq \sum_{m=1}^{M}\left[\mathbf{P}_{\mu}\left(Y_{M, M}(r)+Z_{M, M}<\frac{c}{r}-\frac{\mu}{r}\left[1-(1-r)^{M}\right]\right)\right]^{m M} .
\end{aligned}
$$

Since

$$
\frac{c}{r}-\frac{\mu}{r}\left[1-(1-r)^{M}\right]=(1+o(1)) \frac{(\mu-c) \log \frac{\mu}{\mu-c}}{r\left(\log r^{-1}\right)^{p}}
$$

for small r, by taking $\theta=3 r\left(\log r^{-1}\right)^{p+1}\left[(\mu-c) \log (1-c / \mu)^{-1}\right]^{-1}$ and using (35), we have

$$
\log f_{Y, m}(\theta) \rightarrow 0, \quad \log f_{Z, m}(\theta) \rightarrow 0
$$

as $r \rightarrow 0$, and therefore,

$$
\begin{aligned}
& \mathbf{P}_{\mu}\left(Y_{M, M}(r)+Z_{M, M}>\frac{c}{r}-\frac{\mu}{r}\left[1-(1-r)^{M}\right]\right) \\
\geq & \exp \left\{-\theta(1+o(1)) \frac{(\mu-c) \log (1-c / \mu)^{-1}}{r\left(\log r^{-1}\right)^{p}}+\log f_{Y, m}(\theta)+\log f_{Z, m}(\theta)\right\} \\
= & \exp \left\{-3 \log r^{-1}(1+o(1))+o(1)\right\}=(1+o(1)) r^{3(1+o(1))}
\end{aligned}
$$

for small r. Thus,

$$
\mathbf{E}_{\mu}\left(T_{C}\right) \geq \sum_{m=1}^{M}\left[1-(1+o(1)) r^{3(1+o(1))}\right]^{m M} \rightarrow M
$$

as $r \rightarrow 0$. This is the downward inequality of (7). This completes the proof of Theorem 2.

References

[1] Durrett, R. (2005) Probability: Theory and Examples, (Third Ed.), Thomson. Brooks/cole, Belmont.
[2] Esary, J. D., Proschan, F. and Walkup, D. W. (1967) Association of random variables with applications, The Annals of Mathematical Statistics, 38, 1466-1474.
[3] Han, D. and Tsung, F. G. (2006). A reference-free cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison. J. Am. Statis. Assoc., 101, 368-386.

[^0]: ${ }^{1}$ To whom correspondence should be addressed. AMS 1991 subject classification. Primary 62L10; secondary 62N10
 Key Words and Phrases. Change point detection, average run length, autocorrelated stationary processes

