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1 Tow Theorems.

To obtain the asymptotic ARL for the two control charts, we need three conditions presented in
the following.

Let h(θ) = E(eθξj ) denote the moment-generating functions of ξj . We suppose that the white
noise {ξj} satisfies the following two conditions:

(I) The distribution of ξ1 is not a point mass at E(ξ1).

(II) The moment-generating function of ξ1 satisfies h(θ) < ∞ for some θ > 0 and
h̄ = sup{h′(θ)/h(θ) : θ < θ̄} > 0, where θ̄ = sup{θ : h(θ) < ∞}.

Note that, from condition II, it follows that h(θ) is the analytic function for |θ| < θ̄. It can be
shown that many distributions, such as normal, exponential, uniform and Poisson, satisfy conditions
I and II.

Another condition is about {ak}.

(III)
∑∞

k=1 k|ak| < ∞.

1To whom correspondence should be addressed.
AMS 1991 subject classification. Primary 62L10; secondary 62N10
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This condition implies that

lim
n→∞

n

∞∑
k=n+1

|ak| = 0 (1)

Let ηj = δ(Aξj − δ
2) and hη(θ) = E(eθη1) denote the moment-generating functions of η1. Let

θ(y) satisfy y = h′η(θ(y))/hη(θ(y)).

Now we present the asymptotic ARLs of the CUSUM chart.

Theorem 1. Suppose conditions (I), (II) and (III) hold. Let µ̂ = δ(µ− δ/2).

(i) If 0 ≤ µ < δ/2, then

1

bc
ec(θ

∗+o(1)) ≤ ARLµ(TC(c)) ≤
2c

u
ec(θ

∗+o(1)) (2)

for a large control limit, c, where θ∗ > 0 is a unique positive root of the equation log h(δAθ)−δ2θ/2 =
0 on θ > 0, u = δAh′(δAθ∗)/h(δAθ∗)− δ2/2 > 0 and b is a positive constant defined by

b = inf{x > 1/u : θ(
1

x
)− x log hη(θ(

1

x
)) ≥ 2θ∗}. (3)

(ii) If µ > δ/2 , then

−(1 + o(1))
3
√
c log c

(µ̂)3/2
+

c

µ̂
≤ ARLµ(TC(c)) ≤

c

µ̂
+

2
√
c log c

(µ̂)3/2
+

e(δσA)2/2

µ̂c
√
2−1

(1 + o(1)) (4)

for large c.

For the EWMA chart, we let the control limit, c̃, be fixed and the weight parameter, r, be small
such that the ARL0 becomes large. In the following theorem, we see that the role of the control
limit, c̃, in the EWMA chart is the same as the reference value δ/2 in the CUSUM chart, and the
weight parameter, r, in the EWMA chart is like the control limit, c, in the CUSUM chart.

Theorem 2. Suppose that conditions (I), (II) and (III) hold.

(i) If 0 ≤ µ < c̃, then

e
1
r
(θ∗(c̃)+o(1)) ≤ ARLµ(TE(r)) ≤

3 log r−1

r
e

1
r
(θ∗(c̃)+o(1)) (5)

for a small weighting parameter r, where θ∗(c̃) = c̃θc̃ − log hζ(θc̃), θc̃ is a unique positive root of
the equation c̃θ − log h(Aθ) = 0 on θ > 0 and hζ(θ) is defined by

hζ(θ) = exp{
∫ θ

0

log h(Ax)

x
dx}. (6)

(ii) If µ > c̃, then

(1 + o(1))(1− 1

(log r−1)p
)
1

r
log

µ

µ− c̃
≤ ARLµ(TE(r)) ≤ (1 + o(1))

1

r
log

µ

µ− c̃
(7)
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for small r, where p is a positive number.

Remark 1. It is convenient to rewrite the results of the two theorems in the following expres-
sions. For large c and small r we have

ARLµ(TC(c)) = LCe
c(θ∗+o(1)), ARLµ(TE(r)) = LEe

1
r
(θ∗(c̃)+o(1)) (8)

for 0 ≤ µ < δ/2 and 0 ≤ µ < c̃ respectively, and

ARLµ(TC(c)) = (1 + o(1))
c

δ(µ− δ/2)
, ARLµ(TE(r)) = (1 + o(1))

1

r
log

µ

µ− c̃
(9)

for µ > δ/2 and µ > c̃, respectively, where c and c̃ are the control limits of the CUSUM and EWMA,
respectively, and LC and LE satisfy 1/(bc) ≤ LC ≤ 2c/u and 1 ≤ LE ≤ 3 log r−1/r, respectively.

2 Proofs of Theorem 1

We first present two lemmas. Here, lemma 1 in the following is a slight generalization of the lemma
given in Durrett (2005, P.73) and lemma 2 is the same as Lemma 2 in Han and Tsung (2006). We
omit the proofs of lemma 2.

Lemma 1. Let Zk, 1 ≤ k ≤ n, be independent with distributions Fk(x) and the moment-
generating functions hk(λ), and let Zλ

k , 1 ≤ k ≤ n, be independent with the distributions F λ
k (y)

and the moment-generating functions hλk(θ), where hk(λ) < ∞, 1 ≤ k ≤ n, for some λ > 0 and

F λ
k (y) =

1

hk(λ)

∫ y

−∞
eλxdFk(x), hλk(θ) = Eλ

k(e
θZλ

k ) (10)

for some λ > 0. Let Fn and Fn
λ denote the distributions of Sn = Z1+ ...+Zn and Sλ

n = Zλ
1 + ...+Zλ

n

respectively. Then,

dFn

dFn
λ

= e−λzh1(λ)...hn(λ) (11)

and

P(Sn ≥ ma) ≥ exp{−mλb+
n∑

k=1

log hk(λ) + log(Fn
λ (mb)− Fn

λ (ma))} (12)

for b > 0 and m > 0.

Proof. Since

F 2(z) =

∫ ∞

−∞
dF1(x)

∫ z−x

−∞
dF2(y)

=

∫ ∞

−∞
e−λxh1(λ)dF

λ
1 (x)

∫ z−x

−∞
e−λyh2(λ)dF

λ
2 (y)

= h1(λ)h2(λ)

∫ ∫
x+y<z

e−λ(x+y)dF λ
1 (x)dF

λ
2 (y)

= h1(λ)h2(λ)

∫ z

−∞
e−λudF 2

λ (u),
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the result holds for n = 1, 2. By mathematical induction, we can similarly show that (11) holds for
n ≥ 1.

From (11), it follows that

P(Sn ≥ ma) =

∫ ∞

ma
e−λzh1(λ)...hn(λ)dF

n
λ

≥ h1(λ)...hn(λ)

∫ mb

ma
e−λzdFn

λ

≥ h1(λ)...hn(λ)e
−λmb

∫ mb

ma
dFn

λ

= h1(λ)...hn(λ)e
−λmb[Fn

λ (mb)− Fn
λ (ma)]

= exp{−mλb+
n∑

k=1

log hk(λ) + log(Fn
λ (mb)− Fn

λ (ma))}.

This completes the proof.

Note that, by (10), the mean and the moment-generating function of Zλ
k can be, respectively,

expressed as

Eλ
k(Z

λ
k ) =

h′k(λ)

hk(λ)
, hλk(θ) = Eλ

k(e
θZλ

k ) =
hk(λ+ θ)

hk(λ)
. (13)

Let ηj = δ(Aξj − δ
2) and hη(θ) = E(eθη1) denote the moment-generating functions of η1. Let

θ(y) satisfy y = h′η(θ(y))/hη(θ(y)).

Lemma 2. Suppose that the two conditions, (I) and (II), hold. Let µ < δ/2; that is, E(ηj) =
δ(µ − δ/2) < 0. Then, there exists at most one θ∗ ∈ (θ(0), θ̄) such that hη(θ

∗) = 1; that is,
log h(δAθ∗)−δ2θ∗/2 = 0, where θ(0) > 0 satisfies 0 = h′η(θ(0))/hη(θ(0)). Moreover, u = h′η(θ

∗) > 0,
log hη(θ(x)) < 0 for x < u and log hη(θ(x)) > 0 for x > u, and

θ(
1

x
)− x log hη(θ(

1

x
)) ≥ θ∗ (14)

for x > 0 and

θ(
1

x
)− x log hη(θ(

1

x
)) ≥ 2θ∗ (15)

for x ≥ b, where the number b is defined by

b = inf{x > 1/u : θ(
1

x
)− x log hη(θ(

1

x
)) ≥ 2θ∗}. (16)

Proof of Theorem 1. (i). We first prove the upward inequality of (2). Without loss of generality,
the number x is considered to be the same as [x] when x is large, where the number [x] denotes
the smallest integer greater than or equal to x. Let Ak =

∑k
j=1 aj−1. It follows that

lim
n→∞

An = A, lim
n→∞

1

n

n∑
k=1

Ak = A, lim
n→∞

1

n

n∑
k=1

|An+k −Ak| = 0, (17)
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and

lim
n→∞

∞∑
k=n+1

|An+k −Ak| ≤ lim
n→∞

n∑
k=1

∞∑
j=n

|ak+j | ≤ lim
n→∞

n
∞∑

k=n+1

|ak| = 0. (18)

Here, the last limit follows from (1). For n ≤ m, we have

m∑
k=m−n+1

δ
(
Xk −

δ

2

)
= Ym,n + Zm,n + Um,n

where

Ym,n =

n∑
k=1

δ
(
Akξm+1−k −

δ

2

)
, Zm,n = δ

n∑
k=1

(An+k −Ak)ξm+1−n−k

and

Um,n = δ

∞∑
k=n+1

(An+k −Ak)ξm+1−n−k.

Since Y(2k−1)n,n + Z(2k−1)n,n, k ≥ 1, are mutually independent and identically distributed, and

Pµ(TC > m) = Pµ

( n∑
i=n−k+1

δ
(
Xi −

δ

2

)
< c, 1 ≤ k ≤ n, 1 ≤ n ≤ m

)
= Pµ

(
Yn,k + Zn,k + Un,k < c, 1 ≤ k ≤ n, 1 ≤ n ≤ m

)
≤ Pµ

(
Y(2k−1)n,n + Z(2k−1)n,n + U(2k−1)n,n < c, 1 ≤ k ≤ K

)
for large m, where K is a natural number such that K = max{k : (2k − 1)n ≤ m}, it follows that

Pµ(TC > m)

≤ Pµ

(
Y(2k−1)n,n + Z(2k−1)n,n < c+ ϵ, 1 ≤ k ≤ K,

)
+Pµ

(
max

1≤k≤K
|U(2k−1)n,n| ≥ ϵ

)
≤ [Pµ

(
Yn,n + Zn,n < c+ ϵ

)
]K +

K∑
k=1

[Pµ

(
U(2k−1)n,n ≥ ϵ

)
+Pµ

(
− U(2k−1)n,n ≥ ϵ

)
]

for any small positive number, ϵ.

Next, we estimate Pµ

(
Yn,n + Zn,n < c+ ϵ

)
. Let

Yj(n) = δ
(
Ajξn+1−j −

δ

2

)
, 1 ≤ j ≤ n

Zj(n) = (An+j −Aj)ξ1−j , 1 ≤ j ≤ n

Then, Yn,n + Zn,n =
∑n

j=1 Yj(n) +
∑n

j=1 Zj(n). Let Fj(x) and Gj(x) denote, respectively, the
distributions of Yj(n) and Zj(n), and let hj(λ) and Ij(λ) be, respectively, the moment-generating
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functions of Yj(n) and Zj(n) for some λ > θ∗ = θ(u), where θ∗ and u are defined in Lemma 2.
Let Y λ

j (n), Zλ
j (n), 1 ≤ j ≤ n, be independent variables with the distributions F λ

j (y) and Gλ
j (y),

respectively, where F λ
j (y), G

λ
j (y) and the corresponding moment-generating functions hλj (θ) and

Iλj (θ) are defined in (15). Denote by F 2n and F 2n
λ the distributions of S2n =

∑n
j=1 Yj(n) +∑n

j=1 Zj(n) and Sλ
2n =

∑n
j=1 Y

λ
j (n) +

∑n
j=1 Z

λ
j (n) respectively.

Taking n = (c+ ϵ)/u and v > u, it follows from Lemma 1 that

Pµ

(
Yn,n + Zn,n ≥ c+ ϵ

)
= Pµ

(
S2n ≥ un)

≥ exp{−nλv +

n∑
j=1

log hj(λ) +

n∑
j=1

log Ij(λ) + log(F 2n
λ (nv)− F 2n

λ (nu))}. (19)

We now prove

F 2n
λ (nv)− F 2n

λ (nu) → 1 (20)

or equality

P
(
{Sλ

2n > nv} ∪ {Sλ
2n < nu}

)
→ 0

for u < h′η(λ)/hη(λ) < v as n → ∞, where hη(λ) is the moment-generating function of δ(Aξ1−δ/2).

It follows from (13) and (17) that

lim
j→∞

log hj(λ) = lim
j→∞

log h(δAjλ)−
δ2λ

2
= log hη(λ), lim

j→∞

h′j(λ)

hj(λ)
=

h′η(λ)

hη(λ)

and

(hλj (0))
′

hλj (0)
= lim

θ↘0

1

θ
log hλj (θ) = lim

θ↘0

1

θ
log

hj(λ+ θ)

hj(λ)

= lim
θ↘0

1

θ
log[1 +

hj(λ+ θ)− hj(λ)

hj(λ)
] = lim

θ↘0

1

θ

hj(λ+ θ)− hj(λ)

hj(λ)
=

h′j(λ)

hj(λ)
.

Similarly,

lim
j→∞

Ij(λ) = lim
j→∞

h(δ(An+j −Aj)λ)) = h(0) = 1,
(Iλj (0))

′

Iλj (0)
=

I ′j(λ)

Ij(λ)

and

lim
j→∞

I ′j(λ)

Ij(λ)
= lim

j→∞

δ(An+j −Aj)h
′(δ(An+j −Aj)λ))

h(δ(An+j −Aj)λ))
= 0.

Hence

log hλj (θ) =
(hλj (0))

′

hλj (0)
θ + o(θ) =

h′j(λ)

hj(λ)
θ + o(θ), log Iλj (θ) =

I ′j(λ)

Ij(λ)
θ + o(θ). (21)
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By Chebyshev’s inequality, we have

P
(
Sλ
2n > nv

)
≤ exp{−nθ

(
v − 1

nθ

n∑
j=1

log hλj (θ) +
1

nθ

n∑
j=1

log Iλj (θ)
)
}

= exp{−nθ
(
v − 1

n

n∑
j=1

h′j(λ)

hj(λ)
+

1

n

n∑
j=1

I ′j(λ)

Ij(λ)
+ o(1)

)
}

= exp{−nθ
(
v −

h′η(λ)

hη(λ)
+ o(1)

)
} → 0

as n → ∞ for small θ. Similarly, we have

P
(
− Sλ

2n > −nu
)

≤ exp{−nθ
(
− u− 1

n

n∑
j=1

log hλj (−θ) +
1

n

n∑
j=1

log Iλj (−θ) + o(1)
)
}

= exp{−nθ
(
− u+

h′η(λ)

hη(λ)
+ o(1)

)
} → 0

as n → ∞ for small θ. This proves (20).

Note that log hj(λ) → log hη(λ) and log Ij(λ) → 0 as j → ∞. It follows from (19) that

Pµ

(
Yn,n + Zn,n ≥ c+ ϵ

)
≥ exp{−n

(
λv − 1

n

n∑
j=1

log hj(λ)−
1

n

n∑
j=1

log Ij(λ)−
1

n
log(F 2n

λ (nv)− F 2n
λ (nu))

)
}

= exp{−(c+ ϵ)
(1
u
λv − 1

u
log hη(λ) + o(1)

)
}

for large c, where n = (c+ ϵ)/u. Since λ, v (λ > θ∗, v > h′η(λ)/hη(λ)) are arbitrary and hη(θ
∗) = 1,

h′η(θ
∗)/hη(θ

∗) = u. Taking λ ↘ θ∗ and v ↘ h′(λ)/h(λ), we have

Pµ

(
Yn,n + Zn,n ≥ c+ ϵ

)
≥ e−(c+ϵ)(θ∗+o(1)) (22)

for large c.

Let m = t(c + ϵ)(2e(c+ϵ)(θ∗+o(1)) − 1)/u for t > 0 and large c. Then, K = te(c+ϵ)(θ∗+o(1)). It
follows from (22) that

[Pµ

(
Yn,n + Zn,n < c+ ϵ

)
]K ≤

(
1− e−(c+ϵ)(θ∗+o(1))

)K
→ e−t (23)

as c → ∞. On the other hand, by Chebyshev’s inequality we have

Pµ

(
Un,n ≥ ϵ

)
≤ exp{−θϵ+

∞∑
k=n+1

log h(δ(An+k −Ak)θ)}

= exp{−θϵ+ δ

∞∑
k=n+1

(1 + o(1))h′(0)(An+k −Ak)θ}
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for large n. Note that n = (c+ ϵ)/u. Taking θ = (c+ ϵ)(θ∗ + a)/ϵ, where a is a positive constant,
by (18), we have

Pµ

(
Un,n ≥ ϵ

)
≤ exp{−(c+ ϵ)

(
θ∗ + a− θ∗ + a

ϵ
|h′(0)|δ

∞∑
k=n+1

(1 + o(1))|(An+k −Ak)|
)
}

= exp{−(c+ ϵ)(θ∗ + a− o(1))}

for large c. Since U(2k−1)n,n, k ≥ 1 are identically distributed, it follows that

K∑
k=1

Pµ

(
U(2k−1)n,n ≥ ϵ

)
= KPµ

(
Un,n ≥ ϵ

)
≤ K exp{−(c+ ϵ)(θ∗ + a+ o(1))} → 0 (24)

as c → ∞. Similarly, we can prove that

K∑
k=1

Pµ

(
− U(2k−1)n,n ≥ ϵ

)
≤ K exp{−(c+ ϵ)(θ∗ + a− o(1))} → 0 (25)

as c → ∞. From (23) (24) and (25) it follows that Pµ(TC > m) ≤ e−t(1 + o(1)) for large c. Thus,
by the properties of exponential distribution, we have

Eµ(TC) ≤ (1 + o(1))(c+ ϵ)(2e(c+ϵ)(θ∗+o(1)) − 1)/u

for large c. Since ϵ is arbitrary, the upward inequality of (2) is true.

To prove the downward inequality of (2), let

Vm = {
n∑

i=n−k+1

δ
(
Xi −

δ

2

)
< c, 1 ≤ k ≤ min{n, bc− 1}, 1 ≤ n ≤ m}

and

Wm = {
n∑

i=n−k+1

δ
(
Xi −

δ

2

)
< c, bc ≤ k ≤ n, bc ≤ n ≤ m}

for large c, where b is defined in (16). Then {TC > m} = VmWm. Since {Xi} is the linear
combination of the i.i.d. {ξj}, it follows from Theorem 5.1 in Esary, Proschan and Walkup (1967)
that Pµ(TC > m) ≥ Pµ(Wm)Pµ(Vm),

Pµ(Vm) ≥
m∏

n=1

min{n,bc}∏
k=1

Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) < c

)
and

Pµ(Wm) ≥
m∏

n=bc

n∏
k=bc

Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) < c

)
.
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Note that
∑n

i=n−k+1 δ(Xi − δ/2) can be rewritten as

n∑
k=n−k+1

δ
(
Xk −

δ

2

)
= Yn,k + Zn,k,c + Un,k,c

where

Yn,k =
k∑

j=1

δ
(
Ajξn+1−j −

δ

2

)
, Zn,k,c =

c∑
j=1

δ(Ak+j −Aj)ξn+1−k−j

and

Un,k,c =

∞∑
j=c+1

δ(Ak+j −Aj)ξn+1−k−j .

Let fk(θ), gk,c(θ) and hk,c(θ) be the moment-generating functions of Yn,k, Zn,k,c and Un,k,c,
respectively. It follows from (17) and (18) that

lim
k→∞

log fk(θ)

k
= lim

k→∞

1

k

k∑
j=1

[log h(δAjθ)−
δ2θ

2
] = hη(θ), (26)

lim
c→∞

log gk,c(θ)

c
= lim

c→∞

1

c

c∑
j=1

log h(δ(Ak+j −Aj)θ) = 0 ( uniformly for k ≥ 1) (27)

and

lim
c→∞

log hk,c(θ) = lim
c→∞

∞∑
j=c+1

log h(δ(Ak+j −Aj)θ)

= lim
c→∞

δ

∞∑
j=c+1

(1 + o(1))h′(0)(Ak+j −Aj)θ

≤ lim
c→∞

δ

∞∑
j=c+1

(1 + o(1))|h′(0)||Ak+j −Aj ||θ|

≤ (1 + o(1)) lim
c→∞

k

c
cδ

∞∑
j=c+1

|aj | = 0 (28)

uniformly for k ≤ Mc, where M > 0 is a constant.

For k ≥ 1, let x = k/c. By Chebyshev’s inequality, we have

Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) ≥ c

)
≤ exp{−c

(
θ − 1

c
log fk(θ)−

1

c
log gk,c(θ)−

1

c
log hk,c(θ)

)
}.
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If x = k/c → 0 as c → ∞, taking θ ≥ θ∗ it follows from (26), (27) and (28) that

Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) ≥ c

)
≤ exp{−c

(
θ − 1

c
log fk(θ)−

1

c
log gk,c(θ)−

1

c
log hk,c(θ)

)
} ≤ e−c(θ∗−o(1))

for large c. If b > x = k/c ≥ a > 0, where a is a small positive constant, taking θ(1/x)) such that
1/x = h′(θ(1/x))/h(θ(1/x)), we have

Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) ≥ c

)
= Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) ≥ k/x

)
≤ exp{−k

(
θ(1/x)/x− 1

k
log fk(θ(1/x))−

1

k
log gk,c(θ(1/x))−

1

k
log hk,c(θ(1/x))

)
}

= exp{−c
(
θ(1/x)− x

1

k
log fk(θ(1/x))−

1

c
log gk,c(θ(1/x))−

1

c
log hk,c(θ(1/x))

)
}

= exp{−c
(
θ(1/x)− x log hη(θ(1/x)) + o(1)

)
} ≤ e−c(θ∗+o(1))

for large c, where the last equality follows from (14). Thus, taking m = tec(θ
∗+o(1))/bc for t > 0,

we have

Pµ(Vm) ≥
m∏

n=1

min{n,bc}∏
k=1

Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) < c

)

=

m∏
n=1

min{n,bc}∏
k=1

[1−Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) ≥ c

)
]

≥ [1− e−c(θ∗+o(1))]bcm → e−t,

as c → +∞.

Similarly, for x ≥ b, that is, k ≥ bc, we have

Pµ(Wm) ≥
m∏

n=bc

n∏
k=bc

Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) < c

)
≥

m∏
n=bc

n∏
k=bc

(
1− exp{−c[θ(1/x)− x log hη(θ(1/x)) + o(1)]}

)
≥ [1− e−2c(θ∗+o(1))](m−bc)2 → 1,

as c → +∞, where the last equality follows from (15). Hence, P (T > m) ≥ P (Um)P (Vm) → e−t

as c → +∞. This implies the downward inequality of (2).
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(ii) Let µ̂ = δ(µ− δ/2). Then

{TC > m} =
{ n∑

i=n−k+1

δ
(
Xi −

δ

2

)
< c, 1 ≤ k ≤ n, 1 ≤ n ≤ m

}
⊂

{ m∑
i=1

δ
(
Xi −

δ

2

)
< c

}
=

{ m∑
i=1

δ(Xi − µ) < c−mµ̂
}

=
{
Ym,m(µ) + Zm,m + Um,m < c−mµ̂

}
where

Ym,m(µ) =

m∑
i=1

δ(Aiξm+1−i − µ).

Let fY,m(θ), fZ,m(θ) and fU,m(θ) denote the moment-generating functions of Ym,m(µ), Zm,m and
Um,m, respectively. Note that µ̂ > 0. Let N = c/µ̂+ 2

√
c log c/(µ̂)3/2. We have

Eµ(TC) =
N∑

m=1

Pµ(TC > m) +
∞∑

m=N+1

Pµ(TC > m)

≤ N +
∞∑

m=N+1

Pµ

(
Ym,m(µ) + Zm,m + Um,m < c−mµ̂

)
= N +

∞∑
k=1

Pµ

(
YN+k,N+k(µ) + ZN+k,N+k + UN+k,N+k < −µ̂[

2
√
c log c

(µ̂)3/2
+ k]

)
≤ N +

∞∑
k=1

exp{−θµ̂[
2
√
c log c

(µ̂)3/2
+ k] + log fY,N+k(−θ) + log fZ,N+k(−θ) + log fU,N+k(−θ)},

where the last equality follows from Chebyshev’s inequality. Note that µ = ξ̄A,

d

dθ
log fY,N+k(−θ)|θ=0

= −E(YN+k,N+k(µ)) = −δξ̄

N+k∑
j=1

(Aj −A) = δξ̄

N+k∑
j=1

kak

d2

d2θ
log fY,N+k(−θ)|θ=0

= Var(YN+k,N+k(µ)) = (δσ)2
N+k∑
j=1

A2
j

and

log fY,N+k(−θ) = θδξ̄
N+k∑
j=1

kak +
θ2

2
(δσ)2

N+k∑
j=1

A2
j + o(θ2).

Taking θ = (
√
N + k)−1, by Condition (III) and (17), we have

log fY,N+k(−
1√

N + k
) = δξ̄

1√
N + k

N+k∑
j=1

kak +
(δσ)2

2

1

N + k

N+k∑
j=1

A2
j →

(δσA)2

2

11



uniformly for k ≥ 1 as c → ∞. Similarly, by (18) we can show that both log fZ,N+k(−(
√
N + k)−1)

and log fU,N+k(−(
√
N + k)−1) go to 0 uniformly for k ≥ 1 as c → ∞. Thus, by taking a positive

constant α such that αµ̂ < 1, it follows that

Eµ(TC) ≤ N + e(δσA)2/2
∞∑
k=1

exp{− µ̂√
N + k

[
2
√
c log c

(µ̂)3/2
+ k] + o(1)}

= N + e(δσA)2/2
αc∑
k=1

exp{− 2
√
c log c+ (µ̂)3/2k√

c+ 2
√
c log c/

√
µ̂+ µ̂k

+ o(1)}

+e(δσA)2/2
∞∑

k=αc+1

exp{− 2
√
c log c+ (µ̂)3/2k√

c+ 2
√
c log c/

√
µ̂+ µ̂k

+ o(1)}

≤ N +
1

µ̂c
√
2−1

e(δσA)2/2 + e(δσA)2/2
∞∑

k=αc+1

exp{− (µ̂)3/2
√
k√

(αµ̂)−1 + 2
+ o(1)}

≤ N +
e(δσA)2/2

µ̂c
√
2−1

(1 + o(1)) (29)

for large c. This proves the upward inequality of (4).

To prove the downward inequality of (4), let M = c/µ̂− 3
√
c log c/(µ̂)3/2. Then,

Eµ(TC) ≥
M∑

m=1

Pµ(TC > m)

≥
M∑

m=1

m∏
n=1

n∏
k=1

Pµ

( n∑
i=n−k+1

δ(Xi −
δ

2
) < c

)

=

M∑
m=1

m∏
n=1

n∏
k=1

Pµ

(
Yn,k(µ) + Zn,k + Un,k < c− kµ̂

)
≥

M∑
m=1

[
Pµ

(
YM,M (µ) + ZM,M + UM,M < c−Mµ̂

)]mM

=

M∑
m=1

[
1−Pµ

(
YM,M (µ) + ZM,M + UM,M ≥ 3

√
c log c

(µ̂)1/2

)]mM
.

As in (29), we can similarly check that

Pµ

(
YM,M (µ) + ZM,M + UM,M ≥ 3

√
c log c

(µ̂)1/2

)
≤ e(δσA)2/2 exp{− µ̂√

M

3
√
c log c

(µ̂)3/2
+ o(1)}

= e(δσA)2/2 exp{−3 log c+ o(1)} =
e(δσA)2/2

c3
(1 + o(1))

for large c. Note that if x/c3 → 0 for x > 0 as c → ∞, then

1−
(
1− e(δσA)2/2

c3

)x
=

xe(δσA)2/2

c3
(1 + o(1))

12



as c → ∞. Thus, taking x = M or x = M2, we have

Eµ(TC) ≥
M∑

m=1

[
1− e(δσA)2/2

c3

]mM

=
[1− e(δσA)2/2

c3
]M

1− [1− e(δσA)2/2

c3

]M (
1− [1− e(δσA)2/2

c3

]M2)
→ M

as c → ∞. That is, the downward inequality of (4) holds. This completes the proof of Theorem 1.

3 Proof of Theorem 2

We will first prove a lemma before proving Theorem 2. In the following proofs we shall use c simply
to replace c̃ which is the control limit of EWMA chart.

Lemma 3. Let Yn =
∑n−1

k=0 Ck(r)ξn−k and ζn = A
∑n−1

k=0(1−r)kξn−k, where Ck(r) =
∑k

j=0 ak−j(1−
r)j , 0 < r ≤ 1. Let hY,n(θ) and hζ,n(θ) denote the moment-generating functions of Yn and ζn, re-
spectively. Let n = (ar)−1, where a is a positive number. Then

lim
r→0

r log hY,n(θ) = lim
r→0

r log hζ,n(θ) = log hζ,a(θ), (30)

where

log hζ,a(θ) =

∞∑
m=1

(1− e−m/a)
Am

m

(log h(0))(m)

m!
θm (31)

(log h(0))(m) denotes the mth derivative of the function log h(θ) at θ = 0. Moreover, if a = a(r) ≤
C(− log r)−1 for some constant C and any 0 < r < 1, then

lim
r→0

r log hY,n(θ) = lim
r→0

r log hζ,n(θ) = log hζ,0(θ) =

∫ θ

0

log h(Ax)

x
dx (32)

and cθ − log hζ,0(θ) attains its maximal value at θc for µ < c, where θc is the unique positive root
of the equation cθ − log h(Aθ) = 0 on θ > 0.

Proof. Let log hζ(θ) = log hζ,0(θ). Since

log hζ,n(θ) =

n−1∑
k=0

log h(A(1− r)kθ) =

n−1∑
k=0

∞∑
m=1

[(1− r)kA]m
(log h(0))(m)

m!
θm

=
∞∑

m=1

n−1∑
k=0

[(1− r)kA]m
(log h(0))(m)

m!
θm

and

lim
r→0

r

n−1∑
k=0

((1− r)kA)m = (1− e−m/a)
Am

m
,

13



it follows that the second equality of (30) holds for log hζ,n. Thus, the first equality of (30) is true
as long as we prove that

lim
r→0

r
n−1∑
k=0

|(Ck(r))
m − ((1− r)kA)m| = 0 (33)

for m ≥ 1, since

log hY,n(θ) =

n−1∑
k=0

log h(Ck(r)θ) =

n−1∑
k=0

∞∑
m=1

(Ck(r))
m (log h(0))(m)

m!
θm

=

∞∑
m=1

n−1∑
k=0

(Ck(r))
m (log h(0))(m)

m!
θm.

We first prove that

r
n−1∑
k=0

|Ck(r)− (1− r)kA| → 0 (34)

as r → 0.

Let R(p) = (log r−1)p for p ≥ 1. Taking a small r such that n > 1/(rR(2p)), we have

n−1∑
k=0

Ck(r) =

1/(rR(2p))−1∑
k=0

Ck(r) +

n−1∑
k=1/(rR(2p))

Ck(r)

=

1/(rR(2p))−1∑
k=0

ak

1/(rR(2p))−1−k∑
j=0

(1− r)j +

n−1∑
k=1/(rR(2p))

Ck(r).

Furthermore,

r|
1/(rR(2p))−1∑

k=0

ak

1/(rR(2p))−1−k∑
j=0

(1− r)j |

≤
R(p)∑
k=0

|ak|[1− (1− r)1/(rR(2p))−k] +

1/(rR(2p))−1∑
k=R(p)+1

|ak|

≤ ||A||R(p)[1− e−1/R(2p)] +
1

R(p)
R(p)

∞∑
k=R(p)+1

|ak| ≤
2||A||
R(p)

→ 0

as r → 0. Similarly,

r

1/(rR(2p)−1∑
k=0

(1− r)k|A| ≤ |A|[1− e−1/R(2p)] ≤ |A|
R(2p)

→ 0

14



Thus,

r
n−1∑
k=0

|Ck(r)− (1− r)kA|

≤ 2||A||+ |A|
R(p)

+ r

n−1∑
k=1/(rR(2p))

|Ck(r)− (1− r)kA|

≤ 2||A||+ |A|
R(p)

+ r

n−1∑
k=1/(rR(2p))

(
(1− r)k

R(p)∑
j=1

|aj |[(1− r)−j − 1] +

k∑
j=R(p)+1

|aj |[(1− r)k−j − (1− r)k]
)

≤ 2||A||+ |A|
R(p)

+ r

n−1∑
k=1/(rR(2p))

(1− r)krR(2p)||A||(1− r)−R(p) +

∞∑
j=R(p)+1

|ak|

≤ 2||A||+ |A|
R(p)

+ 2rR(2p)||A||+ 1

R(p)
R(p)

∞∑
k=R(p)+1

|ak|

≤ 5||A||+ |A|+ 1

R(p)
→ 0 (35)

as r → 0 for n > 1/(rR(2p). This implies (34). Furthermore, (33) follows from

r

n−1∑
k=0

|(Ck(r))
m − ((1− r)kA)m| = r

n−1∑
k=0

|(Ck(r)− (1− r)kA)(

m−1∑
j=0

(Ck(r))
m−1−j [(1− r)kA]j)|

≤ m||A||m−1r
n−1∑
k=0

|(Ck(r)− (1− r)kA| → 0

as r → 0 for each m > 1.

Similarly, it can be checked that

lim
r→0

r
(
log hY,n(θ)

)′
= lim

r→0
r
(
log hζ,n(θ)

)′

=
(
log hζ,a(θ)

)′

. (36)

Moreover, by (30), (31) and (36) we have

h′ζ(θ)/hζ(θ) =
1

θ
log h(Aθ).

This means (32). Note that c−h′ζ(0)/hζ(0) = c−µ > 0 and h′ζ(θ)/hζ(θ) is strictly increasing since
h′(θ)/h(θ) is strictly increasing (see Durrett (2005, P.70-73)). Then, there is a unique positive
number, θc, such that c − h′ζ(θc)/hζ(θc) = 0, or equality, cθc − log h(Aθc) = 0, and therefore,
cθ − log hζ(θ) attains its maximal value at θc. This completes the proofs.
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Proof of Theorem 2. (i). Let Dn,k(r) =
∑n−1

j=0 an+k−j(1 − r)j . The statistics Em(r) of the
EWMA can be rewritten as

Em(r) = rXm + (1− r)Em−1(r) = r

m−1∑
k=0

(1− r)kXm−k = r[Ym,n + Zm,n +Rm,n]

where

Ym,n =

n−1∑
k=0

Ck(r)ξm−k, Zm,n =

∞∑
k=0

Dn,k(r)ξm−n−k

and

Rm,n = (1− r)n
m−n−1∑
k=0

(1− r)kXm−n−k, Rm,m = 0

for m ≥ n. Let n = 3r−1 log r−1 for small r. Note that Ykn,n, k ≥ 1, are i.i.d. random variables
and Zkn,n, k ≥ 1, are identically distributed. For large m and any small ϵ > 0, we have

Pµ(TE > m) ≤ Pµ

(
Ykn,n + Zkn,n +Rkn,n <

c

r
, 1 ≤ k ≤ m/n,

)
≤ Pµ

(
Ykn,n <

c

r
+ ϵ, 1 ≤ k ≤ m/n,

)
+Pµ

(
max

1≤k≤m/n
|Zkn,n +Rkn,n| ≥ ϵ

)
≤ [Pµ

(
Yn,n <

c

r
+ ϵ

)
]m/n +m/nPµ

(
|Zn,n| ≥ ϵ/2

)
+

m/n∑
k=1

Pµ

(
|Rkn,n| ≥ ϵ/2

)
. (37)

Next, we prove that

Pµ

(
Yn,n <

c

r
+ ϵ

)
≤ 1− exp{−1

r
(cθc − log hζ(θc)) + o(1)} (38)

for small r > 0.

Let Fj(x) denote the distributions of Cj(r)ξj+1, 0 ≤ j ≤ n − 1. Let Y λ
j , 0 ≤ j ≤ n − 1, be

independent variables with the distributions F λ
j (y) for some λ > θc+rϵ and the moment-generating

functions hλj (θ) defined in (10). Denote by Fn and Fn
λ the distributions of Sn =

∑n−1
j=0 Cj(r)ξj+1

and Sλ
n =

∑n−1
j=0 Y

λ
j , respectively.

Taking v > c+ rϵ and ñ = 1/r, it follows from Lemma 1 that

Pµ

(
Yn,n ≥ c

r
+ ϵ

)
≥ exp{−ñλv +

n−1∑
j=0

log h(Cj(r)λ) + log(Fn
λ (ñv)− Fn

λ (ñ(c+ rϵ))}

= exp{−1

r

(
λv + r

n−1∑
j=0

log h(Cj(r)λ) + r log(Fn
λ (ñv)− Fn

λ (ñ(c+ rϵ))} (39)

By (21), we have

log hλj (θ) = Cj(r)
h′(Cj(r)λ)

h(Cj(r)λ)
θ + o(θ)
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and

r

n−1∑
j=0

Cj(r)
h′(Cj(r)λ)

h(Cj(r)λ)
→

h′ζ(λ)

hζ(λ)

as r → 0. Hence, as in (20), we can show that

P
(
{Sλ

n > ñv} ∪ {Sλ
n < ñ(c+ rϵ)}

)
→ 0;

that is,

Fn
λ (ñv)− Fn

λ (ñ(c+ rϵ)) → 1

as r → 0 for θc < h′ζ(λ)/hζ(λ) < v.

It follows from (39) and Lemma 3 that

Pµ

(
Yn,n ≥ c

r
+ ϵ

)
≥ exp{−1

r

(
λv − log hζ(λ) + o(1)

)
}. (40)

Moreover, λ, v (λ > θc, v > h′ζ(λ)/hζ(λ)) are arbitrary and h′ζ(θc)/hζ(θc) = c. Let λ ↘ θc and
v ↘ h′ζ(λ)/hζ(λ) in (40), we obtain (38).

Let m = 3tr−1 log(1/r) exp{1
r (cθc − log hζ(θc))} for t > 0. By (38), we have

[Pµ

(
Yn,n <

c

r
+ ϵ

)
]m/n ≤

(
1− exp{−1

r
(cθc − log hζ(θc)) + o(1)}

)m/n
→ e−t (41)

as r → 0.

Note that

1

r

∞∑
k=0

|Dn,k(r)| ≤ 1

r

∞∑
k=0

n−1∑
j=0

|an+k−j |(1− r)j

=
1

r

1/r∑
j=0

(||A|| − ||Aj ||)(1− r)n−1−j +
1

r

n−1∑
j=1/r+1

(||A|| − ||Aj ||)(1− r)n−1−j

≤ ||A|| 1
r2

(1− r)3r
−1 log r−1

+
1

r

∞∑
j=1/r+1

|aj | → 0 (42)

and

1

r
(1− r)n

kn−n−1∑
j=0

(1− r)j → 0 (43)

as r → 0. As in (24) and (25), it can be shown that

m/nPµ

(
|Zn,n| ≥ ϵ/2

)
→ 0, m/nPµ

(
|Rm,n| ≥ ϵ/2

)
→ 0 (44)
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as r → 0. Thus, by (37), (41) and (44) we have

Pµ(TE > m) ≤ e−t (45)

as r → 0 for m = 3tr−1 log(1/r) exp{1
r (cθc − log hζ(θc))}. This implies the upward inequality of

(5).

Let n = r−1 log r−1 and m = t exp{1
r (cθc − log hζ(θc))} for t > 0. Using Theorem 5.1 in Esary,

Proschan and Walkup (1967), we have

Pµ(TE > m) ≥
m∏
k=1

Pµ(Ek(r) < c)

=

n−1∏
k=1

Pµ

(
Yk,k + Zk,k < c/r

) m∏
k=n

Pµ

(
Yk,n + Zk,n +Rk,n < c/r

)
.

Furthermore, by Chebyshev’s inequality and as in (38) and (44), it follows that

Pµ

(
Yk,n + Zk,n +Rk,n ≥ c/r

)
≤ exp{−1

r

(
cθc − log hζ(θc) + o(1)

)
}

for k ≥ n and small r. Hence

m∏
k=n

Pµ

(
Yk,n + Zk,n +Rk,n < c/r

)
≥

(
1− exp{−1

r

(
cθc − log hζ(θc) + o(1)

)
}
)m−n

→ e−t.

as r → 0.

On the other hand, by Lemma 3, we know that cθ − log hζ(θ) attains its maximal value at θc
since h′ζ(θ)/hζ(θ) is strictly increasing and c − h′ζ(0)/hζ(0) = c − µ > 0. As in (38) and (44), we
can similarly obtain

Pµ

(
Yk,k + Zk,k < c/r

)
≥

(
1− exp{−1

r

(
cθc − log hζ(θc) + o(1)

)
}
)
, (46)

and therefore

n−1∏
k=1

Pµ

(
Yk,k + Zk,k < c/r

)
≥

(
1− exp{−1

r

(
cθc − log hζ(θc) + o(1)

)
}
)n−1

→ 1

as r → 0. Thus, Pµ(TE > m) ≥ e−t for m = t exp{1
r (cθc − log hζ(θc))} as r → 0. This proves the

downward inequality of (5).

(ii). Let Ym,m(r) =
∑m−1

j=0 [Cj(r)ξm−k − µ(1− r)j ]. Take N = r−1 log(1− c/µ)−1 and m = Nt
for t > 1. It follows that

µ

m−1∑
j=0

(1− r)j =
µ

r
[1− (1− r)Nt] ≥ µ

r
[1− (1− c

µ
)t]
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for small r. Then,

Pµ(TE > m) ≤ Pµ

(
Ym,m(r) + Zm,m <

c

r
− µ

m−1∑
j=0

(1− r)j
)

≤ Pµ

(
Ym,m(r) + Zm,m <

c

r
− µ

r
[1− (1− c

µ
)t]
)

= Pµ

(
− Ym,m(r)− Zm,m >

µ

r
[1− c

µ
− (1− c

µ
)t]
)

≤ exp{−θ
µ

r
[1− c

µ
− (1− c

µ
)t] + log fY,m(−θ) + log fZ,m(−θ)},

where

log fY,m(−θ) =

m−1∑
j=0

[log h(−Cj(r)θ) + θµ(1− r)j ],

log fZ,m(−θ) =

∞∑
j=0

log h(−Dm,j(r)θ).

Let d = t(µ[1− c/µ− (1− c/µ)t])−1. Taking θ = rd, it follows from (33) and (42) that

m−1∑
j=0

[log h(−Cj(r)rd) + rdµ(1− r)j ] = (1 + o(1))rd
m−1∑
j=0

[A(1− r)j − Cj(r)] → 0

∞∑
j=0

log h(−Dm,j(r)rd) = −(1 + o(1))rd
∞∑
j=0

Dm,j(r) → 0

as r → 0. Thus,

Pµ(TE > m) ≤ e−t(1+o(1))

as r → 0. This implies the upward equality of (7).

Let M = r−1 log(1− c/µ)−1(1− [log r−1]−p), where p > 0. Then,

Eµ(TE) ≥
M∑

m=1

Pµ(TE > m)

≥
M∑

m=1

m∏
n=1

Pµ

(
Yn,n(r) + Zn,n <

c

r

)
=

M∑
m=1

m∏
n=1

Pµ

(
Yn,n(r) + Zn,n <

c

r
− µ

r
[1− (1− r)n]

)
≥

M∑
m=1

[
Pµ

(
YM,M (r) + ZM,M <

c

r
− µ

r
[1− (1− r)M ]

)]mM
.
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Since

c

r
− µ

r
[1− (1− r)M ] = (1 + o(1))

(µ− c) log µ
µ−c

r(log r−1)p

for small r, by taking θ = 3r(log r−1)p+1[(µ− c) log(1− c/µ)−1]−1 and using (35), we have

log fY,m(θ) → 0, log fZ,m(θ) → 0

as r → 0, and therefore,

Pµ

(
YM,M (r) + ZM,M >

c

r
− µ

r
[1− (1− r)M ]

)
≥ exp{−θ(1 + o(1))

(µ− c) log(1− c/µ)−1

r(log r−1)p
+ log fY,m(θ) + log fZ,m(θ)}

= exp{−3 log r−1(1 + o(1)) + o(1)} = (1 + o(1))r3(1+o(1))

for small r. Thus,

Eµ(TC) ≥
M∑

m=1

[
1− (1 + o(1))r3(1+o(1))

]mM
→ M.

as r → 0. This is the downward inequality of (7). This completes the proof of Theorem 2.
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