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Abstract: In theory, if penalty parameters are chosen appropriately then the lasso

can eliminate unnecessary variables in prediction problems, and improve the perfor-

mance of predictors based on the variables that remain. However, standard meth-

ods for tuning-parameter choice, for example techniques based on the bootstrap or

cross-validation, are not sufficiently accurate to achieve this level of precision. Until

Zou’s (2006) proposal for an inversely-weighted lasso, this difficulty led to specu-

lation that it might not be possible to achieve oracle performance using the lasso.

In the present paper we show that a straightforward application of the m-out-of-n

bootstrap produces adaptive penalty estimates that confer oracle properties on the

lasso. The application is of interest in its own right since, unlike many uses of the

m-out-of-n bootstrap, it is not designed to estimate a non-normal distribution; the

limiting distributions of regression parameter estimators are normal. Instead, the

m-out-of-n bootstrap overcomes the tendency of the standard bootstrap to con-

found the errors committed in determining whether or not a parameter value is

zero, with estimation errors for nonzero parameters.
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1. Introduction

Tibshirani’s (1996) lasso has proved particularly popular for both variable
selection and parameter estimation. In the first of these settings it eliminates, or
at least downweights, explanatory variables that it assesses to be of only minor
influence, and in the second it offers the advantage, over ordinary least squares,
of not degrading performance by estimation of redundant parameters. However,
achieving these outcomes requires careful choice of the smoothing parameter,
generally a vector of nonnegative penalties.

Standard cross-validation or bootstrap methods fail to achieve oracle perfor-
mance in this problem. In particular, they do not produce parameter estimators
that are asymptotically negligible, i.e. that are op(n−1/2), where n denotes sample
size, when true parameter values are zero. The reason is that conventional algo-
rithms are confused by small errors, of order n−1/2, that are implicit in parameter
estimates even when the true values vanish. Unless the oracle tells us which pa-
rameters are zero, so that we have information from outside the sample and can
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drop those components from the model, we do not achieve (using conventional
empirical methods) the good properties for which the lasso is known.

The difficulties arise because the level at which standard methods commit
errors in determining whether a parameter value is zero, is the same as the level
of accuracy at which we are conducting inference; the size is n−1/2 in both cases.
However, if we employ the m-out-of-n bootstrap, where m is of strictly smaller
order of magnitude than n, then the size of the errors we commit in determining
whether a parameter value is zero remains at n−1/2, but the level of accuracy
with which we are estimating the parameters is strictly larger, in fact m−1/2.
Therefore, as we shall detail in this paper, the former error does not confound
the latter, and oracle performance can be achieved.

We shall demonstrate that, using the m-out-of-n bootstrap to choose penal-
ties adaptively, the number of zero parameter values, and their locations in the
parameter vector, are estimated consistently. The estimators of nonzero param-
eter values enjoy the asymptotic variance they would have if the zero values were
eliminated from the model. We also develop an adaptive algorithm for choosing
empirically the value of m.

Our method can be compared with alternative approaches discussed by, for
example, Fan and Li (2001), who introduced a “smoothly clipped standard devia-
tion” (SCAD) penalty and shed doubt on the potential for achieving oracle prop-
erties in the case of the lasso; Meinshausen and Bühlmann (2006), who pointed
to the conflicts inherent in optimal estimation and accurate variable selection;
and Zou (2006), who gave necessary conditions for a singly-penalized version of
the lasso to be consistent. Zou also discussed the adaptive form of the lasso,
where there is a different penalty for each parameter, and introduced a method
which achieves oracle properties in that setting. Zou’s (2006) approach was based
on weights that are inversely proportional to powers of true parameter values,
with a single penalty parameter. By way of contrast, our method eliminates the
weights and, in a p-variate problem, chooses all p penalties together.

There is a very large literature on, or closely related to, the lasso. It includes
other contributions to L1 penalty methods, for example in connection with basis
pursuit (e.g., Chen, Donoho and Saunders (2001) and Ferris, Voelker and Zhang
(2004)); work on the nonnegative garotte (e.g., Breiman (1995) and Gao (1998));
research on soft thresholding (e.g., Donoho, Johnstone, Kerkyacharian and Picard
(1995)); and contributions to inference under sparsity (e.g., Donoho and Huo
(2001), Donoho and Elad (2003), Tropp (2005) and Donoho (2006a,b)).

2. Model and Bootstrap Methods

2.1. Model and estimator

Assume that data pairs (xi, Yi), for 1 ≤ i ≤ n, are generated under the model

Yi = β0 + xT
i β + εi , (2.1)
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where xi and β = (β1, . . . , βp)T are p-vectors; Yi, β0 and εi are scalars; and, con-
ditional on x1, . . . , xn, the experimental errors εi are independent and identically
distributed with zero mean and variance σ2.

We suppose too that the covariates are centered at their empirical means, so
that

n∑
i=1

xi = 0 . (2.2)

This condition is imposed without loss of generality, since inference is conducted
conditionally on the covariates, and, in particular, the assumption that the xi’s
are independent random vectors is not required. Note that recentering to achieve
(2.2) requires xi = xni to depend on n, although we usually suppress the sub-
script n.

Under (2.2) we can, and shall, estimate β0 as Ȳ = n−1
∑

i Yi. To estimate
the true values β0

1 , . . . , β0
p of β1, . . . , βp, let λ = (λ1, . . . , λp)T denote a vector

of nonnegative components, and define β̂ = β̂λ = (β̂1, . . . , β̂p)T to be the mini-
mizer of

Sλ(β) =
n∑

i=1

(
Yi − Ȳ − xT

i β
)2 +

p∑
j=1

λj |βj | . (2.3)

Let R be the set of integers j for which β0
j = 0, and write n−1 Σ1 for the limiting

covariance matrix of the least-squares estimator after the model (2.1) has been
reduced by eliminating βj for all j ∈ R. Denote by R̂ the set of j such that
β̂j = 0. The estimator β̂ is said to have the oracle property if,

n1/2 (β̂ − β0), after components corresponding to elements of R have
been removed, is asymptotically normal N(0, Σ1), and P (R̂ = R) → 1.

(2.4)

2.2. Bootstrap algorithm

Let β̃ denote a root-n consistent “pilot estimator” of β0. The simplest choice
of β̃ is the standard least-squares estimator, equal to the minimizer of Sλ(β) when
λ is a vector of zeros, and we use that estimator in Section 4. Compute the resid-
uals, ε̂i = Yi− Ȳ −xT

i β̃; put ε̃i = ε̂i−n−1
∑

j ε̂j (if β̃ is the standard least-squares
estimator then ε̃i = ε̂i); given m ∈ {1, . . . , n}, obtain ε∗1, . . . , ε

∗
m by sampling ran-

domly, with replacement, from ε̃1, . . . , ε̃n (recall that we are using the m-out-of-n
bootstrap); and define Y ∗

i = Ȳ + xT
i β̃ + ε∗i for 1 ≤ i ≤ m. Here, x1, . . . , xn are

unchanged from their appearance in the dataset (x1, Y1), . . . , (xn, Yn) introduced
in Section 2.1. Writing λ = (λ1, . . . , λp)T for a vector of nonnegative numbers,
let β = β̂∗ be the minimizer of

S∗
λ(β) =

m∑
i=1

(
Y ∗

i − Ȳ ∗ − xT
i β

)2 +
p∑

j=1

λj |βj | .
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Let Z = {(x1, Y1), . . . , (xn, Yn)} denote the dataset, and define

M̂SE(λ) = E
(
‖β̂∗ − β̃‖2

∣∣Z)
,

an estimator of MSE(λ) = E(‖β̂ − β‖2). Put

λ̃ = argmin M̂SE(λ) , λ̂ =
( n

m

) 1
2
λ̃ , (2.5)

where of course the minimum is taken over p-vectors λ with nonnegative compo-
nents.

The correctness of the normalization (n/m)1/2 in (2.5) derives from the fact
that this standardization is appropriate in asymptotic results under local per-
turbation models; see Section 3.1, and particularly Theorem 1. The relevance of
this viewpoint can be appreciated when it is noted that β̂j is, in effect, a local
perturbation of the true value, β0

j , of βj , on a scale of n−1/2.
Our final estimator of β is the value β̄ = (β̄1, . . . , β̄p)T that minimizes Sλ̂(β).

We show in Section 3.3 that β̄ is first-order optimal. In particular, just as in the
case of the estimator β̂opt which uses the theoretically optimal, but unknown,
value of λ, the jth component of β̄ converges to zero faster than n−1/2 if β0

j = 0,
and the components of β̄j that correspond to nonzero β0

j ’s have the same first-
order asymptotic properties as the least-squares estimators constrained to those
components.

A bootstrap approach alternative to that given two paragraphs above would
be to resample the design variables xi, as well as the centered residuals ε̃i. This
would be appropriate if the xi’s were being treated as random variables, rather
than fixed quantities. However, the model (2.1) is generally interpreted as one
of regression, and in that context the design variables xi would be conditioned
upon, even if they had a random origin. The study of (2.1), when the xi’s are
treated as random variables, is generally viewed as correlation analysis rather
than regression.

Depending on the performance of the pilot estimator in the true model, it
could be the case that the final estimator β̄ actually performs less well than
the pilot estimator. For example, this would tend to be the case if the pilot
estimator were the standard least-squares estimator and the true β did not have
any components close to zero. This property is shared by the method proposed
by Zou (2006), and also arises in related problems in inference.

2.3. Empirical choice of m

It will be clear from both our numerical work and our theoretical analysis
(see e.g., Theorem 3 in Section 3) that performance of the m-out-of-n bootstrap
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in the present problem is quite insensitive to choice of m. This fact makes it
inherently difficult to choose m optimally, and so we instead opt for a method
which is intuitively reasonable and selects m within the range of values where we
know the method enjoys good performance.

Arguably the most impressive feature of the lasso is its ability to identify
components of the parameter vector β0 that equal zero, or are close to zero; and
either eliminate them from the model or give them relatively little weight in the
estimator. Our approach to an empirical choice of m is founded on this aspect of
the problem. We suggest an algorithm that has the following steps. (a) Identify a
small number of subsets of the components of β that might be zero. (b) Introduce
a second bootstrap method, based on the subsets chosen in (a). (c) Determine
the values of m that give minimum mean squared error in those settings, and
select the final value of m using this information.

First we describe step (a) of the algorithm. As in Section 2.2, let β̃ denote a
pilot estimator of β0. Rank the absolute values of the components of β̃ as |β̃(1)| ≤
· · · ≤ |β̃(p)|. Given a candidate value, q say, for the number of integers j for
which β0

j = 0, determine these to be the indices of the components β̃(1), . . . , β̃(q).
Replace these components in β̃ by zero, and let β̌ denote the vector that results.
(Thus, q of the components of β̌ are zero, and the other p − q components are
identical to their counterparts for β̃.)

Step (b) has the following form. Generate new data pairs (xi, Y
†
i ), for 1 ≤ i ≤

n, where Y †
i = Ȳ +xT

i β̌+ε†i , with the design points x1, . . . , xn identical to those in
the original dataset Z = {(x1, Y1), . . . , (xn, Yn)}, and with the bootstrap errors ε†i
either computed as were the variables ε∗i in Section 2.2, or generated more simply,
for example as independent Normal N(0, σ̂2) variates where σ̂2 = n−1

∑
i ε̃2i .

Step (c) has seven sub-steps, as follows. (i) Replace the original dataset Z
by Z† = {(x1, Y

†
1 ), . . . , (xn, Y †

n )}. (ii) Apply the bootstrap algorithm suggested
in Section 2.2 to Z†, for a particular value of m, obtaining a version λ̂† of the
weight vector λ at (2.5). (iii) Take β̄† = (β̄†

1, . . . , β̄
†
p)T to be the minimizer of

S†
λ̂†(β) =

n∑
i=1

(
Y †

i − Ȳ † − xT
i β

)2 +
p∑

j=1

λ̂†
j |βj | ,

where Ȳ † = n−1
∑

i Y †
i . (iv) Compute ‖β̄† − β̌‖2. (v) Average ‖β̄† − β̌‖2 over

many simulated versions of Z†, thereby obtaining ŝq(m) = E(‖β̄† − β̌‖2 | Z),
which is a bootstrap estimator of sq(m) = E(‖β̄ − β0‖2) in the case where just
q of the components of β0 vanish. (vi) Choose m = m̂q to minimize ŝq(m).
(vii) Take the final value of m to be the average of values of m̂q for integers



454 PETER HALL, EUN RYUNG LEE AND BYEONG U. PARK

q which we believe, perhaps after formal tests of statistical significance, to be
approximations to the number of zero components β0

j in β0.

3. Theoretical Properties

3.1. Theoretical properties under local perturbations

To adequately model the variety of ways in which the components of β can
vary, especially in the context of bootstrap methods, we initially take the true
value of β, β0 = βn0 say, to depend on n and assume that, for an integer q with
0 ≤ q ≤ p, and finite constants γ1, . . . , γq,

for 1 ≤ j ≤ q, n1/2 β0
j → γj , and for q + 1 ≤ j ≤ p, sj ≡ sgn(β0

j )
does not depend on n, and n1/2 |β0

j | → ∞.
(3.1)

That is, we reorder of the components of β0 so that the first q are “small,” in fact
perturbations of zero on the scale of n−1/2, and the remaining p− q are “large.”
We also impose minor conditions on the design points xi:

n− 1
2 max

1≤i≤n
‖xi‖ → 0 and

1
n

n∑
i=1

xi x
T
i → Σ , (3.2)

where Σ is a p × p matrix and

Σ is positive definite . (3.3)

Given a vector λ0 = (λ0
1, . . . , λ

0
p)

T with nonnegative, finite components, let Z

denote a random p-vector with the normal N(0, σ2 Σ) distribution, and define

V (u |λ0) = uT Σ u − 2 uTZ +
q∑

j=1

λ0
j (|γj + uj | − |γj |) +

p∑
j=q+1

λ0
j sj uj .

The methods leading to Theorem 2 of Knight and Fu (2000) can be used to derive
the following result.

Theorem 1. If (3.1)−(3.3) hold and n−1/2 λ → λ0, then

n
1
2 (β̂ − β0) → U(λ0) ≡ argminu V (u |λ0)

in distribution, and E
∥∥n1/2 (β̂ − β0)

∥∥2 → E‖U(λ0)‖2.

The optimal value of λ0, λ0
opt say, minimizes E‖U(λ0)‖2. If γj = 0 for

1 ≤ j ≤ q, then the jth component of λ0
opt equals infinity if 1 ≤ j ≤ q and equals

zero otherwise; see the lemma in Section 5.1. Therefore, if β0 were fixed then
an asymptotically optimal estimator of β0 would have β̂j = op(n−1/2) in cases
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where β0
j = 0, and would have the other components β̂k determined by, in effect,

ordinary least-squares restricted to indices k for which β0
k 6= 0.

However, the situation changes substantially if, in (3.1), one or more of
the γj ’s, for 1 ≤ j ≤ q, is nonzero. For such a value of j the corresponding
λ0

j is no longer infinite, and so the distribution of U(λ0) changes. Therefore a
perturbation, or inaccuracy, of order n−1/2 in the value of β0

j for sample size
n, relative to the value of β0

j in the limit as n → ∞, can significantly alter the
asymptotic distribution of β̂. This is the reason the standard bootstrap fails to
consistently estimate the optimal λ; further details are given below.

3.2. Why the standard bootstrap fails, and the m-out-of-n bootstrap
works

Suppose that the true value, β0
j , of βj is zero for 1 ≤ j ≤ q (and for n ≥ 1),

and equals a fixed, nonzero constant for q + 1 ≤ j ≤ p. If 1 ≤ j ≤ q then
interpreting Theorem 1 in the case of the m-out-of-n bootstrap involves, in the
resampling step, replacing β0

j by its pilot estimator, β̃j (see Section 2.2), which
is generally in error by terms of order n−1/2. That is, β̃j = β0

j + n−1/2ζj , where
ζj is an asymptotically normally distributed estimation error with, in the large-
sample limit, zero mean and finite, nonzero variance. When resampling from this
empirical approximation to the true model we would take γj , in (3.1), to be the
large-sample limit of ζj . In the resampling step we condition on the data, and
in particular we hold ζj fixed. The presence of this perturbation is the reason
for the failure of the standard bootstrap; as noted in the last paragraph of the
previous subsection, it alters the limiting distribution.

However, if we use instead the m-out-of-n bootstrap then, while the identity
β̃j = β0

j +n−1/2ζj is still appropriate (since β̃j is computed from a sample of size
n), Theorem 1 should now be interpreted on a scale of m−1/2 rather than n−1/2.
Therefore, attention focuses now on m1/2β0

j , not on n1/2β0
j (see (3.1)), with β0

j

replaced by β̃j = β0
j + n−1/2ζj . When the true value of βj equals 0, which is

the case of critical interest (see the first sentence of this subsection), m1/2β̃j =
m1/2n−1/2ζj → 0, provided m/n → 0. Therefore the effective value of γj , in
(3.1), is now zero; the asymptotically optimal value of λ0

j is infinity; and the
m-out-of-n bootstrap results in an asymptotically optimal choice of λ. Details
are given in Section 3.3.

These arguments apply only in cases where 1 ≤ j ≤ q. If no values of β0
j

vanish then the standard least-squares estimator is asymptotically optimal, in
the sense of minimizing E‖β̂−β0‖2, and the standard bootstrap, and the m-out-
of-n bootstrap, both produce estimators of λ which satisfy λ̂/n1/2 → 0 and so
are asymptotically equivalent to the least-squares estimator.
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3.3. Theory for the m-out-of-n bootstrap

We first set up, and solve, a non-bootstrap version of the problem in terms of
a triangular array of sub-problems, indexed by “time” n. This makes it possible
to apply the result to the bootstrap case. Note that in the bootstrap world, even
the error distributions vary from one value of n to another.

Assume that at time n we observe data generated under the model Yni =
βn0 + xT

ni β
n0 + εni, where βn0 = (βn0

1 , . . . , βn0
p )T, and the experimental errors

εn1, . . . , εnp are independent and identically distributed with zero mean and vari-
ance σ2

n. Suppose too that as n → ∞,

max
1≤i≤n

‖xni‖ = o
(
n

1
2
)
,

n∑
i=1

xni = 0, Σn ≡ 1
n

n∑
i=1

xni x
T
ni → Σ, σ2

n → σ2, (3.4)

Σ is a positive-definite p × p matrix, 0 < σ2 < ∞ , (3.5)

lim
c→∞

lim sup
n→∞

E
{
ε2n1 I(|εn1| > c)

}
= 0 , (3.6)

an ≡ n
1
2 max

1≤j≤q
|βn0

j | → 0 , bn ≡ n
1
2 min

q+1≤j≤p
|βn0

j | → ∞ , (3.7)

where 0 ≤ q ≤ p. Condition (3.4) asserts that the covariance matrix Σn, and
variance σ2

n, are asymptotically nondegenerate and constant; (3.6) is a standard
Lindeberg-type condition for the errors; and (3.7) implies that the indices j are
ordered in such a way that the first q are small on a scale of n−1/2, and the
remainder are large on that scale. In this new notation, and defining Ȳn =
n−1

∑
i Yni, we have

Sλ(β) =
n∑

i=1

(
Yni − Ȳn − xT

niβ
)2 +

p∑
j=1

λj |βj | .

Take λ = λn opt, the value of λ that minimizes E‖β̂−βn0‖2 when β̂ is selected
to minimize Sλ(β). Denote by β̂opt this version of β̂. If λn opt is not uniquely
defined, choose a value that minimizes

∑
j (λn opt)2j , where (λn opt)2j denotes the

square of the jth component of λn opt. Let Σ0 denote the (p− q)× (p− q) matrix
obtained by deleting the first q rows and q columns of Σ. Write S for the set
{1, . . . , q}, i.e., the set of indices j such that limn→∞ n1/2 |βn0

j | → 0, and let Ŝ
be the set of j for which (β̂opt)j = 0.

Theorem 2. Assume that (3.4)−(3.7) hold. Then, (a) (λn opt)j/n1/2 → ∞ for
1 ≤ j ≤ q, and (λn opt)j/n1/2 → 0 for q + 1 ≤ j ≤ p; (b) P (Ŝ = S) → 1
as n → ∞; and (c) the variables n1/2 (β̂opt − βn0)j, for q + 1 ≤ j ≤ p, are
asymptotically jointly normally distributed with zero means and covariances given
by the respective components of σ2 (Σ0)−1.
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In summary, Theorem 2 asserts that β̂opt is first-order equivalent to the es-
timator constrained by taking β̂j = 0 for 1 ≤ j ≤ q, and β̂j (for q + 1 ≤ j ≤ p)
equal to the jth component of the least-squares estimator obtained after elimi-
nating β1, . . . , βq from the model. Together, (b) and (c) demonstrate asymptotic
optimality of the estimator β̂opt; property (b) is sometimes referred to as consis-
tency.

Next we state a version of Theorem 2 in the bootstrap case, under (2.1)
rather than the triangular array of (3.4)−(3.7). The centering assumption (2.2)
implies that the design variables xi are notionally recentered for each n, and it is
advantageous here to be specific about the manner of centering. We suppose that

xi (= xni)= zi − z̄n, where z̄n = n−1
∑

i≤n zi and z1, z2, . . . is
a sequence of p-vectors for which ‖zi‖ is uniformly bounded and
Σn ≡ n−1

∑
i≤n (zi − z̄n) (zi − z̄n)T → Σ, with Σ denoting a positive-

definite p × p matrix.

(3.8)

In the bootstrap algorithm, take the pilot estimator β̃ to be the ordinary least-
squares estimator. Recall the definition of λ̂ = (λ̂1, . . . , λ̂p)T at (2.5), and that β̄

is chosen to minimize Sλ̂(β), with Sλ(β) given by (2.3). Let T = {1, . . . , q}, and
T̂ be the set of j for which β̄j = 0.

Theorem 3. Assume that, in the model at (2.1), βj = 0 for 1 ≤ j ≤ q, βj 6= 0
for q + 1 ≤ j ≤ p, the errors εi are independent and identically distributed
with zero mean and finite variance σ2, the design variables xi satisfy (3.8), and
the resample size m = m(n) satisfies m = O{n/(log n)1+η} and m → ∞ for
some η > 0. Then, (a) with probability 1, λ̂j/n1/2 → ∞ for 1 ≤ j ≤ q and
λ̂j/n1/2 → 0 for q + 1 ≤ j ≤ p; (b) P (T̂ = T ) → 1 as n → ∞; and (c) the
variables n1/2 (β̄ − β0)j, for q + 1 ≤ j ≤ p, are asymptotically jointly normally
distributed with zero means and covariances given by the respective components
of σ2 (Σ0)−1.

Parts (b) and (c) of the theorem demonstrate that β̄ has the oracle property;
see (2.4).

3.4. The case of very large p

Versions of the theory given above can be developed in the case where p, q →
∞ and p− q is fixed. However, the maximum rate of divergence permitted for p

seems to depend on the “generalized parameters” of the model, for example on
the tail weight assumed of the distribution of ε, and on the distance of Σn from
a nonsingular matrix. In addition, the biased bootstrap method becomes more
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labour-intensive as p increases. The competing method of Zou (2006) also suffers
difficulties for large p.

4. Numerical Properties
4.1. Implementation of m-out-of-n bootstrap algorithms

We first note that one cannot use the LARS algorithm to minimize (2.3) since
the penalties λj are different for different coefficients. Minimization of (2.3) is
equivalent to the following problem:

minimize
n∑

i=1

{
Yi − Ȳ − xT

i (β+ − β−)
}2 +

p∑
j=1

λj (β+
j + β−

j ) over β+

(4.1)
= (β+

1 , . . . , β+
p ) and β− = (β−

1 , . . . , β−
p ), subject to β+

j , β−
j ≥0 for all j.

The problem (4.1) involves quadratic programming with inequality constraints,
and thus can be solved by a standard technique such as the gradient projection
method; see, for example, Nocedal and Wright (2006, Sec. 16.7).

Minimization of M̂SE(λ), at (2.5), on a p-dimensional grid of λ is compu-
tationally expensive when p is large. To reduce the computational burden, we
suggest an iterative algorithm that has the following steps. (a) Initialize using
λ(0) = (λ(0)

1 , . . . , λ
(0)
p )T. (b) For 1 ≤ j ≤ p, update λ

(0)
j by

λ
(1)
j = argminλj

M̂SE
(
λ

(1)
1 , . . . , λ

(1)
j−1, λj , λ

(0)
j+1, . . . , λ

(0)
p

)
. (4.2)

(c) For k ≥ 1, repeat (b) to get λ(k+1) from λ(k) until |M̂SE(λ(k+1))−M̂SE(λ(k))|
is sufficiently small. (d) Take λ̃ to be the limit of the iteration.

For the initial values in the above iteration, one may use λ
(0)
j = cm/|β̃j |

for some cm > 0, where β̃ is the standard least-squares estimator. This initial
choice corresponds to Zou’s (2006) adaptive lasso penalty with γ = 1, and is
closely related to the nonnegative garotte of Breiman (1995). In the simulation
study we used cm = n−1/4 m1/2. This was based on the fact that the penalties
λj = dn/|β̃j | yield the oracle property for the lasso estimator if dn/n1/2 → 0 and
dn → ∞ as n → ∞; see Theorem 2 of Zou (2006). The choice cm = n−1/4 m1/2

corresponds to dn = n1/4, due to the normalization (n/m)1/2 in (2.5).

4.2. Simulation study

We compared the finite-sample performance of the bootstrap penalty choice
with Zou’s (2006) approach for the lasso. In our comparison we also included the
SCAD method of Fan and Li (2001).
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We computed our proposed estimator β̄ using the method described in Sec-
tion 4.1. We used the LARS algorithm to compute Zou’s (2006) adaptive lasso,
which is given by β̂Zou,j = bj |β̃j |γ , where β = (b1, . . . , bp) minimizes

n∑
i=1

{
Yi − Ȳ −

p∑
j=1

(|β̃j |γxij) βj

}2

+ ζ

p∑
j=1

|βj | .

The tuning parameter (γ, ζ) was chosen by five-fold cross-validation. To imple-
ment the SCAD method we applied the LQA algorithm of Fan and Li (2001).
This involves Newton-Raphson iteration based on a local quadratic approxima-
tion of the SCAD penalty. Specifically, let β̂

(k)
SCAD be the estimate from the kth

iteration. In the (k + 1)st iteration, the algorithm sets β̂
(k+1)
SCAD,j = 0 if β̂

(k)
SCAD,j is

very close to zero. Let A ≡ A(k) be the set of indices for the other components.
Then, the algorithm takes

β̂
(k+1)
SCAD,A =

{
XT

AXA + nDω(β̂(k)
SCAD)

}−1
XT

AY ,

where XA denotes the design matrix consisting of the columns that correspond
to those j ∈ A, Dω(θ) = diag{p′ω(|θj |)/|θj |}j∈A and

p′ω(θ) = ω

{
I(θ ≤ ω) +

(aω − θ)+
(a − 1)ω

I(θ > ω)
}

, where a > 2 .

In the simulation we set

β̂
(k+1)
SCAD,j = 0 if

∣∣β̂(k)
SCAD,j

∣∣ < δ

p∑
i=1

∣∣β̂(k)
SCAD,i

∣∣ (4.3)

for a small positive number δ. We took the standard least-squares estimator β̃ as
the initial value β̂

(0)
SCAD, and used five-fold cross-validation to choose the tuning

parameter (a, ω).
We generated the values of the predictor xi = (xi1, . . . , xi8)T from the normal

N8(0,Σ) distribution, where Σ = (0.5|i−j|). We set σ = 1 and 3. The sample
sizes were n = 50, 100. For the values of the true parameters we considered the
following two models:

Model 1: β0 = (3, 1.5, 0, 0, 2, 0, 0, 0).

Model 2: β0
j = 1.5 for 1 ≤ j ≤ 3 and β0

j = 0.3 for 4 ≤ j ≤ 8.

Note that the first model was also considered by Fan and Li (2001) and Zou
(2006). Comparison was made in terms of the numbers of correct and incorrect
identifications of zero parameters, as well as the prediction error PE = E(Y −
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xTβ̄)2, where the expectation was taken with respect to the test observation
(x, Y ) only. Since

PE = σ2 + (β̄ − β0)TE(xxT)(β̄ − β0),

we used ME = (β̄−β0)TE(xxT) (β̄−β0) as a measure of performance; here, ME
stands for “model error.”

One hundred bootstrap samples were used to compute M̂SE(λ). For a given
value of λ, it took about 2 seconds to obtain M̂SE(λ) when n = 50 and m = 40 in
our current computing environment with CPU: intel(R) Core2 Duo 1.86GHz and
RAM: 1GB. Updating a single λj as at (4.2) took roughly 7.5 seconds, so that
it took about 1 minute to run one whole iteration for updating λj , j = 1, . . . , 8.
The tolerance value in the iteration for selecting λ̃ as described in Section 4.1
was set at 10−6. We found that in most cases the algorithm converged in five
to ten iterations. Thus, the average computing time to compute λ̂ at (2.5) was
about 6 minutes.

Tables 1 and 2 summarize the results of the simulation for several choices
of the subsample size m for the bootstrap lasso, and of the cut-off value δ, at
(4.3), for the SCAD method. The tables show the median value of relative model
error (MRME) with respect to the least-squares estimator, as well as the average
numbers of correct and incorrect identifications of zero coefficients. The measure
MRME was also used by Fan and Li (2001). The bootstrap lasso worked better
for smaller m in Model 1, and for larger m in Model 2. This was to be expected
since a small m, if not too small, would lead to choosing a penalty λ close to
its optimum when there were zero coefficients. Note too that subsampling was
not so crucial to performance of the bootstrap method when there was no zero
coefficient; see the discussion in Section 3.2. In contrast, the SCAD method
performed well for relatively large δ when there were zero coefficients. This was
also expected since, for larger values of δ, it was more likely that the estimates
of the zero coefficients were equal to zero.

Comparing, in the context of Model 1, Zou’s adaptive lasso, the bootstrap
lasso and the SCAD approach, using tuning-parameter values that gave optimal
performance of the respective methods, we found that the bootstrap lasso per-
formed best when the noise level was high, while the SCAD method was best
when the noise level was low. Zou’s adaptive lasso did not do as well, but its
performance did not vary much for different noise levels. On the other hand in
the case of Model 2, Zou’s performed best. In this setting the bootstrap lasso
was again better (worse) than the SCAD technique when the noise level was high
(low), again when tuning-parameter values were chosen so as to give optimum
performance.
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Table 1. Comparison of the Methods Based on 100 Replications for Model 1.

Avg. No. of 0 Coefficients
Method MRME(%) Correct Incorrect

(n = 50, σ = 1)

Bootstrap LASSO m = 10 49.80 4.66 0.01
m = 20 48.57 4.46 0
m = 40 58.15 4.16 0

SCAD δ = 0.01 64.30 3.95 0
δ = 0.03 55.78 4.49 0
δ = 0.06 34.47 4.97 0

Zou’s LASSO 73.63 2.68 0

(n = 50, σ = 3)

Bootstrap LASSO m = 10 65.30 4.03 0.19
m = 20 64.92 3.63 0.07
m = 40 75.30 3.01 0.05

SCAD δ = 0.01 86.32 3.10 0.07
δ = 0.03 81.71 3.57 0.08
δ = 0.06 77.52 3.95 0.08

Zou’s LASSO 71.15 2.89 0.02

(n = 100, σ = 1)

Bootstrap LASSO m = 20 44.04 4.79 0
m = 40 46.62 4.59 0
m = 80 55.48 4.22 0

SCAD δ = 0.01 56.12 4.40 0
δ = 0.03 46.64 4.80 0
δ = 0.06 37.93 5 0

Zou’s LASSO 72.89 2.85 0

(n = 100, σ = 3)

Bootstrap LASSO m = 20 51.36 4.28 0.01
m = 40 62.93 3.75 0.01
m = 80 72.84 3.26 0

SCAD δ = 0.01 65.84 3.84 0
δ = 0.03 61.83 4.14 0
δ = 0.06 65.23 4.41 0

Zou’s LASSO 73.28 2.95 0
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Table 2. Comparison of the Methods Based on 100 Replications for Model 2.

Avg. No. of 0 Coefficients
Method MRME(%) Correct Incorrect

(n = 50, σ = 1)

Bootstrap LASSO m = 10 191.37 - 2.12
m = 20 143.58 - 1.60
m = 40 126.06 - 1.29

SCAD δ = 0.01 103.92 - 1.05
δ = 0.03 126.05 - 1.53
δ = 0.06 269.59 - 3.17

Zou’s LASSO 100.00 - 0.30

(n = 50, σ = 3)

Bootstrap LASSO m = 10 108.34 - 3.52
m = 20 100.17 - 3.17
m = 40 89.56 - 2.67

SCAD δ = 0.01 100.00 - 2.37
δ = 0.03 97.94 - 2.76
δ = 0.06 100.56 - 3.39

Zou’s LASSO 83.98 - 2.36

(n = 100, σ = 1)

Bootstrap LASSO m = 20 185.43 - 1.11
m = 40 160.35 - 0.69
m = 80 131.81 - 0.54

SCAD δ = 0.01 100.00 - 0.49
δ = 0.03 128.73 - 0.96
δ = 0.06 516.58 - 3.47

Zou’s LASSO 100.00 - 0.06

(n = 100, σ = 3)

Bootstrap LASSO m = 20 123.10 - 3.18
m = 40 108.05 - 2.84
m = 80 98.54 - 2.38

SCAD δ = 0.01 100.19 - 1.96
δ = 0.03 103.35 - 2.49
δ = 0.06 115.77 - 3.16

Zou’s LASSO 87.68 - 1.36
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Table 3. Performance of Bootstrap LASSO with Empirical Choice of m.

Noise Avg. No. of 0 Coefficients
Model Level MRME(%) Correct Incorrect
Model 1 σ = 1 50.36 4.33 0

σ = 3 70.90 3.48 0.08
Model 2 σ = 1 125.65 - 1.25

σ = 3 89.86 - 2.71
Note: Based on 100 replications with sample size n = 50.

From the tables we see that performance of the SCAD method depended
very much on choice of the cut-off value, δ, especially when the noise level was
low. For example, the value of MRME ranged from 100 to 516 when n = 100
and σ = 1, in the case of Model 2. One unpleasant feature of the LQA algo-
rithm, for the SCAD method, was that it forced coefficients to be artificially zero.
Furthermore, as noted by Fan and Li (2001), once a coefficient was shrunken to
zero in the iteration, it stayed at that value. No guidelines have been suggested
for choosing the cut-off value. Performance of the bootstrap lasso also had a
degree of dependence on subsample size, as is usually the case for m-out-of-n
bootstrap procedures. In contrast to the SCAD method, however, we have a rule
for choosing m empirically, as suggested in Section 2.3.

Indeed, we investigated performance of the bootstrap lasso when the sub-
sample size, m, was chosen empirically according to the algorithm described in
Section 2.3. To determine q, the number of zero components of β̌ in the boot-
strap population for generating bootstrap samples {(xi, Y

†
i )}, we first ranked the

absolute values of the components of β̃ as |β̃(1)| ≤ · · · ≤ |β̃(p)|. For j = 1, . . . , p,
we conducted a series of F -tests for the hypotheses Hj : β0

(1) = · · · = β0
(j) = 0.

For two given levels of significance α1 and α2 (α1 > α2), we took q1 and q2,
respectively, to be the largest indices j such that Hj was accepted, and we took
the values of q to be those in the interval [q1, q2]. In our simulation, we chose
α1 = 0.05 and α2 = 0.01.

Table 3 gives simulation results for the bootstrap lasso when the subsample
size, m, was chosen empirically according to the algorithm described in Sec-
tion 2.3 and in the previous paragraph. From the table we see that the empirical
choice of m gave nearly the same performance as the one that the bootstrap lasso
achieved with optimally chosen tuning-parameter values. The resulting bootstrap
lasso was better than the SCAD method with optimally chosen δ, when the noise
level was high.

5. Technical Arguments

5.1. Proof of Theorem 2

Step 1 : Minimum mean squared error in the asymptotic limit. Let ν1, . . . , νq

denote nonnegative constants, let µq+1, . . . , µp be arbitrary real numbers, let µ
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represent the p vector of which the first q components equal 0 and the next p− q
equal µq+1, . . . , µp, and write ξ for a general p-vector. Let Σ denote a p × p,
positive-definite matrix, let Σ0 be as in Theorem 2, let σ > 0, and write W for a
random p-vector having the normal N(0, σ2 Σ) distribution. Define ξ = Ξ(µ, ν),
written below simply as Ξ, to be a random vector that minimizes

ξTΣ ξ − 2 ξTW +
q∑

j=1

νj |ξj | + µTξ . (5.1)

Lemma. The values of ν1, . . . , νq and µ that minimize E‖Ξ‖2 are νj = ∞, for
1 ≤ j ≤ q, and µ = 0; the minimum is unique. Moreover, a vector Ξ that
minimizes E‖Ξ‖2 has Ξj = 0 almost surely, for 1 ≤ j ≤ q, and has its other p−q
components jointly normally distributed with zero means and covariances given
by the respective components of σ2 (Σ0)−1.

Taking each νj = ∞ and µ = 0 ensures that Ξ is just the minimizer of
ξTΣ ξ − 2 ξTW , after the first q components of ξ are constrained to equal to 0.

Proof of Lemma. Without loss of generality, σ = 1. Consider the problem of
estimating β0 = (β0

1 , . . . , β0
p)T in the regression model Yi = xT

i β0 + εi, where the
errors εi are independent and identically distributed as Normal N(0, 1), the design
variables xi satisfy Σn ≡ n−1

∑
i xix

T
i → Σ, we know that β0

1 = · · · = β0
q = 0,

and we know only the signs of β0
q+1, . . . , β

0
p , all of which are nonzero. Since the

errors are Gaussian then the least-squares estimator of β0, β̃ls say, constructed
after equating to zero the estimators of β0

1 , . . . , β0
q , has minimum asymptotic

variance and minimum asymptotic mean squared error.
Defining ξ = (ξ1, . . . , ξp)T = n1/2(β − β0), ξ̃ls = n1/2 (β̃ls − β0) can be

shown to equal the minimizer of ξTΣn ξ − 2 ξTWn, with ξ1, . . . , ξq constrained
to equal 0, where Wn = n−1/2

∑
i xi εi and so is distributed as normal N(0, Σn).

The asymptotic distribution of ξ̃ls is that of the minimizer, ξ̃as say, of ξTΣ ξ −
2 ξTW , constrained to have ξ1 = · · · = ξq = 0. This is the same as the limiting
distribution of the quantity that minimizes the function of ξ at (5.1), provided
we take νj = ∞ for 1 ≤ j ≤ q (this imposes the constraint ξ1 = · · · = ξq = 0)
and µ = 0.

A second, competing estimator of β0, the asymptotic distribution of which
is the distribution of the minimizer of (5.1), is the vector β = β̃ that minimizes

n∑
i=1

(
Yi − xT

i β
)2 + n

1
2

q∑
j=1

νj |βj | + n
1
2

p∑
j=q+1

αj |βj | ,

where αj = µj sgn(β0
j ). Minimum variance of ξ̃ls, and hence also the fact that

E‖Ξ‖2 is minimized by taking each νj = ∞ and µ = 0, follows from the minimum-
variance property noted at the end of the first paragraph of this proof. Uniqueness
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of the minimum of E‖Ξ‖2 follows from uniqueness of the minimum-variance
property. The correctness of the second sentence in the lemma follows from the
definition of Ξ.
Step 2 : Simplification of formula for Sλ. Define γnj = n1/2 βn0

j , ∆j = n1/2 (βj −
n−1/2 γnj), ∆ = (∆1, . . . , ∆p)T, λnj = n−1/2 (λn opt)j , Σn = n−1

∑
i xnix

T
ni and

Zn = n−1/2
∑

i εni xni. Write R for a random variable that does not depend
on β. In this notation,

Sλn opt(β) = ∆T Σn∆ − 2 ZT
n ∆

+
q∑

j=1

λnj |γnj + ∆j | +
p∑

j=q+1

λnj (|γnj + ∆j | − |γnj |) + R . (5.2)

Note too that, by (3.4) and (3.5),

lim sup
n→∞

E‖Zn‖2 < ∞ . (5.3)

Observe too that the first, third and fourth parts of (3.4), and the Lindeberg-type
condition (3.6), imply that

Zn → N(0, σ2 Σ) in distribution . (5.4)

The standard least-squares estimator β̃, which minimizes Sλ(β) when λ ≡ 0,
has n1/2 (β̃ − β) = Σ−1

n Zn, and so satisfies, for all sufficiently large n, nE‖β̃ −
β‖2 = tr(Σ−1

n ) σ2 ≤ C3 ≡ 2pσ2/C1, where C1 denotes the smallest eigenvalue
of Σ. Since λ = λn opt minimizes E‖∆‖2 then, if ∆opt denotes the version of ∆
computed when β is chosen to minimize Sλn opt(β),

E‖∆opt‖2 ≤ C3 for all sufficiently large n . (5.5)

Recalling the definition of bn at (3.7), denote by Bn the set of β for which
n1/2 maxq+1≤j≤p |βj − βn0

j | = maxq+1≤j≤p |∆j | ≤ bn/2. In view of (5.5),

P (β̂opt ∈ Bn) → 1 . (5.6)

Let λ′
nj = λnj sgn(γnj). If β ∈ Bn, then by (5.2),

Sλn opt(β) = ∆T Σn∆ − 2 ZT
n ∆ +

q∑
j=1

λnj |γnj + ∆j | +
p∑

j=q+1

λ′
nj ∆j + R . (5.7)

Step 3 : Completion. Assume that all the eigenvalues of Σ lie in [C1, C2], where
0 < C1 ≤ C2 < ∞. Choose n1 so large that, for all n ≥ n1, all the eigenvalues of
Σn lie in [C1/2, 2C2]. Differentiating the right-hand side of (5.7) with respect to
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∆j , for q + 1 ≤ j ≤ p, and equating to zero, so as to obtain a local minimum in
∆q+1, . . . , ∆p for fixed ∆1, . . . , ∆q, we find that

∑
k (Σn)jk ∆k = (Zn)j − λ′

nj/2.
Hence, taking β = β̂opt and noting (5.6), we deduce that for all n ≥ n1 and each
j ∈ {q + 1, . . . , p},

2C2 ‖∆opt‖ + |(Zn)j | ≥ 1
2 λnj . (5.8)

It can be deduced from (5.3), (5.5) and (5.8) that,

max
q+1≤j≤p

lim sup
n→∞

λnj < ∞ . (5.9)

Next we treat λnj for 1 ≤ j ≤ q. For this purpose we assume, without loss of
generality, that the sequences λnj converge, as n → ∞, to respective nonnegative
limits λlim

j , which might be either finite or infinite. (Subsequence arguments can
be used if the limits are not well defined.) In view of the first part of (3.7),
γnj → 0 for 1 ≤ j ≤ q, and so,

if 1≤j≤q and λlim
j <∞ then λnj |γnj + (∆opt)j | = λlim

j |(∆opt)j | + op(1). (5.10)

In the next paragraph we deal with the case λlim
j = ∞.

Given η > 0, let Jn(η) denote the set of values j ∈ {1, . . . , q} such that
|(∆opt)j | > 3η. Write ∆opt′ for the version of ∆opt that is obtained on replacing
(β̂opt)j by βn0

j if j ∈ Jn(η), and leaving unchanged the other values of (β̂opt)j .
Results (5.3), (5.5) and (5.9) imply that, for ∆̃ = ∆opt or ∆opt′ ,∣∣∣∆̃T Σn∆̃ − 2ZT

n ∆̃ +
p∑

j=q+1

λ′
nj (∆̃)j

∣∣∣ = Op(1)

as n → ∞. Hence, by (5.6) and (5.7),

q∑
j=1

λnj |γnj + (∆opt)j | = Sλn opt(β̂opt) − R + Op(1) , (5.11)

∑
j∈Jn(η)

λnj |γnj | +
∑

j /∈Jn(η)

λnj |γnj + (∆opt′)j |

= Sλn opt(β̂opt′) − R + Op(1) . (5.12)

If j ∈ Jn(η) and n is so large that sup1≤j≤q |γnj | ≤ η, then |γnj | ≤ (1/2)|γnj+
(∆opt)j |. Hence, comparing (5.11) and (5.12) we deduce that unless∑

j∈Jn(η)

λnj |γnj + (∆opt)j | = Op(1) (5.13)
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we have a contradiction of the fact that β̂opt minimizes Sλn opt(β). Therefore
(5.13) holds for each η > 0, which implies that,

if 1 ≤ j ≤ q and λlim
j = ∞ then (∆opt)j → 0 in probability. (5.14)

To complete the proof we complement the assumption that λnj → λlim
j for

1 ≤ j ≤ q, by supposing that this result also holds for q +1 ≤ j ≤ p, and that for
q+1 ≤ j ≤ p, sgn(γnj) → slim

j , where slim
j denotes either +1 or −1. The contrary

case, where the limits are not well defined, can be treated using a subsequence
argument. In view of (5.9),

for q + 1 ≤ j ≤ p, λ′
nj → slim

j λlim
j where λlim

j is finite. (5.15)

Without loss of generality, the first q components of β are ordered such that,
for an integer r ∈ {0, . . . , q}, λlim

j < ∞ when 1 ≤ j ≤ r, and λlim
j = ∞ when

r + 1 ≤ j ≤ q. We know from (5.14) that if r + 1 ≤ j ≤ q, then the asymptotic
distribution of (∆opt)j is degenerate at zero. Combining this result with (5.10)
and (5.15) we deduce that the components (∆opt)j , for 1 ≤ j ≤ p, are obtained,
up to terms that equal op(1), by minimizing

T (β) = ∆T Σn∆ − 2ZT
n ∆ +

r∑
j=1

λlim
j |∆j | +

p∑
j=q+1

slim
j λlim

j ∆j , (5.16)

where it is understood that ∆j = 0 for r + 1 ≤ j ≤ q.
Standard asymptotic arguments, noting the asymptotic normality of Zn at

(5.4), show that the limiting distribution of the minimizer of T (β) at (5.16)
is the distribution of Ξ which minimizes the quantity at (5.1), with the obvious
definitions of ν1, . . . , νq, µq+1, . . . , µp there. Since λ = λn opt is chosen to minimize
E‖β̂ − βn0‖2, then it follows directly from the Lemma in Step 1 that r = 0 and
λlim

j = 0 for q + 1 ≤ j ≤ p. This proves part (a) of Theorem 2. Part (c),
together with the fact that (β̂opt)j = op(n−1/2) for 1 ≤ j ≤ q, follows from the
last sentence in the lemma.

Finally we derive part (b). Part (c), and the second part of (3.7), imply that
P (Ŝ ⊆ S) → 1. Therefore it suffices to show that P (S \ Ŝ) → 0. Write xnij for
the jth component of xni. If (β̂opt)j 6= 0, i.e., if j /∈ Ŝ, then by the Kuhn-Tucker
Theorem, since β̂opt gives an extremum of Sλn opt ,

2 n− 1
2

n∑
i=1

(
Yni − Ȳn − xT

ni β̂opt

)
xnij = λnj sgn{(β̂opt)j} .
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Half the value of the left-hand side is given by

Unj ≡ n− 1
2

n∑
i=1

{
εni − ε̄n − xT

ni (β̂opt − βn0)
}

xnij

= n− 1
2

n∑
i=1

(εni − ε̄n) −
{(

1
n

n∑
i=1

xni x
T
ni

)
n

1
2 (β̂opt − βn0)

}
j

= Op(1) , (5.17)

where the final identity holds for all j ∈ {1, . . . , q}. Hence,

P (S \ Ŝ) =
q∑

j=1

P (j /∈ Ŝ) ≤
q∑

j=1

P (λnj ≤ 2 |Unj |) → 0 , (5.18)

where we have used (5.17) and the fact that λnj → ∞ for each j ∈ S.

5.2. Proof of Theorem 3

Define `n = log n. Recall that the pilot estimator of β is the least-squares es-
timator β̃, with the property n1/2 (β̃−β0) = Σ−1

n Zn where Zn = n−1/2
∑

i≤n εi xi.
Therefore,

ε̂i = εi − ε̄ − xT
i (β̃ − β0) . (5.19)

Now, n−1
∑

i≤n xi εi = n−1
∑

i εi zi−ε̄ z̄, where zi is as in (3.8). By Kolmogorov’s
Three-Series Theorem, (n `1+η

n )−1/2
∑

i≤n zi εi → 0 with probability 1, for each
η > 0; see, for example, Petrov (1975, p.274). More simply, by the Law of the
Iterated Logarithm, (n `η

n)−1/2
∑

i≤n εi → 0. Hence, for some η > 0,

( n

`1+η
n

) 1
2 (β̃ − β0) → 0 , max

1≤i≤n
|ε̂i − εi| = O

{(`1+η
n

n

) 1
2
}

, (5.20)

both results holding with probability 1. Note too that, defining Z to be the set
of data (X1, Y1), . . . , (Xn, Yn), we have,

σ̂2 ≡ E
{
(ε∗1)

2
∣∣Z}

=
1
n

n∑
i=1

ε̂2i , (5.21)

E
{
(ε∗1)

2 I(|ε∗1| > c)
∣∣Z}

=
1
n

n∑
i=1

ε̂2i I(|ε̂i| > c) . (5.22)

Assumption (3.8) entails that for a constant C > 0, ‖xi‖ ≤ C for all i. This
property, (5.19) and the second part of (5.20) imply that, with probability 1, for
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all sufficiently large n,

1
n

n∑
i=1

ε̂2i I(|ε̂i| > c) ≤ 2
n

n∑
i=1

{
(εi − ε̄)2 + C ‖β̃ − β0‖2

}
I
(
|εi| > 1

2 c
)

→ 2 E
{
ε21 I

(
|ε1| > 1

2 c
)}

. (5.23)

Results (5.22) and (5.23) imply that

P

[
lim
c→0

lim sup
n→∞

E
{
(ε∗1)

2 I(|ε∗1| > c)
∣∣Z}

= 0
]

= 1 . (5.24)

Similarly, (5.21) can be used to show that

σ̂ → σ with probability 1 . (5.25)

It follows from the first part of (5.20) that, provided m = m(n) → ∞ and
m = O(n/`1+η

n ) for some η > 0,

m
1
2 max

1≤j≤q
|β̃j | → 0 , m

1
2 max

q+1≤j≤p
|β̃j | → ∞ (5.26)

with probability 1. The first three parts of (3.4), and (3.5), are direct conse-
quences of (3.8); the fourth part of (3.4), in the bootstrap world, is equivalent to
(5.25); the bootstrap version of (3.6) is implied by (5.24); and the bootstrap ver-
sion of (3.7) is equivalent to (5.26). Therefore by Theorem 2, with λ̃ defined as at
(2.5), we have λ̃j/m1/2 → ∞ with probability 1 for 1 ≤ j ≤ q, and λ̃j/m1/2 → 0
with probability 1 for q + 1 ≤ j ≤ p. Hence, with λ̂ as at (2.5),

λ̂j

n
1
2
→ ∞ with probability 1 for 1 ≤ j ≤ q ,

λ̂j

n
1
2
→ 0 with probability 1 for q + 1 ≤ j ≤ p .

(5.27)

This is equivalent to part (a) of Theorem 3.
Defining ∆ = n1/2 (β − β0) and Zn = n−1/2

∑
i xi εi, we have

Sλ̂(β) = ∆T Σn ∆ − 2∆T Zn +
q∑

j=1

( λ̂j

n
1
2

)
|∆j |

+
p∑

j=q+1

( λ̂j

n
1
2

)
sgn(β0

j )∆j

+terms not depending on β (5.28)

for all β such that maxq+1≤j≤p |βj − β0
j | ≤ 1

2 minq+1≤j≤p |β0
j |. Using (5.27)

and (5.28), and taking β = β̄ in the vector ∆ = n1/2 (β − β0), we deduce that
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for all sufficiently large n, the minimizer, in ∆, of the far right-hand side of
(5.28) converges weakly to the random vector ξ = (ξ1, . . . , ξp)T that minimizes
∆T Σ∆− 2∆TZ, subject to the constraint ξ1 = · · · = ξq = 0, where Z is Normal
N(0, σ2 Σ). This establishes part (c) of Theorem 3.

A proof of part (b) is similar to that of part (b) in Theorem 2. Indeed, it
suffices to show that P (T \ T̂ ) → 0. For this we use the fact that, with Vnj given
by (5.17) with β̂ replaced by β̄, we have, in place of (5.18),

P (T \ T̂ ) ≤
q∑

j=1

P
(
n− 1

2 λ̂j ≤ 2 |Vnj |
)
→ 0 ,

where the limit result follows from part (a) of Theorem 3 and the fact that, for
each j ∈ {1, . . . , q}, Vnj = Op(1).
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