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Abstract: The aim of this paper is to recover a signal based on inhomogeneous noisy
data (the amount of data can vary strongly from one point to another.) In particular,
we focus on the understanding of the consequences of the inhomogeneity of the data on
the accuracy of estimation. For that purpose, we consider the model of regression with
a random design, and we consider the minimax framework. Using the uniform metric
weighted by a spatially-dependent rate in order to assess the accuracy of estimators, we
are able to capture the deformation of the usual minimax rate in situations where local
lacks of data occur (the latter are modelled by a design density with vanishing points).
In particular, we construct an estimator both design and smoothness adaptive, and we

develop a new criterion to prove the optimality of these deformed rates.
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random design.
1. Introduction

Motivations. A particularly prominent problem in statistical literature is the adaptive

reconstruction of a signal based on irregularly sampled noisy data. In several practical
situations, the statistician cannot obtain “nice” regularly sampled observations, because of
various constraints linked with the source of the data, or the way the data is obtained. For
instance, in signal or image processing, the irregular sampling can be due to the process of
motion or disparity compensation (used in advanced video processing), while in topogra-
phy, measurement constraints are linked with the properties of the ground. See Feichtinger
and Grochenig (1994) for a survey on irregular sampling, Almansa, Rouge and Jaffard
(2003), Vazquez, Konrad and Dubois (2000) for applications concerning, respectively, satel-
lite image and stereo imaging, and Jansen, Nason and Silverman (2004) for examples of

geographical constraints.
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Such constraints can result in a lack of data that can be locally very strong. As a
consequence, the accuracy of a procedure based on such data can become very poor locally.
The aim of the paper is to study, from a theoretical point of view, the consequences of the
inhomogeneity of the data on the reconstruction of a univariate signal. Natural questions
arise: how does the inhomogeneity impact the accuracy of estimation? What does the
optimal convergence rate become in such situations? Can the rate vary strongly from one
point to another, and how?

The model. We model the available data [(X;,Y;);1 <1 < n] by

Y = f(Xi) + o0&, (1)

where &; are i.i.d. Gaussian standard and independent of the X;’s, and where o > 0 is the
noise level. The design variables X; are i.i.d. with density p with respect to the Lesbesgue
measure. The density p is unknown to the statistician and, for simplicity, we assume that
its suppport is [0,1]. The more the density p is “far” from the uniform law, the more the
data drawn from (1) is inhomogeneous. A simple way to include situations with local lacks
of data within the model (1) is to allow the density p to vanish at some points. Most papers
assume g to be uniformly bounded away from zero, see references below.

In practice, p is unknown (this would require knowing the constraints making the obser-
vation irregularly sampled), as is the smoothness of f. Therefore, a useful procedure would
adapt both to the design and to the smoothness of f. Such a procedure (that is proved to
be optimal) is constructed here.

Methodology. We want to reconstruct f globally under sup norm loss. The choice of
sup norm for measuring the error of estimation is crucial. Indeed, it appears that it allows
one to capture in a simple way the consequences of inhomogeneity on the convergence rate:
when the data are inhomogeneous, the optimal rate is deformed (in comparison with the
usual rate), see Theorem 1 and 2 in Section 2.

The sup norm choice leads to a particular adaptive estimation method that can handle
“very” inhomogeneous designs. This method involves an interpolation transform, where
the scaling coefficients are estimated by local polynomials with a smoothing parameter
selected by a Lepski-type procedure, see for instance Lepski Mammen and Spokoiny (1997).
The Lepski-type procedure developed here is adapted to the random design setting when
the design law is unknown. Note that the original adaptive method from Lepski, see for
instance Lepski (1990), was developed only in the Gaussian white noise model, which is an
idealized version of (1) when the design is uniform: see for instance Brown and Low (1996)
and Brown et al. (2002).
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If we measure the error of estimation with L2-norm, which is more standard in non-
parametric literature, the phenomenon of deformation of the rate does not occur: see for
instance the results from Chesneau (2007), which allow design densities that can vanish.
Moreover, in L2 estimation, more standard tools are used, like orthogonal series, splines, or
wavelets, see for instance Green and Silverman (1994), Efromovich (1999) and Hérdle et al.
(1998).

Literature. Pointwise estimation at a point where the design can vanish is studied in Hall
et al. (1997), with the use of a local linear procedure. This design behaviour is given as an
example in Guerre (1999), where a more general setting for the design is considered with
a Lipschitz regression function. In Gaiffas (2005a), pointwise minimax rates over Holder
classes are computed for several design behaviours, and an adaptive estimator for the point-
wise risk is constructed in Gaiffas (2005b). In these papers, it appears that, depending on
the design behaviour at the estimation point, the range of minimax rates is very wide: from
very slow (logarithmic) rates to very fast quasi-parametric rates. Many adaptive techniques
have been developed in literature for handling irregularly sampled data. Among wavelet
methods, see Hall et al. (1997) for interpolation; Antoniadis, Gregroire and Vial (1997),
Antoniadis and Pham (1998), Brown and Cai (1998), Hall, Park and Turlach (1998) and
Wong and Zheng (2002) for tranformation and binning; Antoniadis and Fan (2001) for a
penalization approach; Delouille, Simoens and Von Sachs (2001) and Delouille, Franke and
Von Sachs (2004) for the construction of design-adapted wavelet via lifting; Pensky and
Wiens (2001) for projection-based techniques; Kerkyacharian and Picard (2004) for warped
wavelets. For model selection, see Baraud (2002). See also the PhD manuscripts of Maxim
(2003) and Delouille (2002).

2. Results
To measure the smoothness of f, we consider the standard Hoélder class H (s, L), where
s, L > 0, defined as the set of all the functions f : [0,1] — R such that

|F D @) — fBD @) < Lle —y~ 81, va,y € 0,1],

where | s] is the largest integer smaller than s. Minimax theory over such classes is standard:
we know from Stone (1982) that in model (1), the minimax rate is (logn/n)%?s*1) over
H(s, L) whenever p is continuous and uniformly bounded away from zero.

We use the notation (1) := [, pu(t)dt. We recall that  is the common density of the X;

(wrt the Lebesgue measure). If F' = H(s, L) is fixed, we consider the sequence of positive
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curves hy(-) = hy(+; F, p) satisfying

s g logn 1/2
Lhn()” = (W([;p —h(z). 7+ hn(:c)])> @

for all z € [0, 1], and we define
rn(x; Fy ) := Lhy(x; Fy p)®.

Since h — h%u([x — h,x + h]) is increasing for any z, these curves are well-defined (for n
large enough) and unique.

In Theorem 1 below, we show that r,(-) = r,(-; F,u) is an upper bound over F. This
spatially-dependent rate is achievable by an adaptive estimator, over a whole family of
Holder classes. In Theorem 2 below, we prove that, in some sense, this rate is optimal. We

give an explicit example of such a spatially-dependent rate.

Ezample. When s =1, 0 = L = 1, and p(x) = 4z — 1/2|1jg 3(x), the solution to (2) can

be written as r,,(z) = (logn/n)*®), where

log(1—2x logn
%(1 - W) when z € [07 % _ (%)1/4}7
log (((x_1/2)4+421;’g T(Ll/n)l//2;(x—1/2)2) —log?2
an(r) = og(logn/n
when x € [} = (414} 4 ()11,
log(2z—1 logn
5 (1= ogrm) when x € [§ + (\5%)Y4,1].

In this example, the amount of data is low at the middle of the unit interval. The

consequence is that the convergence rate has two “regimes”. Indeed, r,,(1/2) = (logn/n)/*

1/3 " which comes from

is slower than the rate at the boundaries r,(0) = r,(1) = (logn/n)
the standard minimax rate (logn/n)¥?s*t1) with s = 1. Hence, in this example, 7,(-)
switches from one “regime” to another. In view of Theorem 2 below, we know that, in some
sense, this phenomenon is unavoidable. We show the shape of this deformed rate for several
sample sizes in Figure 1.

In what follows, a,, < b, means that a,, < Cb,, for any n, where C' > 0 is independent of
n. From now on, C' stands for a generic constant that can vary from place to place and can
depend on the parameters of the setting, namely R, L, @, w(-), but not on f nor n. Let E¢,
denote the expectation with respect to the joint law Py, of [(X;,Y;);1 < i < n|. Let w(-) be
a loss function, namely a non-negative and non-decreasing function such that w(0) = 0 and
w(z) < A(14|z|?) for some A, b > 0. If Q > 0, we define H?(s, L) := H(s, LYN{f | || floo <
Q} (the constant () need not to be known). Let R be a fixed natural integer.
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FIGURE 1. 7,(-) and a,(-) for several sample sizes

Upper bound. In this section, we show that the spatially-dependent rate r,(-) defined

by (2) is an upper bound over Holder classes.

Assumption D. We assume that p is continuous, and that p(z) > 0 for any x or pu(z) =0
for a finite number of 2. Moreover, for any z such that p(z) = 0, we assume that there

exists 3(z) > 0 such that u(y) = |y — z|*®) for any y in a neighbourhood of .

Theorem 1. Under Assumption D, for any F = H%(s,L) where s € (0,R + 1], the
estimator ]?n given by (11) satisfies
sup By, [w( sup 74(2)"Fule) — f(@))] < C 3)
fer 2€[0,1]

as n — 400, where r,(-) = rp(+; F, p) is given by (2) and where C' > 0 is a fixed constant,
depending on the paremeters R, L, Q,w(-).

This theorem assesses the estimator ﬁL (constructed in Section 3 below) over function sets
F in a family of Holder classes. This estimator is smoothness adaptive, since it converges
with the spatially-dependent rate (-, F, ) uniformly over F', which is the optimal rate in
view of Theorem 2 below. Moreover, this estimator is also “design-adaptive”, since it does

not depend within its construction on the (unknown) design density.

Remark. Within Theorem 1, there are two situations.

e u(z) > 0 for any z: we have r,(z) < (logn/n)*/?**t1) which is the standard mini-
max rate over H(s, L) (a, < b, means a, < b, and b, < a,). However, this result
is new since adaptive estimators over Holder balls in regression with random design
have not been previously constructed.

e u(x) = 0 for one or several z: the rate r,(-) can vary strongly, depending on the

behaviour of 4; in the example, 7,,(-) goes from (logn/n)'/* to (logn/n)'/3.
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Remark. For the statement of Theorem 1, we need to assume that ||f|lcc < @ for some
@ > 0 (unknown). This assumption is necessary, since the upper bound is uniform over

Hoélder classes, for the sup norm risk.

Remark. Implicitly, we assumed in Theorem 1 that s € (0, R 4 1], where R is a known
parameter. Indeed, in the minimax framework considered here, the fact of knowing an

upper bound for the smoothness s is usual in the study of adaptive methods.

Optimality of r,(-). We have seen that the rate r,(-) defined by (2) is an upper bound
over Holder classes, see Theorem 1. In Theorem 2 below, we prove that this rate is indeed
optimal. In order to show that r,(-) is optimal in the minimax sense over some class F, the
classical criterion consists in showing that for some constant C' > 0,

inf sup Epy [w( sup ra(2) " fulz) — f(@)])] > C, (4)
fn fEF z€[0,1]

where the infimum is taken among all estimators based on the observations (1). However,
this criterion does not exclude the existence of another normalisation p,(-) that can improve
rn(+) in some regions of [0, 1]. Indeed, (4) roughly consists of a minoration of the uniform
risk over the whole unit interval and then, only over some particular points. Therefore,
we need a new criterion that strengthens the usual minimax one to prove the optimality
of rp(-). The idea is simple: we localize (4) by replacing the supremum over [0, 1] by the
supremum over any (small) inverval I,, C [0,1], that is

inf sup E gy, [w(sup r(x) | fulz) = f(@)])] = C, VI, (5)
fn FEF z€l,

It is noteworthy that in (5), the length of the intervals cannot be arbitrarily small. Actually,
if an interval I, has a length smaller than a given limit, (5) does not hold anymore. Indeed,
beyond this limit, we can improve r,(-) for the risk localized over I,,: we can construct an
estimator fn such that

sup B, [w(sup 1o (2) 7| fu(@) = f(@)])] = o(1), (6)
fer z€l,

see Proposition 1 below. The phenomenon described in this section, which concerns uniform
risk, is related to the results of Cai and Low (2005) for shrunk LL? risks. In what follows,
|| stands for the length of an interval I. Recall that pu(I) = [; p(z)dx.

Theorem 2. Suppose that
u(l) 2 |17+ (7)



Uniform estimation of a signal based on inhomogeneous data 7

uniformly for any interval I C [0,1], where 3 > 0, and let F = H(s,L). Then, for any
interval I, C [0,1] such that

(| ~n™® (8)
with o € (0, (1 +2s + 3)~1), we have

inf sup By, [w( sup o ()~ fu(2) — f(@)])] = C (9)
fn fEF z€eln

as n — +oo, where rp(-) = rp (- ; F, 1) is given by (2).

Corollary 1. If v,(-) is an upper bound over F' = H(s, L) in the sense of (3), we have

sup vn () /1 () = C
CEEIn

for any interval I, as in Theorem 2. Hence, ,(-) cannot be improved uniformly over an

interval with length ne=Y+25+8)  for any arbitrarily small € > 0.
Proposition 1. Let F = H%(s, L) and {,, be a positive sequence satisfying log £, = o(logn).
a) Let p be such that 0 < p(x) < +oo for any = € [0,1]. If I,, is an interval satisfying

[ In] ~ (£n/n)M/ 029

we can contruct an estimator fn such that

n s/(2s+1) ~
E n(z) — =o(1).
swpBu((fen) sup @) = f@))] = o)
b) Let p(zo) = 0 for some xq € [0,1] and pu([zo — h, xo + h]) = KT where 8> 0 for any h

in a fized neighbourhood of 0. If

I, = [z — (gn/n)l/(1+2s+ﬁ)7$0 + (gn/n)l/(1+2s+ﬁ)]’

we can contruct an estimator fn such that

sup By, [w(sup ro(2) 7' | fu(@) = f(2)])] = o(1).
feF zely,

Remark. Note that in case a), 7, (x) = (logn/n)*/ 1) for any = € [0, 1], and that (7) holds
with 8 = 0.

This proposition entails that r,(-) can be improved for localized risks (6) over intervals
I, with size (¢,/n)"/(1+25+0) where £,, can be a slow term such has (logn)? for any v > 0.
A consequence is that the lower bound in Theorem 2 cannot be improved, since (9) does
not hold anymore when I,, has a length smaller than (8). This phenomenon is linked both
to the choice of the uniform metric for measuring the error of estimation, and to the nature

of the noise within the model (1). It is also a consequence of the minimax paradigm: it is
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well-known that the minimax risk actually concentrates on some critical functions of the
considered class (that we rescale and place within I, here, hence the critical length for I,,),

a property that allows one to prove lower bounds such that in Theorem 2.

3. Construction of an adaptive estimator

The adaptive method proposed here differs from the techniques mentioned in the In-
troduction. Indeed, it is not appropriate to apply a wavelet decomposition of the scaling
coefficients at the finest scale, since it is a L2-transform, while the criterion (3) uses the
uniform metric. This is the reason why our analysis is focused on a precise estimation of
the scaling coefficients. Each scaling coefficient is estimated by a local polynomial estimator
(LPE) of f with an adaptively selected bandwidth.

Let (V})j>0 be a multiresolution analysis of L?([0, 1]) with a scaling function ¢ compactly

supported and R-regular (the parameter R comes from Theorem 1); this ensures that
If = Pifllec S277° (10)

for any f € H(s, L) with s € (0, R+ 1], where P; denotes the projection onto V;. We use P;
as an interpolation transform. Interpolation transforms in the unit interval are constructed
in Donoho (1992) and Cohen, Daubechies and Vial (1993). We have P;f = Zij:_ol APk
where ¢ (-) = 27/2¢(27 - —k) and ajx = [ f¢;r. We consider the largest integer J such that
N := 27 < n, and we estimate the scaling coefficients (ajk)o<k<oi at the high resolution
level j = J. If ayp are estimators of « i, we simply consider

271

Fo=Y_ Gt (11)

k=0
Let us denote by Polg the set of all real polynomials with degree at most R. Suppose for
the moment that we are given some accurate estimators fi € Polg of f over the support of
¢y Then oy = [ fodyr ~ [ fudsr. In the particular situation where the scaling function

¢ has R moments, that is

/¢(t)tpdt — 1,0, pe{0,...,R}, (12)
and when f is s-Holder for s € (0, R + 1], accurate estimators of «ajj, are given by
Q=22 f(k277). (13)

This comes from the fact that when f € H(s, L), we have [ fo =~ [ frdsr = 2712 f(k277),
where fj, is the Taylor expansion of f at k277 up to the order |s|. If ¢ does not satis-

fies (12), [ fydsr can be computed exactly using a quadrature formula, in the same way
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as in Delyon and Juditsky (1995). Indeed, there is a matrix Q (characterized by ¢) with
entries (qsrm) for (k,m) € {0,...,27 —1}2, such that

[ Pon=27" 3 qumPm/?’) (14)

meTl ji

for any P € Polr. Within this equation, the entries of the quadrature matrix Q; satisfy
Qikm 70 = |k —m| < Ly and m € ' jy, (15)

where Ly > 0 is the support length of ¢ (the matrix Q is band-limited). For instance, if we
consider the Coiflets basis, which satisfies the moment condition (12), we have ¢jxm = li=m,
and we can directly use (13). If the (¢(- — k))x are orthogonal, then ¢k, = ¢(m — k), see
Delyon and Juditsky (1995).

For the sake of simplicity, we assume in what follows that ¢ satisfies the moment con-
dition (12), thus the coefficients aj are estimated by (13). Each polynomial fi in (13)
is a local polynomial estimator computed at k277 with smoothing parameter ﬁk (the so-
called “bandwidth”, which is, here, an interval included in [0, 1] containing the point k2~7).

Hence we write f;, = flgAk).

The smoothing parameters ﬁk are selected via an adaptive
rule. Below, we describe the computation of the local polynomial estimators and we define
the selection rule for the ﬁk

Local polynomials. The polynomials used to estimate each scaling coefficient are defined
via a slightly modified version of the local polynomial estimator (LPE). This linear method
of estimation is standard, see for instance Fan and Gijbels (1995, 1996), among many others.
For any interval § C [0, 1], we define the empirical sample measure fi,, () := %Z?:l 1x,e5,
where 1x,¢5 equals one if X; € §, and zero otherwise. If fi,(d) > 0, we introduce the

pseudo-inner product

1
fo9)s = —o [ fodin, 16
g =5 O A 10
with ||g|ls := (g, g)i/ % the corresponding pseudo-norm. A local polynomial estimator is

computed for each point of the regular grid {k277;0 < k& < 27}. Let 6 be an interval
containing k27, The standard LPE at k2~ is defined as the polynomial f,gé) of degree

R which is the closest to the data in the least square sense, with respect to the localized

empirical norm || - ||s. More precisely, if pg,(-) :== (- — k277)?, 0 < p < R, we look for
f,gé) € Span{yy,(-); 0 < p < R} satisfying
#(0
(s ={Y . @ (17)

for any ¢(-) € {¢rp(-);0 < p < R}. The coefficients vector él(f) € RE+! of the polynomial

f,gd) is therefore solution, when it makes sense, to the linear system X,@G = Y,(f), where for
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0<pg<R
) )
(X)) 0= (Grps Grgds and  (YO), = (Y, orp)s. (18)

This is the standard definition of the LPE. Moreover, whenever i, () = 0, we simply take
f,g(s) = 0. We modify this linear system as follows: when the smallest eigenvalue of X,(f)
(which is non-negative) is too small, we add a correction term to bound it from below. We

introduce
)_(;(j) = X;(j) + (nﬁn((s))_l/QIdRHle((s)Cv

where Idg; is the identity matrix in RF*! and

Q5 (6) == {ANXP) > (nfin(8)) 12}, (19)

where A(M) stands for the smallest eigenvalue of a matrix M. The quantity (nji,(8))~/2

comes from the variance of f,gé), and this particular choice preserves the convergence rate
of the method. This modification of the classical LPE is convenient in situations with little

data. Below is a precise definition of the LPE at k2~ that we consider here.

Definition 1. When /i, (6) > 0, we consider the solution 9_,9 of the linear system

XVp =y, (20)

and take féé)(:c) = (9,&5))0 + (él(f))l(a: — k27 .+ (é,gé))R(w —k277)R. When fi,,(§) = 0,
7(6) ._
we take f. ' = 0.

Adaptive bandwidth selection. The adaptive procedure selecting the intervals Ak is based
on a method introduced by Lepski (1990), see also Lepski et al. (1997), and Lepski and
Spokoiny (1997). If a family of linear estimators can be “well-sorted” by their respec-
tive variances (e.g. kernel estimators in the white noise model, see Lepski and Spokoiny
(1997)), the Lepski procedure selects the largest bandwidth such that the corresponding
estimator does not differ “significantly” from estimators with a smaller bandwidth. Follow-
ing this principle, we construct a method which adapts to the unknown smoothness, and
additionally to the distribution of the data (the design density is unknown). Bandwidth
selection procedures in local polynomial estimation can be found in Fan and Gijbels (1995),
Goldenshluger and Nemirovski (1997), or Spokoiny (1998), among others.

The idea of the adaptive rule for selecting the interval 6 at the point k277 is the following:
when f,gé) (x) is close to f(x) for x € § (that is, when ¢ is well-chosen), we have in view
of (17) that

(FO 7O e = (v = 7O by m (Y = F, @)y = (€, @)
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for any ¢’ C § and ¢(-) € {prp(-);0 < p < R}, where the right-hand side is a noise term.
Hence, in order to “remove” this noise, we select the largest § such that the noise term
remains smaller than an appropriate threshold for any ¢’ C § and ¢(-) € {pkp(-); 0 < p < R}.
At each point of the regular grid {k:Q*J 0< k<2 }, the bandwidth Bk is selected in a
fixed set of intervals Gy, called the grid (which is defined below) as follows:
Ay, := argmax {/jn(é) V8 €Gy, 8 C 8, Wp € {0,..., R},
0€Gy (21)
— 6/ — 5
D =10, o)l < lonpllaTa(8, 8},

where

T0(5,5) = o [(nlgfg))m + DCR(W)”T, (22)

with Cp := 1+ (R+1)/2 and D > (2(b+1))'/2, if we want to prove Theorem 1 with a loss
function satisfying w(z) < A(1 + |2[*). The threshold choice (22) can be understood in the

following way: since the variance of f,ga) is of order (njfiy,(8))~1/?

, we see that the two terms
in T,(4,¢") are ratios of a penalizing log term and the variance of the estimators compared
by the rule (21). The penalty term is linked with the number of comparisons necessary to
select the bandwidth. To prove Theorem 1, we use the grid
G = {[er — X — k2 k2 X — k2 } (23)
1<i<n

and we recall that the scaling coefficients are estimated by aj; := 2_J/2f,§A’“)(k2_J).

Remark. In this form, the adaptive estimator has a complexity O(n?). This can be decreased
using a smaller grid. An example of such a grid is the following: first, we sort the (X;,Y;)
into (X(4), Y{4)) such that X;y < X(;11); we consider (k) such that k2= ¢ (X (ik))> Xik)+1))
(if necessary, we take X () = 0 and X(, 1) = 1) and, for some a > 1 (to be chosen by the
statistician), we introduce
log, (i(k)+1)] [log, (n—i(k))]
Gei= U U {[X@(km—[ap]wX(z’(kw[aq])] } (24)

p=0 q=0
With this grid, the selection of the bandwidth is fast, and the complexity of the procedure
is O(n(logn)?). We can use this grid in practice, but we need extra assumptions on the

design if we want to prove Theorem 1 with this grid choice.

4. Proofs
We recall that the weight function w(-) is non-negative, non-decreasing and such that
w(x) < A(1 + |z|)® for some A,b > 0. We denote by u" the joint law of Xi,..., X, and
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X, the sigma-field generated by Xi,..., X,. |A| denotes both the length of an interval A
and the cardinality of a finite set A. M T is the transpose of M, and & = (&1,...,&,) . We
introduce zy := k277 for k € {0,...,27}. As previously, C stands for a generic constant

that can vary from place to place.

Proof of Theorem 1. To prove the upper bound, we use the estimator defined by (11)
where ¢ is a scaling function satisfying (12) (for instance the Coiflets basis), and where the
scaling coefficients are estimated by (13). In view of (2) and since p is continuous on [0, 1],
we have

ra() Z (logn/n)* (1729, (25)
Together with (10), this entails
sup 7 (@) | f = Prflloc S 0G5 HD277 = 0(1),
z€[0,1]
since 27 =< n~!. Hence,

271

sup (@) Fule) = @) S sup @) D @n — an)oan(@)
k=0

z€[0,1] z€[0,1]

< max  sup ra(z) 272G — gl
0<k<2/ 1 €8,

where Si denotes the support of ¢ . Let fr be the Taylor polynomial of f at x; up to
the order |s|. Using (12), we have [ fydsx = 277/2f(x},), and since f € H(s, L), we have
lagk — f(xi)| = | [ four — fzr)| < 2776HY2) Together with (13) and (25), this entails
-7 —1) 7(Ap)
sup rp(x)” | ful(x) — < max supr, f i) — f(xg)]. 26
s @R @IS s s @S ) Sl 00

Since p is continuous, 7,,(-) is continuously differentiable. Hence, since |Sy| = 277/ < n71,

we have sup,eg, [rn(2) ™ —rp(ar) 7 < 277 (r; ") |lso, where ¢’ stands for the derivative of
g. Moreover, |(rp(z)~1)| < R (2)hy(z)~ ) < n~1 since b/ (z) is uniformly bounded and
hn(z) = (logn/n)Y/ s+ This entails

sup 7 (x) 7t < rp () L (27)
€Sk
In what follows, || - |0 denotes the supremum norm in R+, The following lemma is

a version of the bias-variance decomposition of the local polynomial estimator, which is
classical: see for instance Fan and Gijbels (1995, 1996), Goldenshluger and Nemirovski
(1997), Spokoiny (1998), among others. We define the matrix

O = ADKOAL),
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where X, is given by (18) and A\” := diag[||groll; - - -, llerzll; -
Lemma 1. Conditionally on X,,, for any f € H(s,L) and § € Gy, we have
72 () = Flan)] S MBS THLIS) + o (nfin(8) 72 UL 0)

on Q(0), where U](f) is a Xp-measurable matriz of size (R + 1) x (nfn(0)) satisfying
UY(UNT —1dg.,.

The proof of Lemma 1 is given later on. Note that within this lemma, the bandwidth
0 can change from one point zp to another. We denote Uy := U,(f’“) for short. Let us
define W := U¢ where U := (U, ... ,UzTJ)T. In view of Lemma 1, W is conditionally on
X, a centered Gaussian vector such that Ez,[W2|X,] = 1 for any k € {0,...,(R+ 1)27}.
We introduce W := maxgj<(rs1)27 |Wi| and the event Wy := {|[W" — E[WV|%,]| <
Ly (logn)'/ 2}, where Ly > 0. We recall the following classical results about the supremum

of a Gaussian vector (see for instance in Ledoux and Talagrand (1991)):
Ef, (WY |%,] < (log N)'/? < (logn)'/?,
and
Py, [WE[%,] < exp(—LE (logn)/2) = n~Lw/2, (28)

Let us define the event

and

where the intervals A, are given by

Ay = alzsgerggx{ﬂn(é) | L6 < U(nlljf&))lﬂ}'

There is an event S, € X, such that x"[SC] = o(1) faster than any power of n, and such that
Ry =< rp(xg) and A(E,gAk)) > Ao for some constant g, uniformly for any k& € {0,...,27 —1}.

This event is constructed later on. We decompose

1799 (@) — f(zx)| < A + By + Ci + Dy,
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where
Ap = [F5 (@) = F@n)l e g

(A
By, = ]f,i k)(l'k) - f(xk)\ngmWNﬁSn’

Cr = |F1%) (@r) = F2) (@) | 1wy,
Dy, = | (1) — f(@r)Twyrs,.-

Term Ay. For any § € G, we have

O (@) S (i) Y21 f oo (1 + ). (29)

This inequality is proved later on. Hence, using together (25), (29) and ||f[ < Q, we
obtain
(Ax) 2b
Ef#[( Hllca)é Tn<mk> 1‘fk lc( k)’) |xn] Sn28b/(25+1)+b+2.

Then, using w(x) < A(1 + |z[°) and the Cauchy-Schwarz inequality, we obtain

Efu[ (Og,lﬁ;,r"(xk) 1Ak>] < nsb/(28+1)+b/2+1Pf [WC USCP/Q _ 0(1)

since pu"[SL] = o(1) faster than any power of n, and Ly can be chosen arbitrarily large
n (28).
Term Dy,. Using Lemma 1, together with the definition of Aj and the fact that W <

(logn)'/? on Wy, we have

8 (@) = f )] < AEL)HIIAKE + o (nfin (D)~ 2WN)
AES) TR (1 + (logn) /2w
AE) Ty (24)

N

N

on Wy NS, thus
Ej, [w( max Tn(l‘k)ile)] <Ol

0<k<2’
Term Cy. We introduce Gk( ) = {(5’ € Gg|0' C 6} and the following events:
— 5/
T(6,8"p) = {|(7" = " ew)o < ollonlaTa(8,5)}.

75, (9, 5) N \p<R7;€(5 &, p),
Ti(6) = Nyrec(0)Tu(6,6).
By the definition (21) of the selection rule, we have T} C ﬁg(ﬁk,Ak). Let 6 € Gy,0" €
Gi(8). On T;(6,8") N Q(8") we have (a proof is given later on)

@) = £ @ S AE)

logn )1/2

nin®) )
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Thus, using (30), we obtain

E n(ze)T'Cr)] < C
fu[w(ogigjr(xk) Cr)] < C

Term By. By the definition (21) of the selection rule, we have T,E C T (A1)E. We need the

following lemma.

Lemma 2. If § € Gy, satisfies

logn \1/2
L6 < 31
o <o () oy
and f € H(s, L), we have
_ _ N2
P 1 [T1(8)%1%0] < (R+1)(nitn ()~
on Qk(0), where D is the constant from the threshlod (22).
Using together Lemma 2, || f]|cc < @ and (29), we obtain
—1 #(Bk) _
By max BA™ @n) = f(o0) Lrgyy, ) 1%a] < C.
thus
E w(z1) " 1By)| < C,
fulw( max ra(er) ™ By)]
and Theorem 1 follows. U

Proof of Lemma 1. On Q(J), we have X](j) = X9, and )\(ng)) > (nfin(6))~Y? > 0, thus
Xl(f) and El(j) are invertible. Let f be the Taylor polynomial of f at xj up to the order |s]|
and 6}, € R+ be the coefficient vector of fi. Using f € H(s, L), we obtain

0 (@) = Fan)] S A TG = 0k), ex)| + 10
= {ED)TADXD @~ 01), en)| + 1],
In view of (17), we have on Q(d) for any p € {0,..., R}:
(X;(f) (él(j) —0)p = <f,§‘” — [ Crp)s
=Y — fi, Crp)s

thus, X, (6~ 64) = B + V") where (B"), == (f ~ fi.. oup)s and (")) := (€. oup)s.
which correspond respectively to bias and variance terms. Since f € H(s, L) and A(M)~! =

|M 1| for any symmetrical and positive matrix M, we have

S)\—1 4 (8) (8 8\ — s
HED)TADBD ) S AMED) LIS
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Since (Vk(é))p = (nﬂn(é))*ng)f where Dgf) is the (R + 1) x (nfiy(0)) matrix with entries
(D,(f))m, = (X; — z)P, X; € 0, we can write
6)\— 19 19 _ — 6)\— 9
(E) ALV eadsl S oniin(@) 2 IED) T I[TLE e,

where U(é) = (njin ((5))*1/2(E§€5))*1/2A§€6)Dl(f) satisfies Ugf) (U,(f))T = Idpy; since ng) =
A(a)X( )A( ) and X(‘;) (nﬁn(é))_ng)(Dg))T, thus the lemma. O

Proof of (29). If fi,,(6) = 0, we have f(5) = 0 by definition and the result is obvious, thus
we assume fi,(0) > 0. Since A(X Ig)) > (nfin(8))~1/2 > 0, the matrices )_(,(f) and Al(f) are
invertible thus E,(f) also is, and we have

7 @) = (A7) lek 1)l
< @) AP 8|
= |(B{) A ( Y
(9).

(9
X
(6
Yy

Moreover, we have by the definition of X
_ O\ — S _ o (0)\— o (0)\ — _
HE) < JAD) T RIE) 1 < &) = AED) ™ < (na(8)) /2.

Let us denote E,(f) = A,(;S)ng)Agf). With the same notations as in the proof of Lemma 1,

we have
(ALYl = |lerlls (F enpds + (AL )€ orp)s]
< Flloo + [ ((nin () B (B AP D) |
= [ flleo + | (nin(6)) B ULE) |,
thus (29), since [|E{| < R+ 1. O

Proof of (30). Let us define H” := AYX 0On 0,(5"), we have:
(@) = 7 (@) = 16 60
<A 0 -6 1o
— JE)EHD (GO g0
SAES)TE (0 - 0)|.

Since on Qg ("), (Hg)(é}(j) — é,(f/)))p = (f, Flo) fk . Pkp)o/l@kpllsr, and since &' C 4§, we
obtain (30) on 7 (4, d"). O
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Proof of Lemma 2. We denote by Pg) the projection onto Span{yko, ..., vk} with
respect to the inner product (-, -)5. Note that on Q(J), we have féé) = P,(f)Y. Let 6 € Gy,
and ¢’ € G(9). In view of (17), we have on Q(0) for any ¢ = ¢, p € {0,..., R}:

(FOO— O e = (v — 1O o)
—(f=POY, o)y + (£, )s
= Ak — Bk + Ck,

where Ay := (f — ng)f7 ©)sr, B = a(Pf)g, ©)s and Cy := o (&, p)g. If fi is the Taylor
polynomial of f at 2 up to the order |s], since & C § and f € H(s, L) we have:

) s
Akl < llellsr | f = fr + PO e = Dlls < lellsr | f = Fills S llells L8],

and using (31), we obtain

logn \1/2
48] S llellvo (2255)

Since P,?) is an orthogonal projection, the variance of By, is equal to
) )
By [(PL€, )31%a] < oIl By [P €ll5 %]
8 _
= o [lel3 Tr(PY)/ (nfin ('),

where Tr(M) stands for the trace of a matrix M. Since P,(j) is the projection onto Polg,
Tr(P,(j)) < R+ 1, and the variance of By, is smaller than o2(¢||2 (R 4+ 1)/(nfin(6")). Then,

Efu[(B + C)?(%n] < 0?3 CR/ (nfin(0")). (32)
In view of the threshold choice (22), we have

_5 _6/
(G =57 ool > llellaTu(, )}
{ lell5 1B + Cil
o (nfin(6'))~1/2Cr
and using (32) together with P[|N(0,1)| > 2] < exp(—22/2) and |G1(0)| < (nfin(d)), we

obtain

> D(log(njin(9))) " },

R
P08 < Y D exp(— D log(nfin(6))/2)
8'€G(8) p=0

< (R+ 1) (njan(8)) 17072,

which concludes the proof. (]
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Construction of S,,. We construct an event S,, € X,, such that p" [SC] = o(1) faster than

(Ak)) > Ao uniformly for

any power of n, and such that on this event, Ry =< r,(zx) and \(E

any k € {0,...,27}. We need preliminary approximation results, linked with the approx-

imation of u by f,. The following deviation inequalities use Bernstein inequality for the

sum of independent random variables, which is standard. We have

Mn[ fin (9)
1(9)

for any interval § C [0,1] and ¢ € (0,1). Let us define the events

D4 (@ {’/( 5] %) i — ol )| < e}

where eq(x, 1) = (14 (=1)*)(B(z) + 1)/(a + B(x) + 1) (a is a natural integer) where we
recall that 5(z) comes from Assumption D (if x is such that p(z) > 0 then 5(z) = 0). Using
together Bernstein inequality and the fact that

J@AC@ﬂhwﬁe%mm

- 1‘ > 6] Sexp (- 52nu(6)) (33)

as |6] — 0, we obtain

u (DY) (€)% S exp (- £*np(9)). (34)
By definition (23) of G, we have Ay = [z — Hy(x), xx + Hp(zx)] where
logn 1/2
H,(z) := argmin s Lh® > o — 35
(@) h§[0,1} { (nﬂn([ﬂf—h73«“+h])) } (35)

is an approximation of hy(z) (see (2)). Since f, is “close” to p, these quantities are
close to each other for any z. Indeed, if d,(z) := [x — hp(z),x + hp(z)] and A,(z) =
[ — Hyp(z), z + Hp(z)] we have using together (35) and (2):

{Hy(z) < (1 +e)hn(2)} = {“"[(;[;rn‘zg’f(x)] > (1- s)*z} (36)
for any € € (0,1), where (1 4 &)d,(z) := [x — (1 + €)hp(x),x + (1 + €)h,(x)]. Hence, for
each * = zy, the left hand side event of (36) has a probability that can be controlled
under Assumption D by (33), and the same argument holds for {H,(z) > (1 — ¢)hy(2)}.
Combining (33), (34) and (36), we obtain that the event

Bha(z,e) = { M/An(x) (M)adﬂn — ea(x,u)‘ < 6}

satisfies also (34) for n large enough. This proves that (XéAk))pﬂ and (A;ﬁk))p are close to

eptq(h, i) and egy(wy, @)~/

S, = ﬂ ﬂ Br.o(zk, €).

a€{0,...2R} ke{0,...,27 —1}

respectively on the event
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Using the fact that A(M) = inf),—; x" Mz for a symmetrical matrix M, where A(M)
denotes the smallest eigenvalue of M, we can conclude that for n large enough,

xe|0,

where E(x, 1) has entries (E(2, 1t))p.q = €piq(, 1)/ (€2p(2, p1)e2q(w, 1)) /2. Since E(x, ) is
definite positive for any = € [0, 1], we obtain that on S, )\(X](CA’“)) > \; for some constant
A1 > 0, thus S, C Q,(Ay) and A(E,iAk)) > Ao uniformly for any k € {0,...,27 — 1}, since
E](CA’“) = AlgAk)X]gAk)A,gAk) on Q,(Ag). Moreover, since Ry, = LH,,(x})®, using together (33)
and (36), we obtain Ry, < 7, (z}) uniformly for k € {0,...,27 —1}. O

Proof of Theorem 2. The main features of the proof are first, a reduction to the Bayesian
risk over an hardest cubical subfamily of functions for the LL°° metrics, which is standard:
see Korostelev (1993), Donoho (1994), Korostelev and Nussbaum (1999) and Bertin (2004),
and the choice of rescaled hypothesis with design-adapted bandwidth h,(-), necessary to
achieve the rate r,(-).

Let us consider ¢ € H(s,L;R) (the extension of H(s,L) to the whole real line) with
support [—1, 1] and such that ¢(0) > 0. We define

@ :=min [1’ (\¢2||go <1 ¥ 215 Y8 a>>1/(28)}

Zn o= 2a(1+2Y6713DY sup hy(2),
z€[0,1]

and

where we recall that |s| is the largest integer smaller than s. Note that (7) entails
En S (logn/n) !/ (H25H5), (37)
If I,, = [ep, dy], we introduce xy, := ¢, + kE,, for k € K, := {1, e [\In\ Egl] }, and denote
for the sake of simplicity hy := h,(xr). We consider the family of functions
. —_ .I‘k
FE0) =3 0ufi(). fil) = Lathip (),
keKn k

which belongs to H(s, L) for any § € [—1,1]5»l. Using Bernstein inequality, we can see
that

L P [z — hi, o1 + hy))
Ih‘_kgl{/dukhm$k+hd);2U2}

satisfies

p'Hn] = 1= o(1). (38)
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Let us introduce b := ¢*p(0). For any distribution B on ©,, C [—1,1]%», by a minoration
of the minimax risk by the Bayesian risk, and since w is non-decreasing, the left hand side
of (9) is smaller than

w(b) i%f/@npg[gel?é 101, — 0] > 1]B(d0)

WV

w(b)/ inf/ Py [ max |0y — 0k] > 1/X,,]B(d6)dp"
" 0 O, keK,
Hence, together with (38), Theorem 2 follows if we show that on H,,

sup/ Pg[lgnax 10 — 6] < 11X, |B(df) = o(1). (39)
O, €Ky

0
We denote by L(6;Y1,...,Y,) the conditional on X, likelihood function of the observations
Y; from (1) when f(-) = f(+; 6). Conditionally on %,,, we have
L(G;Yly-.~7yn): H gcr 7 H gvk Yk — 9k 5
1<i<n keKn 9o (Yk)
where g, is the density of N(0,v?), v? := E{y?|X,} and
o Z?:1 Yifk(Xi)
Ye '= =n 2 v
Zi:l fk (XZ)
Thus, choosing
=) b, b:=(01+061)/2, Op:={-1,1}1%
keK,
the left hand side of (39) is smaller than

ITi<cicn 90(Y3) /
ISR sup 0. — v, (Y — 0k)b(dby) )dY1 X -+ X dYy,
erKn gvk(yk) kEHK (—1,1} \Hk Or|<1 JVk )

and @\k = 1y, >0 — 1y, <0 are strategies reaching the supremum. Then, in (39), it suffices
to take the supremum over estimators § with coordinates 6 € {—1,1} measurable with
respect to gy only. Since conditionally on X,, yi is in law N (Gk,vk) the left hand side
of (39) is smaller than

k:eHKn (1 - §kei{Il—f1,1} /{—1,1} / L)1 90 (4 ek)dUb(dak)>'
Moreover, if ®(z) := [*_ g1(t)dt

inf / /lA o, (u — O )dub(db
Ope{-1,1}J{-1,1} |0k (w) =0 |21 i ( k) (dOy,)

> 5 [ min (90,0 = D, g0+ 1)) du = D(=1/m0).
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On H,,, we have in view of (2)
v: = o’ = 2
YL X)) T (1= 6)llelRc* logn

and since ®(—x) > exp(—x?/2)(zv/2m) for any = > 0, we obtain

®(—1/vg) = (logn)~V/2ple-1/Q+2s+0)}/2 .
Thus, the left hand side of (39) is smaller than (1 — L,)¥"|, and since

]In]E;LILn > n{l/(1+2s+ﬁ)*a}/2(10g n)1/271/(1+23+5) = 400

as n — +o00, Theorem 2 follows. ]

Proof of Corollary 1. Let us consider the loss function w(-) = |- |, and let ﬁ’{ be an

estimator converging with rate v,(-) over F' in the sense of (3). Hence,

1 < sup Eypy [ sup (@) 7 fE (2) — f(2)]]
fer

xGIn
< sup 2 qup B, [ sup v ()| i) — f(a)]] S sup )
vel, ™n(T) fer veln wel, Tn(T)
where we used Theorem 2. O
Proof of Proposition 1. Without loss of generality, we consider the loss w(-) = |-|. In order

to prove Proposition 1, we use the linear LPE. If we denote by 0™ f the m-th derivative of

f, a slight modification of the proof of Lemma 1 gives for f € H(s, L) with s > m,
0" 737 () = 0™ f (i) | S B8 (LIBI° + o (nfin (8)) 72 WN),
where in the same way as in the proof of Theorem 1, W satisfies
E WY 2] < (log )12, (40)

with N depending on the size of the supremum, to be specified below. First, we prove a).
Since |I,| ~ (£n/n)"/ st if I, = [an, by], the points

T = an 4+ (k/n)/@D ke fo,...,N},

where N := [(,] belong to I,,. We consider the bandwidth
log £,,\ 1/(2s+1)
= ()

n

; (41)

and we take 0y := [zx — hp, 2k + hy]. Note that since u(x) > 0 for any z, f,(0) < |d| as
|0|] — 0 with probability going to 1 faster than any power of n (using Berstein inequality,
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for instance). We consider the estimator defined by

Falz) = Z 8mf,£5’“)(xk)(x —x)"/m!l for x € [xg, xry1), kE€{0,..., 6]} (42)

m=0
where 7 := | s]. Using a Taylor expansion of f up to the degree r together with (41) gives
1 s/(142s) N _ < <

Then, integrating with respect to P, (-|X,) and using (40) where N = [/,] entails a), since

log £y, \ 8/(1+25) B
&) (1 + (log £,)~V/2W™).

log ¢, = o(log n).
The proof of b) is similar to that of a). In this setting, the rate r,(-) (see (2)) can
be written as r,(z) = (logn/n)*®) for x in I, (for n large enough) where ay(zg) =

s/(142s+ () and ayn(x) > s/(1+2s + B) for z € I, — {xo}. We define
xp + n-on(@n)/s for k€ {—N,...,—1}
Lh+1 =
zp +n-on@)/s for k€ {0,...,N},

where N := [¢,]. All the points fit in I,,, since
lz_n — zn| < Z - min(an (@k).on (@e41))/5 Q(gn/n)l/(1+25+5)_
—N<k<N
We consider the bandwidths
hi == (log £y, /n)n(@K)/s,
and the intervals 0 = [xg — hi, T + hi]. We keep the same definition (42) for fAn Since xg

is a local extremum of 7,(-), we have in the same way as in the proof of a) that

17 log £, \ on(zk)
i@ - 1@l s e (50
sup (@) | fu(@) = f@)I S| max | (307
log £, \ n(Tht1) 2N
0<Ikn<a13/(—1 ( logn> ](1 + (lOgE”) w )’
honee log ¢,,\ s/(1+2s+0)
-1 7 ogln\$ +2s+
By sup () a0) = @] £ (157) —o(1),
which concludes the proof of Proposition 1. O
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