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This note contains the regularity conditions and the details for proving the results

in our main context. Since the proofs for Theorems 1, 2, 4 and 6 are more of

interest to our theoretical study, they will be demonstrated in detail. The proofs of

Theorems 3 and 5 will be outlined in brief because they are similar to Theorem 2 in

Zhu and Fang (1996), and Lemma 1 in Xia, Tong, Li and Zhu (2002), respectively.

Appendix A: Some conditions

Some regularity conditions are assumed as follows.

(C1) The kernel function Kw(·) is a continuous density function having bounded

support.

(C2) The density function of X satisfies: 0 < inft fX(t) ≤ supt fX(t) < ∞, and

its second derivative f
(2)
X (t) satisfies the local Liptschitz condition over the

support T of X, namely, there exist a constant c such that |f (2)
X (t + v) −

f
(2)
X (t)| ≤ c|t| for any t in a neighborhood of zero.

(C3) Let φ(x) =: E(Y |X = x). The (r + 3)−th derivative of φ(x), written by

φ(r+3)(·), exists and is continuous over T .

(C4) The variance function σ2(x) = E[(Y −φ(X))2|X = x] has a bounded second

derivative over T .

(C5) The kernel function Kl(u) is bounded and symmetric, and is Lipschitz con-

tinuous on T ; Moreover, it satisfies
∫
T Kl(u) = 1;

∫
T uiKl(u) = 0, i =

1, . . . , d− 1;
∫
T udKl(u) = MK 6= 0, d ≥ 2.

(C6) The bandwidth hl satisfies nh2
wh2dM+2

l →∞ as n →∞.
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(C7) The link function φ(x) and the variance function σ2(x) are bounded on T .

(C8) The bandwidth hw satisfies
√

nhp+1
w →∞ and

√
nhr+1

w → 0.

(C9) E[(Y − φ(X))4|X = x] has a bounded second derivative over T .

(C10) The density function f(xT β) of XT β, the density function f1(xT α) of XT α,

φ(x) = E(Y |X = x) and σ2(x) = E(e2|X = x) are d−times differentiable on

T and their derivatives satisfy the following condition: Let H(·) stand for

f(xT β), f1(xT α), φ(x) and σ2(x) respectively, there exists a neighborhood

of the origin, say U , and a constant c > 0 such that, for any u ∈ U ,

H(d−1)(t + u)−H(d−1)(t) ≤ c|u|,

where H(d−1)(t) denotes the (d− 1)th derivative of the function H(·).
Appendix B: Some Lemmas

We first present some Lemmas to facilitate the proof of the theorems.

Recall that a three-step procedure is proposed to remove the effect of the

CMS and then to obtain “pure” residuals. The first step is to implement the

OPG method to fully identify and to estimate the vectors in the CMS.

Suppose that {(xi, yi), i = 1, . . . , n} is a random sample. We consider local

r−th order polynomial fitting in the form of the following minimization problem

min
at,bt,cti1...ip

n∑

i=1

[
yi − at − bT

t (xi − t)−
∑

1<k≤r

∑

i1+...+ip=k

cti1...ip{xi − t}i1
1 . . .

{xi − t}ip
p

]2
Kw{(xi − t)/hw}, (B.1)

where {xi − t}k denotes the kth element of vector xi − t, and Kw{(xi − t)/hw}
is a p−variate kernel.

For ease of illustration, let {(xi − t)T
(k), i = 1, . . . , n} denote all distinct

columns {xi − t}i1
1 . . . {xi − t}ip

p satisfying i1 + . . . + ip = k, Yn = (y1, . . . , yn)T is

a vector, and Wnt is a diagonal matrix of weights, with entries Kw{(xi− t)/hw}.
Denote by Xnt the predictor matrix whose (l, j)-block is (xl−t)T

(j) for l = 1, . . . , n,

and j = 0, . . . , r. When j = 0, (xl − t)(0) = 1 for all t and l. We re-organize the

minimization problem (B.1) as follows:

min
β0t,...,βrt

n∑

i=1

[
yi − β0t − βT

1t(xi − t)(1) − . . .− βT
rt(xi − t)(r)

]2
Kw

(xi − t

hw

)
. (B.2)
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Under the weighted least squares measure (B.2), we have β̂t =: (β̂0t, . . . , β̂rt)T =

(XT
ntWntXnt)−1(XT

ntWntYn). Clearly, the (i, j)th block of Snt =: (XT
ntWntXnt)

is snt,ij =
∑n

v=1(xv − t)(i)Kw{(xv − t)/hw}(xv − t)T
(j) and the jth element of

Sy =: (XT
ntWntYn) is syj =:

∑n
v=1(xv − t)(j)Kw{(xv − t)/hw}yv.

Let e =: Yn − φ(Xn) and φ(Xn) = (φ(x1), . . . , φ(xn))T . Hence,

β̂t = S−1
nt (XT

ntWntYn)

= βt + S−1
nt [XT

ntWnt(φ(Xn)−Xntβt)] + S−1
nt (XT

ntWnte)

=: βt + In1(t) + In2(t). (B.3)

Therefore, to study the consistency of β̂t, we need to study the last two terms in

the RHS of (B.3). Clearly, the second term is for the bias, and the third term

for the variance. The following lemma is to provide bounds to these two terms.

Let µj =
∫

ujKw(u)du and νj =
∫

ujK2
w(u)du, and denote

Sr = (µi+j−2)1≤i,j≤r+1, S̃r = (µi+j−1)1≤i,j≤r+1,

S∗r = (νi+j−2)1≤i,j≤r+1, S̃∗r = (νi+j−1)1≤i,j≤r+1.

Lemma 1 Assume that conditions C1– C4 hold. Then we have that uniformly

for t over the support of X, as n →∞,

In1(t) = (XT
ntWntXnt)−1[XT

ntWnt(φ(Xn)−Xntβt)]

= hr+1
w H−1

[
S−1

r

fX(t)
− hw

S−1
r

fX(t)
f (1)(t)S̃r

S−1
r

fX(t)

]
×

[
fX(t)crβr+1

+hw[f (1)(t)c̃rβr+1 + f(t)c̃rβr+2] + OP (δ2
n)

]
, (B.4)

and

In2(t) = (nhp
w)−1H−1

[
S−1

r

fX(t)
− hw

S−1
r

fX(t)
f (1)(t)S̃r

S−1
r

fX(t)
+ OP (δ2

n)

]
×

[
[σ2(t)fX(t)S∗r + hw[σ2(t)fX(t)](1)S̃∗r + OP (δ2

n)]

]
×

[
S−1

r

fX(t)
− hw

S−1
r

fX(t)
f (1)(t)S̃r

S−1
r

fX(t)
+ OP (δ2

n)

]
H−1, (B.5)

holds uniformly for t, where H = diag(1, hw, . . . , hr
w) is a diagonal matrix with

hi
w corresponding to the column indices of (xk − t)(i) defined below (B.1), and

δ2
n = h2

w + (nhp
w)−1/2.
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Proof of Lemma 1. We first deal with the bias term In1(t). Towards this end,

we separately consider Snt and S′nt = [XT
ntWnt(φ(Xn)−Xntβt)].

We now study Snt. Following Fan et al (1996), it suffices to show that the

(i, j)th entry snt,ij of Snt admits the following uniform convergence:

snt,ij = nhp+i+j
w [fX(t)µi+j + hwf

(1)
X (t)hwµi+j+1 + OP (δ2

n)], (B.6)

We then prove that the bias term of snt,ij is of order O(nhp+i+j+2
w ). To this end,

its expectation is computed as

E(snt,ij) = nE[(X − t)(i)Kw{(X − t)/hw}(X − t)T
(j)]

= n

∫
(x− t)(i)Kw{(x− t)/hw}(x− t)T

(j)fX(x)dx

= n

∫
hp+i+j

w ui+jKw(u)fX(t + hwu)du

= n

∫
hp+i+j

w ui+jKw(u)[fX(t) + f
(1)
X (t)hwu + f

(2)
X (t∗)(hwu)2]du

= n

∫
hp+i+j

w ui+jKw(u)[fX(t) + f
(1)
X (t)hwu + f

(2)
X (t)(hwu)2]du

+
∫

hp+i+j
w ui+jKw(u)(f (2)

X (t∗)− f
(2)
X (t))(hwu)2]du

= nhp+i+j
w [fX(t)µi+j + hwf (1)(t)µi+j+1 + O(h2

w)],

where t∗ lies in the interval [t, t + hwu]. The last equation holds because
∫

(hwu)i+j+2Kw(u)|f (2)
X (t∗)− f

(2)
X (t)|du ≤ c

∫
(hwu)i+j+3Kw(u)du = O(hi+j+3

w ),

under the local Liptschitz condition of condition (C2). Therefore, to obtain the

uniform convergence of (B.6), it remains to show that the variance term is of

order O(nhp
wh2i+2j

w ). Note that Var(snt,ij) ≤ E(snt,ij)2, and again by the local

Liptschitz condition of condition (C2),

E(snt,ij)2 = nE[(X − t)(i)Kw{(X − t)/hw}(X − t)T
(j)]

2

= n

∫
[(x− t)(i)Kw{(x− t)/hw}(x− t)T

(j)]
2fX(x)dx

= n

∫
hp

wh2i+2j
w u2i+2jK2

w(u)fX(t + hwu)du

= n

∫
hp

wh2i+2j
w u2i+2jK2

w(u)[fX(t) + f
(1)
X (t)hwu + f

(2)
X (t∗)(hwu)2]du

= O(nhp
wh2i+2j

w ).
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Consequently, a direct application of Theorem 37 of Pollard (1984, page 34) yields

the desired result of (B.6). This implies that

Snt = nhp
wH[fX(t)Sr + hwf

(1)
X (t)S̃r + OP (δ2

n)]H, (B.7)

Now we turn to study the convergence of S′nt = XT
ntWnt(φ(Xn) − Xntβt)

of In1(t). Denote its jth element of S′nt by s′nt,j . Note that the ith row of

φ(Xn) − Xntβt is φ(xi) − β0t −
∑r

v=1(xi − t)T
(v)βvt = (xi − t)T

(r+1)βr+1,t + (xi −
t)T

(r+2)βr+2,t + (xi − t)T
(r+3)β

∗
r+3,t by using conditions (C2) and (C3) and Taylor

expansion. Following similar arguments for proving (B.6), we have

s′mt,j = nhp+r+j
w

[
[fX(t)µr+j + f

(1)
X (t)µr+j+1]βr+1,t + hw[fX(t)µr+j+1

+f
(1)
X (t)µr+j+2]βr+2,t + OP (δ2

n)
]
, (B.8)

holds uniformly for t over the support of X. The details are omitted.

Further, set cr = (µr+1, . . . , µ2r+1)T and c̃r = (µr+2, . . . , µ2r+2)T . By using

the facts that (AB)−1 = B−1A−1 and (A + hB)−1 = A−1−hA−1BA−1 + O(h2),

it follows from (B.7) and (B.8) that

In1(t) = S−1
nt S′nt = (XT

ntWntXnt)−1[XT
ntWnt(φ(Xn)−Xntβt)]

= hr+1
w H−1

[
S−1

r

fX(t)
− hw

S−1
r

fX(t)
f (1)(t)S̃r

S−1
r

fX(t)

]
×

[
fX(t)crβr+1

+hw[f (1)(t)c̃rβr+1 + f(t)c̃rβr+2] + OP (δ2
n)

]
, (B.9)

holds uniformly for t.

It is the position to bound the variance term In2(t) = S−1
nt (XT

ntWnte) of (B.5).

Note that Var[S−1
nt (XT

ntWnte)] = E[Var(S−1
nt (XT

ntWnte)|Xn)]. We then first study

the conditional variance. Let σ2(X) =: E[(Y − E(Y |X))2|X] = E(e2|X), and

σ2(Xn) = (σ2(x1), . . . , σ2(xn))T . Hence,

Var[S−1
nt (XT

ntWnte)|Xn] = S−1
nt S∗ntS

−1
nt , (B.10)

where S∗nt = XT
ntWntVar(e|Xn)WntXnt, with its (i, j)−th entry s∗nt,ij =

∑n
v=1(xv−

t)iK
2
w{(xv − t)/hw}(xv − t)T

j σ2(xv). From conditions (C2), (C4) and similar ar-

guments as used for proving (B.6), we derive that

s∗nt,ij = nhp+i+j
w [σ2(t)fX(t)νi+j + hw[σ2(t)fX(t)](1)νi+j+1 + OP (δ2

n)]. (B.11)
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From (B.6), (B.7) and (B.11), we obtain that

S−1
nt S∗ntS

−1
nt = Var[S−1

nt (XT
ntWnte)|Xn]

= (nhp
w)−1H−1

[
S−1

r

fX(t)
− hw

S−1
r

fX(t)
f (1)(t)S̃r

S−1
r

fX(t)
+ OP (δ2

n)

]
×

[
[σ2(t)fX(t)S∗r + hw[σ2(t)fX(t)](1)S̃∗r + OP (δ2

n)]

]
×

[
S−1

r

fX(t)
− hw

S−1
r

fX(t)
f (1)(t)S̃r

S−1
r

fX(t)
+ OP (δ2

n)

]
H−1. (B.12)

Notice that Var(In2) = E[S−1
nt S∗ntS

−1
nt ]. Therefore, (B.5) holds. #

The convergence of φ(t) and its first derivative φ(1)(t) follows directly from

(B.3), (B.9), (B.10) and (B.5), which is stated in the following Lemma.

Lemma 2 Assume that the conditions C1-C4 hold. We have

sup
t
|φ̂(t)− φ(t)| = OP {hr+1

w + (nhp
w)−1/2 log n}, (B.13)

sup
t
|φ̂(1)(t)− φ(1)(t)| = OP {hr

w + (nhp+2
w )−1/2 log n}. (B.14)

The third step is to approximate the link function φ(·) by a different kernel

function Klhl
(·) and then obtain a “pure” residual without impact from the

CMS, as described in the beginning of Section 5. Specifically, when β is a p×dM

matrix which spans the CMS, we have, φ(x) = E(Y |X) = E(Y |XT β). Thus

φ(x) can be estimated in the following way,

φ̂(x) = ĝ(xT β)/f̂(xT β)

=
1

nhdM
l

n∑

i=1

yiKl

(
xT

i β − xT β

hl

)/
1

nhdM
l

n∑

i=1

Kl

(
xT

i β − xT β

hl

)
,

where Kl(·) is a RdM → R kernel function with the bandwidth hl, and the

true structural dimension, dM , of the CMS. In the following we write Klhl
(·) =

Kl(·/hl)/hdM
l for notational clarity.

After we remove the effect of the CMS exhaustively through the three-step

procedure, we proposed the e2−based OPG method to target the CVS. The

following Lemma 3 serves for proving its asymptotic normality.

Before we present Lemma 3, we define

ξj(x, β∗) = Klhl
(xT

j β∗ − xT β∗)yj , and
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αn(x, β∗) =
1
n

n∑

j=1

(
ξj(x, β∗)− E[ξj(x, β∗)]

)
.

Obviously, ĝ(xT β∗) = 1
n

∑n
j=1 ξj(x, β∗).

Lemma 3 Under conditions (C1), (C2), and (C5)-(C7). Then, we have, as n →
∞,

sup
x∈Rp

sup
‖β∗−β‖=O{n−1/2h−1

w }
|αn(x, β∗)− αn(x, β)| = OP {log n · n−1h−1

w h−dM−1
l }.

Proof of Lemma 3: From the definition of αn(x, β∗), we have

αn(x, β∗)− αn(x, β) =
1
n

n∑

j=1

((
ξj(x, β∗)− ξj(x, β)

)
− E

(
ξj(x, β∗)− ξj(x, β)

))
.

Let ε > 0 be given. In order to use chain lemma (see, e.g. Pollard, 1984), we

show that

P
(∣∣∣ξj(x, β∗)− ξj(x, β)

∣∣∣ >
ε

2

)
≤ 1

2
, for x ∈ Rp, ‖β∗ − β‖ = O(n−

1
2 ). (B.15)

By Chebyschev’s inequality, the LHS of (B.15) is less than or equal to 4
ε2

E
(∣∣∣ξn(x, β∗)−

ξn(x, β)
∣∣∣
)2

. Note that

4
ε2

E
(
ξ(x, β∗)− ξ(x, β)

)2

=
4
ε2

E
(
Klhl

(β∗X − β∗x)Y −Klhl
(βT X − βT x)Y

)2

=
4
ε2

E
(
Y 2[Klhl

(β∗X − β∗x)−Klhl
(βT X − βT x)]2

)

=
4
ε2

E
(
[φ(X) + σ(X)]2[Klhl

(β∗X − β∗x)−Klhl
(βT X − βT x)]2

)

≤ 8
ε2

E
(
φ2(X)[Klhl

(β∗X − β∗x)−Klhl
(βT X − βT x)]2

)
.

+
8
ε2

E
(
σ2(X)[Klhl

(β∗X − β∗x)−Klhl
(βT X − βT x)]2

)
. (B.16)

Let T =
{
t ∈ Rp : Kl

(
(t−x)β∗/hl

)
> 0 or Kl

(
(t−x)β/hl

)
> 0

}
and U =

{
u ∈

Rp : x + hlu ∈ T
}

=
{
u ∈ Rp : Kl(uT β∗) > 0 or Kl(uT β) > 0

}
.

It is easy to prove that the second term of (B.16) has the same order as the

first term because its structure is essentially the same as the first one. Therefore,
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we only deal with the first term of (B.16). Note that

8
ε2

E

(
φ2(X)

(
Klhl

(β∗X − β∗x)−Klhl
(βT X − βT x)

)2
)

=
8
ε2

∫

t∈ T

(
φ2(t)

(
Klhl

(β∗t− β∗x)−Klhl
(βT t− βT x)

)2
)

fX(t)dt

=
8

ε2h2dM
l

∫

t∈ T

(
φ2(t)

(
Kl

(β∗t− β∗x
hl

)
−Kl

(βT t− βT x

hl

))2
)

fX(t)dt

=
8hp

l

ε2h2dM
l

∫

U

(
φ2(x + hlu)

(
Kl(β∗u)−Kl(βT u)

)2
)

fX(x + hlu)du

≤ 8hp
l

ε2h2dM
l

CM2
φMf

∫

U

(
uT (β∗ − β)

)2
du

≤ 8hp
l

ε2h2dM
l

CM2
φMfO(h−p

l )O(h−2
l n−1h−2

w ) = O
( 1

nh2
wh2dM+2

l

)

where Mφ and Mf are the upper bounds of φ(X) and fX , respectively. Together

with condition C6 that nh2
wh2dM+2

l → ∞, we obtain that the LHS of (B.15) is

less than or equal to 1
2 when n is large enough. We have the local result of (B.15).

By setting δ2
n = O

(
1

nh2
wh

2dM +2

l

)
and α2

n = log2 n · h2
w · h2dM+2

l , the remaining

proof is a modification of the proof of Theorem 37 in Pollard (1984, page 34).

The details are omitted.

Appendix C: Proof of Theorems

Proof of Theorem 1: Because it is easy to show that part (a) of Theorem 1

implies part (b); part (c) implies part (a) and part (b); part (d) implies part (b),

then the proof of Theorem 1 can be concluded by proving (1): (b) implies (c);

and (2): (c) implies (d).

(1): Expanding the LHS of (b), we obtain

E[e2Var(Y |X)|αT X] = E
(
[Y − E(Y |X)]2Var(Y |X)|αT X

)

= E
(
E[(Y − E(Y |X)]2Var(Y |X)|X|αT X

)
= E[Var2(Y |X)|αT X],

and

E(e2|αT X)E[Var(Y |X)|αT X]

= E
(
E[[Y − E(Y |X)]2|X]|αT X

)
E[Var(Y |X)|αT X] = E2[Var(Y |X)|αT X].
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By (b), we have

Var[Var(Y |X)|αT X] = E[Var2(Y |X)|αT X]− E2[Var(Y |X)|αT X] = 0.

Therefore, Var(Y |X) is a measurable function of αT X.

(2): Now we prove that (c) implies (d). Note that

Cov
(
[Y − E(Y |X)]2, l(X)|αT X

)

= E
(
[Y − E(Y |X)]2l(X)|αT X

)
− E

(
[Y − E(Y |X)]2|αT X

)
E[l(X)|αT X]

= E[Var(Y |X)l(X)|αT X]− E[Var(Y |X)|αT X]E[l(X)|αT X]

= Var(Y |X)E[l(X)|αT X]−Var(Y |X)E[l(X)
∣∣∣αT X] = 0.

This leads to the desired result.

Proof of Theorem 2: For notational convenience, we write bj = φ(1)(xj) and

its corresponding estimator b̂j = φ̂(1)(xj). We expand b̂j b̂
T
j into three parts to

obtain

hw√
n

n∑

j=1

b̂j b̂
T
j =

hw√
n

n∑

j=1

(b̂j − bj + bj)(b̂j − bj + bj)T

=
hw√

n

n∑

j=1

[(b̂j − bj)(b̂j − bj)T + 2(b̂j − bj)bT
j + bjb

T
j ] = I1 + I2 + I3.

By invoking Lemma 2 and condition C8, we have

I1 = oP (1). (C.1)

Now we deal with I2. For notational clarity, we introduce a block matrix v1 =

(0, Ip,0, . . . ,0) with the p × p identity matrix Ip corresponding to the column

indices of {(xi − t)(1)} in Xnt. Therefore, bj = v1βj and b̂j = v1β̂j with a slight

abuse of notation. Thus we analyze the convergence of 1√
n

∑n
j=1 H(β̂j − βj)βT

j .

Let εn = Yn − φ(Xn). After simple algebra calculation, we have

1√
n

n∑

j=1

H(β̂j − βj)βT
j =

1√
n

n∑

j=1

H[(XT
njWnjXnj)−1(XT

njWnjYn)− βj ]βT
j

=
1√
n

n∑

j=1

H(XT
njWnjXnj)−1XT

njWnj [φ(Xn)−Xnjβj ]βT
j

+
1√
n

n∑

j=1

H(XT
njWnjXnj)−1XT

njWnjεnβT
j =: I21 + I22.
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Equation (B.9) entails that 1√
n

∑n
j=1 H(XT

njWnjXnj)−1XT
njWnj [φ(Xn)−Xnjβj ] =

O(
√

nhr+1
w ) almost surely. Recalling that

√
nhr+1

w → 0, we can have I21 = oP (1).

We turn to deal with I22 now. By using the result of (B.5), we have

I22 =
1√

nnhp
w

S−1
r H−1

n∑

j=1

1
fX(xj)

XT
njWnjεnβT

j

+
1√
n

n∑

j=1

H
[
(XT

njWnjXnj)−1 −H−1S−1
r H−1/(nhp

wfX(xj))
]
XT

njWnjεnβT
j

=: I221 + I222.

Following standard arguments of U−statistic theory (Serfling 1980), we can find

that

I221 =
1√
n

n∑

j=1

S−1
r (µ1, . . . , µr)T εjβ

T
j + oP (1). (C.2)

By (B.5) and (C.2), we can easily have I222 = oP (1). Therefore,

I2 =
1√
n

n∑

j=1

S−1
r (µ1, . . . , µr)T [yj − φ(xj)]βT

j + oP (1). (C.3)

Some elementary calculation yields

I3 =
hw√

n

n∑

j=1

(bjb
T
j −∆) = OP (hw) = oP (1). (C.4)

The desired conclusion follows from (C.1), (C.3) and (C.4).

Proof of Theorem 3: The proof is almost identical to that for Theorem 2 in

Zhu and Fang (1996). Hence we omit the details.

Proof of Theorem 4: First note that for any eigenvalue λl(Ωn), 1 ≤ l ≤ p,

[log λi(Ωn) + 1− λi(Ωn)] ≤ 0. If k < K1, then min(k, τ) = k for large n. Let

log LK1 − log Lk = −n

2

K1∑

i=k+1

[log λi(Ωn) + 1− λi(Ωn)] =:
n

2
Wn1(K1, k).

Hence,

G(K1)−G(k) = log LK1 − log Lk − Cn(K1 − k)(2p− k −K1 + 1)/2

= [nWn1(K1, k)− Cn(K1 − k)(2p− k −K1 + 1)]/2,
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and then, Theorem 2 yields that when k < K1, Wn1(K1, k) > c for a constant,

and

P
(
G(K1)−G(k) < 0

)
→ 0, as Cn

n → 0. (C.5)

If k > K1, then min(k, τ) = K1. Similarly

log LK1 − log Lk = −n

2

k∑

i=K1+1

(
log λi(Ωn) + 1− λi(Ωn)

)
=:

n

2
Wn2(K1, k).

Thus, when k > K1,

G(K1)−G(k) = log LK1 − log Lk − Cn(K1 − k)(2p− k −K1 + 1)/2

= [nWn2(K1, k)− Cn(K1 − k)(2p− k −K1 + 1)]/2

= −nh2
w

k∑

i=K1+1

[λi(Ωn)− 1]2[1 + oP (1)]/(2h2
w)− Cn(K1 − k)(2p− k −K1 + 1)/2.

Therefore, when k > K1, we employ Theorem 2 to get

P
(
G(K1)−G(k) < 0

)
→ 0, as Cnh2

w →∞. (C.6)

Conclusively, it follows from (C.5) and (C.6) that K̂1 → K1 in probability. The

proof is concluded.

Proof of Theorem 5: The proof is essentially the same as that for Lemma 1

in Xia, Tong, Li and Zhu (2002). Hence the details are omitted.

Proof of Theorem 6: Without notational confusion, we write the p×K̂ matrix

β̂ as β̂
K̂

, and p×K matrix β̂ as β̂K . First, we show that β̂
K̂

in hw√
n

∑n
j=1 b̂∗jb

∗,T
j

can be replaced by β̂K , which does not affect the asymptotic distribution of
hw√

n

∑n
j=1 b̂∗jb

∗,T
j . This claim can be verified as follows. On one hand,

P
{ hw√

n

n∑

j=1

b̂∗2j ≤ t
}

= P
{ hw√

n

n∑

j=1

b̂∗2j ≤ t, K̂ = K
}

+ P
{ hw√

n

n∑

j=1

b̂∗2j ≤ t, K̂ 6= K
}

= P
{ hw√

n

n∑

j=1

b̂∗2j ≤ t
∣∣∣K̂ = K

}
+ o(1). (C.7)

The last equation holds because K̂ → K in probability (this is proven in Theorem

4), the RHS in the above equation has the same limit as P
{

hw√
n

∑n
j=1 b̂∗2j ≤ t

∣∣∣K̂ =
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K
}

as n →∞. On the other hand,

P
{ hw√

n

n∑

j=1

b̂∗2j ≤ t
}

≥ P
{ hw√

n

n∑

j=1

b̂∗2j ≤ t
∣∣∣K̂ = K

}
P

{
K̂ = K

}

= P
{ hw√

n

n∑

j=1

b̂∗2j ≤ t
∣∣∣K̂ = K

}
− o(1). (C.8)

By (C.7) and (C.8) together, we show that hw√
n

∑n
j=1 b̂∗j b̂

∗,T
j based on β̂

K̂
has the

same asymptotic distribution as that based on β̂K . Therefore, in the following,

we can treat the involved β̂
K̂

as β̂K throughout the proof.

Expand b̂∗j b̂
∗,T
j into three parts:

hw√
n

n∑

j=1

b̂∗j b̂
∗,T
j =

hw√
n

n∑

j=1

(b̂∗j − b∗j + b∗j )(b̂
∗
j − b∗j + b∗j )

T

=
hw√

n

n∑

j=1

(
(b̂∗j − b∗j )(b̂

∗
j − b∗j )

T + 2(b̂∗j − b∗j )b
∗,T
j + b∗jb

∗,T
j

)
= I4 + I5 + I6.

Deal with I5 first. I4 can be handled in a similar way.

After simple algebraic calculation, we have

hw√
n

n∑

j=1

b̂∗jb
∗,T
j =

hw√
n

n∑

j=1

v1 × [XT
njWnjXnj ]−1XnjWnj ê

2
nb∗,Tj + oP (1)

=
hw√

n

n∑

j=1

v1[XT
njWnjXnj ]−1XnjWnje

2
nb∗,Tj

+
hw√

n

n∑

j=1

v1[XT
njWnjXnj ]−1XnjWnj(ê2

n − e2
n)b∗,Tj

= I51 + I52.

Similar to the proof of (C.3) in Theorem 2,

I51 =
1√
n

n∑

j=1

S−1
r (µ1, . . . , µr)T [e2

j − σ2(xj)]βT
j + oP (1) (C.9)

follows from the condition (C9).

Decompose I52 into two terms: I52 = hw√
n

∑n
j=1 v1[XT

njWnjXnj ]−1XnjWnj [(ên−
en)2 + 2en(ên − en)]b∗,Tj =: I521 + I522, where en = {y1 − φ(βT x1), . . . , yn −
φ(βT xn)}T and ên = {y1 − φ̂(β̂T x1), . . . , yn − φ̂(β̂T xn)}T . A direct application
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of Lemma 3 shows that ei − êi = [φ(xT
i β̂) − φ(xT

i β)] + [φ̂(xT
i β) − φ(xT

i β)] +

OP [(log n)1/2 ·n−1h−1
w h−dM−1

l +hd
l ] holds almost surely for all x′is. We now prove

that I522 is oP (1) and hence I521 = oP (1) can be obtained from the convergence

of φ̂(·) and β̂. Specifically,

I522 =
hw√

n

n∑

j=1

v1[XT
njWnjXnj ]−1XnjWnjen[φ̂(XT

n β̂)− φ̂(XT
n β)]b∗,Tj

− hw√
n

n∑

j=1

v1[XT
njWnjXnj ]−1XnjWnjen[φ̂(XT

n β)− φ(XT
n β)]b∗,Tj

=
hw√

n

n∑

j=1

v1[XT
njWnjXnj ]−1XnjWnjen[φ(XT

n β̂)− φ(XT
n β)]b∗,Tj

− hw√
n

n∑

j=1

v1[XT
njWnjXnj ]−1XnjWnjen[φ̂(XT

n β)− φ(XT
n β)]b∗,Tj + oP (1)

=: I5221 + I5222.

Using Taylor expansion and Slutsky Theorem, we can derive that I5221 = oP (1).

By using the fact that

sup
xT

i β

|φ̂(xT
i β)− φ(xT

i β)| = O{hd
l + (nhdM

l )−1/2 log n}, (C.10)

and similar arguments for proving (B.11), we can have I5222 = oP (1), and hence

I5221 = oP (1). Consequently,

I5 =
1√
n

n∑

j=1

S−1
r (µ1, . . . , µr)T [e2

j − σ2(xj)]βT
j + oP (1). (C.11)

Similarly, we can have I4 = oP (1) and I6 = oP (1). The result follows.
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