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Abstract: We develop two likelihood-based approaches to semiparametrically esti-

mate a class of time-inhomogeneous diffusion processes: log penalized splines (P-

splines) and the local log-linear method. Positive volatility is naturally embedded

and this positivity is not guaranteed in most existing diffusion models. We inves-

tigate different smoothing parameter selections. Separate bandwidths are used for

drift and volatility estimation. In the log P-splines approach, different smooth-

ness for different time varying coefficients is feasible by assigning different penalty

parameters. We also provide theorems for both approaches and report statistical

inference results. Finally, we present a case study using the weekly three-month

Treasury bill data from 1954 to 2004. We find that the log P-splines approach

seems to capture the volatility dip in mid-1960s the best. We also present an ap-

plication to calculate a financial market risk measure called Value at Risk (VaR)

using statistical estimates from log P-splines.
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1. Introduction

Diffusion processes are important tools for modeling the stochastic behavior
of a range of economic variables, such as interest rates and stock prices. They
are essential building blocks for pricing options (derivatives whose price depends
on the price of another underlying asset) and risk management. The growth of
the derivative market, which has existed for only about 35 years, is astonishing.
To put this in perspective, the size of the derivatives market grew to $415 tril-
lion in 2006 (as measured in notional amounts outstanding; Source: Bank for
International Settlements). On the other hand, due to the volatility of financial
variables, risk management has become critical to corporations, especially after
such institutions as Orange County and Long Term Capital Management lost
billions of dollars in financial markets when senior management poorly managed
risk exposure (Jorion (2000)).
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We propose two semiparametric likelihood-based approaches, log P-splines
and the local log-linear method, to modeling a class of time-inhomogeneous diffu-
sion processes. Asymptotic properties are developed for inference. A case study
of weekly three-month Treasury bill data from 1954 to 2004 is presented, where
we further investigate derivative (bond) pricing and provide risk measures such
as Value at Risk (VaR).

Most continuous-time asset pricing models assume that the underlying state
variables follow diffusions, for example, the famous option pricing model of Black
and Scholes (1973) (Scholes won the Nobel Prize in Economics in 1997), interest
rate term structure models of Vasicek (1977), Cox, Ingersoll and Ross (1985,
CIR), Hull and White (1990), Heath, Jarrow and Morton (1992) and Chan,
Kayolyi, Longstaff and Sanders (1992, CKLS)). A nice overview can be found in
Merton (1992) and Duffie (2001).

All of these diffusion processes are simple time-homogeneous parametric
models taking the form dXt = µ(Xt; θ)dt+σ(Xt; θ)dWt, where Xt is an economic
state variable depending on time t, Wt is the standard Brownian motion, θ is a
parameter, µ(Xt; θ) is the drift function, and σ(Xt; θ) is the diffusion or volatility
function (volatility or diffusion in finance is the same as the standard deviation
in statistics). Volatility is a key concept because it is a measure of uncertainty
about future price movements. Volatility is directly related to the risk associ-
ated with holding financial securities, and hence affects consumption/investment
decisions and portfolio choice. Volatility is also the key parameter in option pric-
ing. Finally, volatility itself is so important that the volatility index (VIX) of a
market has recently become a financial instrument. On March 26, 2004 the VIX
compiled by the Chicago Board of Option Exchange began trading in futures.

Empirical tests of the different parametric diffusion models mentioned above
have yielded mixed results (Stanton (1997)). This is not too surprising since
they are neither derived from any economic theory nor have offered guidance in
choosing the correct model. With the availability of high-quality data on many
financial assets, researchers have recently considered nonparametric techniques
for diffusion models to avoid possible model misspecification. For example, Ait-
Sahalia (1996) estimates the time-homogeneous diffusion σ(Xt) nonparametri-
cally using the kernel method, given a linear specification for the drift. Stanton
(1997) and Jiang and Knight (1997) estimate both the drift µ(Xt) and diffusion
σ(Xt) nonparametrically using the kernel method. Jiang (1998) develops a non-
parametric approach to model the interest rate term structure dynamics based
on a spot rate process. Bandi and Phillips (2003) propose a nonparametric scalar
diffusion model without assuming stationarity. Ait-Sahalia, Fan and Peng (2006)
develop a specification test for the diffusion process to compare nonparametric
and parametric estimates. Hong and Li (2005) propose a transition density based
validation approach.
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Figure 1. Weekly Treasury bill yields from 1954 to 2004. The yields, their
changes, squared residuals from the drift estimation, and estimated squared
volatility are plotted.

While nonparametric estimation of diffusion models is promising, mostly
they posit time-homogeneous diffusions. There are a variety of reasons to believe
that the underlying process for many economic variables might change from time
to time, due to changes in business cycles, general economic conditions, monetary
policy, etc. One example is the volatility increase for interest rates at all matu-
rities on the days of FOMC (Federal Open Market Committee) meetings. The
so-called “calendar effects” on stock prices (that the prices behave differently on
different days of the week, month, and year) are often observed. Prices of many
fixed-income securities and options change over time as the maturities of the
contracts approach (see Egorov, Li and Xu (2003), and the references therein).

This motivates researchers to consider time-inhomogeneous diffusion models

dXt = µ(t,Xt)dt + σ(t,Xt)dWt,

where both the drift µ(t,Xt) and the diffusion or volatility σ(t,Xt) depend on
time t. Figure 1 (a) is a plot of weekly 3-month Treasury bill rates during the
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period from 1954 to 2004. The differenced rates are plotted in (b). Visually
the differenced rates seem to behave randomly with small volatility around the
mid-1960s and mid-1990s, with larger volatility during the late 1950s, mid-1970s
and early 1980s. This visual observation seems to be well represented in our log
P-splines fit of volatility σ(t,Xt) in Figure 1 (c), which catches the low volatility
period around 1964. The two local fits (local log-linear, and Fan, Jiang, Zhang
and Zhou (2003), hereafter, FJZZ) of volatility seem dominated by the overall
trend of the original rates and keep increasing in the 1960s. Especially in the
period from 1961 to 1966, the contradiction is evident. A key point is that the
differenced yield seems to exhibit time inhomogeneous variation, which is the
main focus of this paper.

In fact, some parametric time-inhomogeneous diffusion models have been
developed in the finance literature and have been widely used in practice. For
example, to capture the “smiles” (in contrast to the constant volatility assump-
tion of geometric Brownian Motion in Black and Scholes (1973)) observed in
the implied volatility from option prices, Rubinstein (1994) models stock re-
turn volatility as a deterministic function of stock price and time. Hull and
White (1990) develop models where the short rate follows a parametric time-
inhomogeneous diffusion process. A recent work by FJZZ finds that there is not
sufficient information to determine the bivariate functions nonparametrically, and
that forcing all coefficients in the drift and diffusion to be time-dependent may
cause over-parameterization.

Here we focus on the semiparametric time-inhomogeneous model

dXt = (α(t) + β(t)Xt)dt + σ(t)(Xt)γdWt, (1.1)

where γ is a scalar parameter independent of time t, α(t) and β(t) are time-
dependent coefficients of the drift, and σ(t) is a time-dependent coefficient of
diffusion (volatility). Model (1.1) includes most of the well-known diffusion mod-
els. For example, when α(t), β(t), and σ(t) are constants (time independent),
(1.1) yields to the CKLS model. In the CKLS framework, γ = 1 corresponds to
the famous Black-Scholes model; γ = 0 corresponds to the Vasicek model; and
γ = 0.5 corresponds to the CIR model. A more general model with γ depend-
ing on time t has been considered by FJZZ. However, they note that there may
be over-parameterization and unreliable estimates due to high collinearity. The
semiparametric model proposed here, with γ as a parameter, has the advantage
of allowing testing parametric restrictions to determine which model fits the data
adequately using formal tests such as the Wald test, as discussed in Section 2.2.

This paper contains a statistical finance application to the short term Trea-
sury bill data, as well as some methodological developments for perhaps broader
interest. In particular, we contribute to the literature of diffusion model estima-
tion in the following aspects. First, we provide two practical tools to estimate
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the time dependent diffusion process semiparametrically. Two likelihood-based
approaches are developed: log P-splines maximizing penalized likelihood and the
local log-linear method maximizing kernel-weighted likelihood. The necessary
feature of positive volatility is naturally embedded in both log P-splines and
local log-linear methods, and this positivity is not guaranteed in most existing
diffusion models. In addition, compared to the local constant method, the lo-
cal log-linear approach can in general give lower bias and variance of estimates
with more appealing properties at the boundary (Fan and Gijbels (1996), Yu and
Jones (2004) and Fan, Jiang, Zhang and Zhou (2003)).

Second, we investigate different smoothing parameter (bandwidth) selection
criteria: generalized cross validation (GCV) and the EBBS of Ruppert (1997)
criteria for log P-splines, and the Rule-of-thumb bandwidth (ROT) for the local
log-linear method. Separate bandwidths are used for drift and volatility estima-
tion. In addition, in the log P-splines approach, different smoothness for different
time varying coefficients α(t) and β(t) of drift is feasible by assigning different
penalty parameters. Consistent with most literature (e.g., Jarrow, Ruppert and
Yu (2004) and Yu and Jones (2004)), small simulation studies (not reported)
show that EBBS for log P-splines approach is more robust to possible autocor-
relations and less prone to undersmoothing, as often observed with generalized
cross validation (GCV). This empirical selection of smoothing parameters pro-
vides an alternative and efficient new method in this field. Our ROT bandwidth
is simple and works almost as well as the unavailable optimal bandwidths. The
ROT local log-linear approach performs better than the local linear and local
constant approaches. The proposed approach is as good as or better than that of
Ruppert, Wand, Holst and Hössjer (1997), even when the latter uses its optimal
bandwidths.

Third, we provide asymptotic results for both approaches so that inference is
readily available. The asymptotic result also enables the proposal of our rule of
thumb (ROT) bandwidth estimator in the local log-linear approach. Comparing
the two proposed approaches in the time-inhomogeneous diffusion estimation,
we find that the log P-splines approach is computationally expedient and effi-
cient, which is also often observed in complicated nonlinear regression contexts
(Yu and Ruppert (2002) and Jarrow, Ruppert and Yu (2004)). However, the
theory from the local log-linear approach is more complete in the sense of being
“truely nonparametric.” We give a large sample property based on fixed knot
P-splines, which often serve well in application. Other spline methods could also
be used, though their direct adoption might be complicated and we expect the
fit would be similar. This semiparametric model encompasses many well-known
asset pricing models such as Black-Scholes, and asymptotic results can be ap-
plied to test the adequacy of these models via simple parametric restrictions.
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Based on the asymptotic results, confidence intervals of the volatility estimate
can be obtained. Estimating volatility is generally challenging and difficult, and
the confidence interval provides additional information about the accuracy and
variation of underlying volatility.

The rest of this paper is organized as follows. Section 2 investigates the
log P-splines approach of the time-inhomogeneous diffusion model. Section 3
discusses local log-linear estimation. A case study of 3-month Treasury bill data
is presented in Section 4.

2. Log Penalized Splines Diffusion Estimation

The semiparametric time-inhomogeneous model (1.1) is continuous, but the
data sampled in the financial markets are usually discrete. Therefore, in esti-
mation, the discretized version of (1.1) based on the Euler scheme is used as
an approximation. Suppose the data {Xti , i = 1, . . . , n + 1} are sampled at
discrete time points, t1 < · · · < tn+1. For weekly data when the time unit is
a year, ti = t0 + i/52 (i = 1, . . . , n), where t0 is the initial time point. Denote
yti = Xti+1 −Xti , Zti = Wti+1 −Wti , and ∆i = ti+1− ti. The Zti are independent
and normally distributed with mean zero and variance ∆i due to the indepen-
dent increment property of Brownian motion Wti . The discretized version of
(1.1) becomes

yti ≈ (α(ti) + β(ti)Xti)∆i + σ(ti)(Xti)
γ
√

∆iεti , (2.1)

where {εti} are independent and standard normal. According to Stanton (1997)
and further studied in Fan and Zhang (2003), the first-order discretized approx-
imation error to the continuous-time diffusion model is extremely small, as long
as data are sampled monthly or more frequently. This finding simplifies the
estimation procedure significantly.

We first develop a log penalized splines method for diffusion estimation. Log
is necessary to guarantee that volatility is positive. P-splines are described in
Eilers and Marx (1996) and Ruppert, Wand and Carroll (2003). They estimate
fewer parameters than smoothing splines. The location of the knots in P-splines
is considered not as crucial as that in regression splines such as MARS (Friedman
(1991)) and smoothness is achieved through a roughness penalty measure. An
appealing feature of P-splines is that they allow multiple smoothing parameters
and a variety of penalties, quadratic or nonquadratic, on the spline coefficients.

2.1. Maximum penalized likelihood estimation

We model time dependent functions α(ti), β(ti) of drift, and log σ2(ti) of
volatility, in model (2.1) by splines:

α(ti) = Bα(ti)δα; β(ti) = Bβ(ti)δβ ,

log σ2(ti) = 2Bσ(ti)δσ,
(2.2)
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where B(ti) is a vector of spline basis functions and δ are vectors of spline coef-
ficients. Different basis functions can be used for different coefficient functions,
and bases using truncated power functions, B-splines, or natural cubic splines
can also be adopted. Our experience shows that they yield similar fits. This is
not surprising since the critical tuning parameter in P-splines is the penalty pa-
rameter. Hence, for notational simplicity, we present P-splines using a truncated
power basis function B(ti) = [1, ti, . . . t

p
i , (ti−κ1)

p
+, . . . , (ti−κk)

p
+], where p is the

spline polynomial degree, (ti − κk)+ = max(0, t − κk), κ1 < · · · < κK are spline
knots often located at equal-spaced sample quantiles for simplicity. Then we can
write

log σ(ti) = Bσ(ti)δσ = δσ
0 + δσ

1 ti + · · ·+ δσ
p tpi + δσ

p+1(ti−κ1)
p
+ + · · ·+ δσ

p+k(ti−κk)
p
+.

The log likelihood function, excluding constants, is negative∑ (( 1
∆1

){
yti −

(
Bα(ti)δα + Bβ(ti)δβXti

)
∆i

}2

× exp
{
−

(
2Bσ(ti)δσ + γ log X2

ti

)}
+ 2Bσ(ti)δσ + γ log X2

ti

)
.

For notational consistency, we reserve the subscript 1 for drift and 2 for
volatility, thus parameter vectors δ1 = (δT

α , δT
β )T for drift and δ2 = (δT

σ , γ)T for
volatility. Write the extended design matrix for drift as B1 = [Bα(ti),Bβ(ti)Xti ]
and the extended design matrix for volatility as B2(ti) = [Bσ(ti), log Xti ]. Fur-
ther denote the parameter vector by θ = (δT

1 , δT
2 )T = (δT

α , δT
β , δT

σ , γ)T . The
smoothing parameter vectors are λ = (λα, λβ , λ2)T and λ1 = (λα, λβ)T , where
λα, λβ , and λ2 are smoothing parameters for α(t), β(t), and log σ2(t), respec-
tively.

The penalized likelihood estimator of θ maximizes the penalized log likeli-
hood function

Qn,λ(θ) = Ln(θ) −
(n

2

)
λθTDθ, (2.3)

where

Ln(θ) =
∑

ln(θ, ti) = −
∑ (( 1

∆i

){
yti − B1(ti)δ1∆i

}2

× exp{−2B2(ti)δ2} + 2B2(ti)δ2

)
. (2.4)

Here D is an appropriate positive semi-definite matrix. We choose D as in
Ruppert, Wand and Carroll (2003) that penalizes jumps at the knots in the pth
derivative of the spline. Like the choice of basis functions, we found the choice
of D to be relatively unimportant, and different D’s give similar fits.
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Now a squared volatility estimate, using notation V (ti), and suppressing Xti ,
can be obtained as

V̂ (ti) := σ̂2(ti, Xti) = σ̂(ti)2X
2γ̂
ti

= exp(2B2(ti)δ̂2), (2.5)

so the volatility estimate is

σ̂(ti, Xti) =
√

σ̂(ti)2X
2γ̂
ti

= exp(B2(ti)σ̂2). (2.6)

2.2. Asymptotic properties and inference

As is virtually always the case, theoretical results for the P-splines approach
are not as readily obtainable as for local methods. Indeed, there are open ques-
tions about simple univariate P-splines regression (Hall and Opsomer (2005)).
Nevertheless, we give the results for the log P-splines estimator using a fixed
number of knots, which is basically from a flexible but parametric model. We
find that the fixed-knot P-splines analysis is useful for developing a practical
methodology, as has been noted in the literature, e.g., Gray (1994) and Carroll,
Maca and Ruppert (1999).

Theorem 1. Under mild regularity conditions, if the smoothing parameter vector
λn = o(n−1/2), then a sequence of penalized likelihood estimators θ̂ exists, is
consistent, and

n
1
2 (θ̂ − θ) →D N(0, I−1(θ)), (2.7)

where I(θ) is the usual Fisher information matrix.

The proof of Theorem 1 is standard with ordinary (no penalty) maximum
likelihood estimates (Lehmann and Casella (1998)), and is similar to Fan and Li
(2001) with penalty function.

The result given in (2.7) does not involve penalty parameter, which is as-
sumed to vanish sufficiently fast as n tends to infinity. For finite sample inference
this tends to overestimate the variance of θ̂, and one would prefer the asymptotic
distribution with fixed penalty parameter derived from the estimating equation
approach using the “sandwich formula”

n
1
2 (θ̂(λ) − θ(λ)) →D N

{
0,H−1(θ(λ))G(θ(λ))H−T (θ(λ))

}
, (2.8)

where H(θ) =
∑

(∂/∂θT )ψti(θ), G(θ) =
∑

ψti(θ)ψT
ti(θ), ψti(θ) = −(∂/∂θT )

ln(θ; ti) + λDθ, (see Carroll, Ruppert, Stefanski and Crainiceanu (2006) and Yu
and Ruppert (2002)).

A standard error of the estimated volatility function σ̂(ti, Xti) = exp(B2(ti)
δ̂2) can be easily derived from a delta method calculation as

sd
{

σ̂(ti, Xti)
}

=
√

B2(ti)V̂ar(δ̂2)BT
2 (ti) exp(B2(ti)δ̂2), (2.9)
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where V̂ar(δ̂2) is given by (2.8). Note that as λ goes to zero, V̂ar(δ̂2(λ)) in (2.8)
converges to the corresponding matrix of inverse of Fisher information given in
(2.7).

The asymptotic results can be readily used to construct confidence bands or
perform hypothesis testing. Confidence bands for α(ti), β(ti), and the volatility
estimate σ̂(ti)X

γ̂
ti

are reported in Section 4.2. Hypotheses tests such as the Wald
test can be applied to test certain restrictions on θ. For example, the restrictions
that α(ti) = 0, β(ti) and σ(ti) only containing the intercepts, and γ = 1 give the
Black-Scholes option pricing model. The Wald test can test the null hypothesis
H0 : Rθ0 − q0 = 0 where R represents the restrictions on the parameter vector
θ and is of size d1 × dim(θ) with d1 ≤ dim(θ). The Wald statistic W = (Rθ̂ −
q0)T (RV̂ar (θ̂)RT )−1(Rθ̂ − qo) has a Chi-squared limiting distribution with d1

degrees of freedom, where V̂ar (θ̂) can be computed using (2.8).

2.3. An algorithm

One could do one-step maximization on the penalized likelihood function
(2.3). However, in our P-splines approach, the number of parameters could be
large and this estimation algorithm may not be efficient. We then implement an
iterative algorithm by reweighing drift estimation using the inverse of the esti-
mated volatility with several iterations, as suggested by Carroll, Wu and Ruppert
(1988). We find in our simulation and case studies that two or three iterations are
sufficient. Volatility estimation is our primary focus, and we advocate two-step
estimation in practice.

Step 1: Drift Estimation.
The time-inhomogeneous drift µ(ti, Xti) = (α(ti) + β(ti)Xti) is estimated by

minimizing
n∑

i=1

{(yti

∆i

)
− B1(ti)δi

}2

+
(n

2

)
λ1δ

T
1 D1δ1. (2.10)

This can be achieved by a simple ridge regression δ̂1 = (BT
1 B1 +nλ1D1)−1BT

1 Y,
where vector Y has the ith element yti/∆i. The smoothing parameter can be
chosen by GCV or EBBS etc., which we discuss in more detail in Section 2.4.

Step 2: Log P-splines Volatility Estimation.
Denote the residual from the previous drift estimation by

eti =
(

1

∆1/2
i

)
(yti − µ̂(ti, Xti)∆i). (2.11)

Then we have eti ≈ σ(ti)(Xti)
γεti .



852 YAN YU, KEMING YU, HUA WANG AND MIN LI

Remark. Stanton (1997) pointed out that this last approximation holds even
if µ̂(ti, Xti) = 0 is assumed, though the approximation error using (2.11) is of
smaller order. This observation further confirms the validity of our two-step
approach with primary focus on volatility estimation.

We estimate the parameter δ2 for volatility by minimizing the negative pe-
nalized likelihood∑ (

e2
ti exp{−2B2(ti)δ2} + 2B2(ti)δ2

)
+

(n

2

)
λ2δ

T
2 D2δ2. (2.12)

The usual Newton-Raphson procedure can be applied. We used the nonlinear
optimization routine lsqnonlin() from Matlab’s optimization toolbox. A prelim-
inary parameter estimate δ̂2,pre for volatility can be obtained by a simple ridge
regression δ̂2,pre = (BT

2 B2 + nλ2D2)−1BT
2 E, where vector E has the ith element

log |eti |. The volatility estimate is given by

σ̂(ti, Xti) =
√

σ̂(ti)2X
2γ̂
ti

= exp(B2(ti)δ̂2).

2.4. Selection of smoothing parameter

It is well-known that smoothing parameter selection is very important in
nonparametric methods. The typical method is cross-validation and minimiza-
tion of mean square error (or asymptotic MSE). Empirical selection of smoothing
parameters provides an alternative and efficient new method in this field.

2.4.1. GCV

Generalized cross validation (GCV) is a common smoothing parameter se-
lection criterion in spline literature. In Step 1 of drift estimation, the GCV
smoothing parameter λ1 minimizes

GCV (λ1) =
ASR(λ1)[

1 − trace
{
B1(BT

1 B1 + nλ1D1)−1BT
1

/
n
}]2 , (2.13)

where ASR(λ1) =
∑n

i=1{yti/∆i − B1(ti)δ̂1(λ1)}2 is the usual average squared
residuals from linear ridge regression.

The GCV smoothing parameter λ2 for Step 2 of volatility estimates mini-
mizes

GCV (λ2) =
Deviance(λ2)[

1 − trace
{
B2(BT

2 B2 + nλ2D2)−1BT
2

}/
n
]2 , (2.14)
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where the numerator is the deviance (McCullagh and Nelder (1989)) of the model
for a fixed value of the smoothing parameter λ2.

2.4.2. EBBS

EBBS (Empirical Bias Bandwidth Selection) has been proposed for local
polynomial variance function estimation for a number of reasons (Ruppert, Wand,
Holst and Hössjer (1997)). Jarrow, Ruppert and Yu (2004) also observe that in
interest rate term structure estimation, EBBS seems more robust to autocor-
relations and smoothing on derivatives, whereas GCV is more prone to under-
smoothing even with an artificial hyperparameter introduced. We extend EBBS
for use with log P-splines diffusion estimation.

EBBS minimizes the average MSE (mean squared error) of the estimated
values, which is a function of smoothing parameter λ. In log P-splines volatility
estimation, the variance of the volatility fit σ̂(ti, Xti) = exp(B2(ti)δ̂2) can be
estimated by (2.9). EBBS models the bias of the volatility fit as a function of the
penalty parameter λ at any fixed ti. The estimated MSE of σ̂(ti, Xti) at ti and λ,
MSE(σ̂; ti; λ), is then calculated as the estimated squared bias plus the estimated
variance. MSE(σ̂; ti; λ) is averaged over ti and then minimized over λ. The bias
at any fixed ti is obtained by a fit at ti for a range of values of the smoothing
parameter λ, and a curve is then fitted to model bias. Our implementation is
similar to that of Jarrow, Ruppert and Yu (2004). See also Ruppert (1997) and
Ruppert, Wand, Holst and Hössjer (1997).

We by no means recommend against GCV choice of smoothing parameters
in general. Indeed, we prefer the GCV criterion in most cases where GCV and
EBBS perform similarly. GCV is usually simpler to compute. If a relatively
small number of knots are used, then GCV and EBBS give virtually the same fit,
unsurprisingly. The number of knots for α, β, and σ(ti, Xti) in our simulation and
case studies, found to give the most stable results, is only around 10. GCV tends
to undersmooth and EBBS seems to be more appropriate in the applications
when autocorrelations are evident, or when the derivative function is of interest,
or when the local smoothing parameter is preferred. As discussed in Section
4, autocorrelations of the residuals are very mild in the data we used, and the
derivative function is not of interest in our estimation. Therefore, GCV is the
preferred method in our case study.

2.4.3. Multiple smoothing parameter for drift estimation

Different levels of smoothness are sometimes desired for different coefficient
functions. A particular nice feature of the P-splines approach is that different
smoothing parameters can be easily adopted. For example in the drift estima-
tion, different smoothing parameters λα and λβ can be readily implemented for
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coefficient functions α(ti) and β(ti), respectively. It is not obvious to us how to
incorporate multiple bandwidths for drift optimally in local approaches. Com-
putationally, one could use a two-dimensional grid search. We suggest a simple
calculation, as in Ruppert and Carroll (2000). First obtain a common smooth-
ing parameter λ by GCV or EBBS, chosen from a trial sequence of grid values.
Starting with this common smoothing parameter with λβ fixed, we select λα by
GCV or EBBS. We then fix the selected λα and select λβ by GCV or EBBS.

2.5. Discussion

One computational advantage in the above log P-splines approach for dif-
fusion models is that the power term γ is naturally embedded in the spline
estimation with the extended spline basis for volatility. The parameter γ has in-
teresting implications. For example, as discussed in Section 1, model (1.1) with
the usual linear drift and γ = 1 gives the Black-Scholes model. As we will see
in Section 3, the estimation of γ in the local method is not trivial in that some
complicated iterative algorithm is involved. Our experience from the case study
and a limited simulation study suggests that the log P-splines approach is more
stable and efficient in practice, though asymptotic theorems of local methods
may be more complete.

3. Local Log-Linear Diffusion Estimation

We also consider local log-linear volatility estimation for the time-inhomo-
geneous diffusion model (2.1) based on a kernel-weighted likelihood method.
Some other kernel-based variance function estimation methods (e.g., Ruppert,
Wand, Holst and Hössjer (1997) and Fan and Yao (1998)) could also be used
here. However, these methods are based on residuals and do not take advan-
tage of information from the likelihood function. Also, these methods do not
always give non-negative estimators due to possible negativity of the local linear
weight function, and the local log-linear approach may give smaller bias than
kernel-weighted residuals estimation for a class of variance function (Yu and
Jones (2004)). Usually, local linear can achieve both lower bias and variance of
estimates with nicer properties at the boundary than the local constant in Fan,
Jiang, Zhang and Zhou (2003).

3.1. Maximum kernel-weighted likelihood estimation

An appropriate localized normal log-likelihood for model (2.1) is given by
minus

n∑
i=1

(1
h

)
K

( ti − t

h

)[
1
∆i

{Yti − µ(ti, Xti)∆i}2

σ2(ti, Xti)
+ log(σ2(ti, Xti))

]
,
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where µ(t,Xt) = α(t) + β(t)Xi, σ2(t,Xt) = σ2(t)X2γ
t , and α(t), β(t) for drift

and log σ2(t) for volatility are functions to be fitted locally. Similar to the log P-
splines approach and that of Yu and Jones (2004), we find the natural shortcut
of the two-step procedure gives very good fits. Hence, we focus on volatility
estimation and advocate a two-step procedure in practice. Different bandwidths
h1 and h2 are desirable for drift and volatility estimation, respectively. The same
bandwidth h1 for α(t) and β(t) is used.

In Step 1, a standard local approach of the least-square routine of regression
mean function estimation can be adopted. Let Ki = h−1K(h−1(ti − t)) be the
short-hand kernel function. We note that with a kernel (local constant) smooth,
we can minimize

∑
i(Yti/∆i −α−βXti)

2Ki1 with respect to α and β. This gives

α̂ =
(A0B2 − A1B1)
(B0B2 − B2

1)
, β̂ =

(A1B0 − A0B1)
(B0B2 − B2

1)
,

where Aj =
∑

i(Yti/∆i)(Xti)
jKi1 and Bj =

∑
i(Xti)

jKi1, j = 0, 1, 2. Then α̂

(and the same for β̂) can also be written as α̂ =
∑

i Ki(B2 −XtiB1)Yti/(B0B2 −
B2

1), akin to the local linear regression mean function estimator (Wand and Jones
(1995)). This indicates that existing bandwidth selection rules for kernel smooth-
ing mean could be modified and adapted for use in drift estimation.

Let µ̂(t,Xt) be the time-inhomogeneous drift estimator from Step 1. As in
(2.11), denote eti = (1/

√
∆i)(yti − µ̂(ti, Xti)∆i). We then model log σ2(t) as a

local linear function. This leads to the local kernel weighted likelihood estimation
equation in Step 2 volatility estimation:

n∑
i=1

Ki2

(
e2
ti exp

{
−(v0 + v1(ti−t))

}
X−2γ

ti
+ v0 + v1(ti−t) + γ log X2

ti

)
, (3.1)

where v0 and v1 are local linear parameter functions. The scale parameter γ is
estimated via global minimization of

n∑
i=1

(
e2
ti exp(−v̂0(ti))X

−2γ
ti

+ γ log X2
ti

)
. (3.2)

Once we have estimates for v0 and γ, denoted by v̂0 and γ̂, respectively, we can
estimate the volatility by

σ̂(t,Xt) = exp
( v̂0(t)

2

)
X γ̂

t .

Note that given γ, (3.1) is similar to the estimating equation in Yu and Jones
(2004). We outline an algorithm via setting the partial derivatives of localized
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normal log-likelihood function to zero. Take derivatives of (3.1) with respect to
v0 and v1 to find

exp(v0) =
∑n

i=1 Ki2e
2
ti exp(−v1(ti − t))X−2γ

ti∑n
i=1 Ki2

, (3.3)

exp(v0) =
∑n

i=1 Ki2e
2
ti(ti − t) exp(−v1(ti − t))X−2γ

ti∑n
i=1(ti − t)Ki2

. (3.4)

Equating (3.3) and (3.4) provides a single equation to solve for v1. Once we
obtain v1, we can get via equation (3.3) or (3.4). Alternatively, an iterative
algorithm via equations (3.3) and (3.4) can be used.

3.2. Rule-of-Thumb (ROT) bandwidth selection

Two independent data-based bandwidths are used for estimating drift and
volatility, respectively. Basically, bandwidths could be selected based on min-
imization of the integrated version of asymptotic mean squared errors or the
residual squares criterion. Typically, the bandwidth for estimating drift could
use many existing rules for smoothing regression mean functions. An example is
the RSW rule (Ruppert, Sheather and Wand (1995)).

For volatility estimation, we suggest a simple rule of thumb (ROT) band-
width selection h2 similar to that in Yu and Jones (2004). It is based on mini-
mizing the asymptotic mean integrated squared errors (MISE), using the results
from Theorems in Section 3.3. In particular, a simple rule-of-thumb bandwidth
selector is h2 = {2R(K)V1/a2

2(K)Bn}1/5, where

a2(K) =
∫ 1

−1
z2K(z)dz, R(K) =

∫ 1

−1
K2(z)dz,

B =
( 4

n

) n∑
i=1

(ĉ2 + 3ĉ3ti)2 exp(2(ĉ0 + ĉ1ti + ĉ2t
2
i + ĉ3t

2
i )),

V1 =
∫ b

a
exp(2(ĉ0 + ĉ1t + ĉ2t

2 + ĉ3t
3))dt,

with the latter being obtained numerically. ĉi (i = 1, 2, 3) is obtained via fitting
a cubic function globally to the logged squared residuals arising from an initial
fitting of drift (see Yu and Jones (2004) for details).

3.3. Asymptotic properties

The asymptotic properties of estimating squared volatility , volatility V (t) =
σ2(t, Xt), and power γ are given by Theorems 2, 3, and 4, respectively, under the
following conditions:
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(1) drift µ(t,Xt) and volatility σ(t, Xt) are second-differentiable functions;

(2) the kernel function K is a Lipschitz continuous symmetric density on [−1, 1];

(3) bandwidths hj = hj(n) → 0 and nh2+δ
j → ∞ for some δ > 0, j = 1, 2.

Let g be the density function of time, usually a uniform distribution on time
interval [a, b].

Theorem 2. Under the foregoing regularity conditions, as n → ∞, the estimator
V̂ (t) from (3.1) satisfies√

nh2s(V (t)) ×
(
V̂ (t) − V (t) − 1

2
a2(K)b(t)h2

2{1 + O(h2)}
)
→D N(0, 1),

where a2(K) =
∫ 1
−1 z2K(z)dz, R(K) =

∫ 1
−1 K2(z)dz, b(t) = V (t)(log V )′′(t), and

s2(V (t)) = [2V 2(t)/g(t)]R(K).

The proof is a combination of Taylor series expansion of a normalized func-
tion of (3.1) and the Cramer-Wold rule. The proof is long, and is included in
a working paper version downloadable from http://statqa.cba.uc.edu/~yuy/
YYWL2.pdf.

In terms of estimating volatility by (3.1) via σ̂(t,Xt), we derive the asymp-

totic property of σ̂(t,Xt) − σ(t,Xt) by using the Taylor expansion
√

V̂ (t) −√
V (t) ∼ [1/2σ(t,Xt)](V̂ (t) − V (t)).

Theorem 3. Under the conditions of Theorem 2,√
nh2s

∗(t) ×
(
σ̂(t,Xt) − σ(t,Xt) −

1
2
a2(K)b(t)h2

2{1 + O(h2)}
)
→D N(0, 1),

where s∗(t)2 = [σ2(t,Xt)/2g(t)]R(K).

By applying the likelihood estimation property to the log-likelihood equation
(3.2) in parameter γ, we have another theorem.

Theorem 4. When (3.2) is a second continuous differentiable function on
(0,∞) in γ and n → ∞, the estimator γ̂ from (4.1) is consistent and satisfies√

nI(γ)1/2(γ̂ − γ) →D N(0, 1), where

I(γ) = E

(
− γ

∑
i

(
(1/∆i){Yti/∆i − µ(ti, Xti)}2

σ(ti)2(X2
ti
)γ+1

+ log X2
ti

))2

.

Remark. From the asymptotic analysis, the optimal bandwidth is of the usual
O(n−1/5) size, and the optimal mean integrated squared errors are of the order
O(n−4/5). An analogous theorem near the boundary can be easily obtained,

http://statqa.cba.uc.edu/~yuy/YYWL2.pdf
http://statqa.cba.uc.edu/~yuy/YYWL2.pdf
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Table 1. Descriptive statistics of interest rate yields and their changes.

Mean
Variables Sample Size 1954-1978 1979-1982 1983-2004

Yield 2,638 4.250% 11.524% 5.243%
Change 2,637 0.006% -0.006% -0.006%

Mean
Variables Sample Size 1954-1978 1979-1982 1983-2004

Yield 2,638 1.892% 2.559% 2.269%
Change 2,637 0.157% 0.557% 0.111%

which verifies the theoretical advantage of the local linear (and local log-linear)
approach over the local constant (kernel) method at the boundary.

4. Treasury Bill Case Study

4.1. Data and preliminary results

We compare log P-splines, local log-linear, and FJZZ in a case study using
weekly 3-month Treasury bill secondary market rates (weekly averages of business
days) obtained from the Federal Reserve Bank of St. Louis. The secondary
market rates are annualized using a 360-day year or bank interest. A Treasury
bill is a financial contract issued by U.S. government with value (price) Pt(T ) at
time t that yields a known amount on a future date, the maturity date T . Thus,
3-month Treasury bills mature on date (T = t + 3 months). Pt(T ) is determined
by the rate evolution, and they have an inverse relationship (see (4.2) in Section
4.3). The market rates usually change every day. The data set contains 2,638
observations from January 8, 1954 to July 23, 2004. The interest rate yields and
their changes are plotted in Figures 1 (a) and (b). The volatility of changes in
yield is clearly time-inhomogeneous. High volatility (Figure 1b) corresponds to
high levels of interest rates (Figure 1a). During the high interest rate period from
1979 to 1982, the volatility was large. These are confirmed by the descriptive
statistics (artificially divided into three periods) in Table 1.

The table displays the mean and standard deviation of both the weekly yields
Xti and their changes yti (= Xti − Xti−1) during three periods: 1954 to 1978,
1979 to 1982, 1983 to 2004. Both the level of the yields (mean 11.52445) and the
volatility of the yield changes (standard deviation 0.556564) were particularly
high from 1979 to 1982.

Estimation results show that both the log P-splines and the local log-linear
approaches, as well as the FJZZ kernel method, catch the major trend of volatility
well. Volatility is highest during early 1980s (Figure 1b). This was in agreement
with the economic situation then. During that period, the Federal Reserve chair-
man Paul Volcker sharply increased the interest rate to combat the inflation crisis
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in the U.S.; inflation decreased from 9% in 1980 to 3.2% in 1983. The interest
rate (the yield on 3-month Treasury bills) also dropped dramatically by 1983.
The swing in the interest rate during that period is reflected in the volatility
plot. Similar to what we have observed in Figure 1c for the dip in the mid-1960s,
the log P-splines fit seems to catch the relative low variation period in the mid-
1990s better, whereas the local log-linear and FJZZ methods are more prone to
be dominated by the original series. We next report the estimation results from
the three methods in detail.

4.2. Estimation results

For the log P-splines method, we focus on the two-step estimation method
outlined in Section 2.3. A combination of degree 1 and around 10 equally spaced
quantile knots in the power basis for α(t1), β(ti), and log σ(ti) is found to give
stable results. In log P-splines, the choice of smoothing parameter, as discussed
in Section 2.4, is more critical than the degree or the number of knots. The
smoothing parameter can be chosen using either GCV or EBBS but the results
are similar. The autocorrelation in the residuals is found to be mild and thus
EBBS may not be necessary. GCV is certainly simpler to compute and the
results reported here are from using GCV. Both the local log-linear method and
FJZZ’s local constant method estimate the drift and the volatility in an iterative
fashion as in log P-splines. However, the parameter γ is not naturally embedded
in volatility estimation as it is in log P-splines. In the local log-linear method,
as described in Section 3.1, γ is estimated by minimizing equation (3.2). FJZZ
maximizes a profile pseudo-likelihood of γ to obtain an estimate. The local log-
linear method selects the bandwidth using the rule of thumb (ROT), while FJZZ
minimizes the average prediction error (a function of the bandwidth) to choose
the bandwidth.

Figure 1(b) clearly indicates that the volatility is much lower during the
mid-1960s than other periods. This means a drop of the fitted volatility during
that period. Figure 1(c) shows the volatility estimates from the three methods.
The volatility plot from log P-splines shows the decrease clearly while the other
two methods show an increase of volatility. We further explore this issue with a
small simulation study, focusing on a comparison of log P-splines and FJZZ.

The drift in the semiparametric inhomogeneous diffusion model (2.1) is set
to 0 and the (true) inhomogeneous volatility σ(t) = exp(t)/2 follows the non-
linear trend in Figure 2(c). One thousand simulations of sample size 2,000 were
generated and estimated. Fixed sampling interval and finite sample period were
used in simulation. A typical sample path and its difference are shown in Figures
2(a) and 2(b). Figure 2(c) shows that the log P-splines estimate of σ(t) is very
close to the true σ(t) while the estimate from FJZZ is very different. However,
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Figure 2. Simulated data and the estimated Sigma.

the volatility estimates σ̂(t)X γ̂
t from both log P-splines and FJZZ are close to

the true volatility (the plot is not shown here but in a longer version of the pa-
per: http://statqa.cba.uc.edu/~yuy/YYWL2.pdf). It appears that Xγ

t plays

http://statqa.cba.uc.edu/~yuy/YYWL2.pdf


SEMIPARAMETRIC ESTIMATION 861

Table 2. MSE and MAD Comparison: Median of 1,000 simulations.

SIGMA LOG P-SPLINES FJZZ
MSE 2.40E-03 2.28E-02
MAD 3.53E-02 1.28E-01

GAMMA LOG P-SPLINES FJZZ
MSE 6.25E-04 1.30E-03
MAD 1.69E-02 2.37E-02

VOLATILITY LOG P-SPLINES FJZZ
MSE 4.95E-04 3.59E-03
MAD 1.55E-02 2.96E-02

a significant role in the FJZZ estimate. Table 2 reports the median of both MSE
(Mean Squared Error) and MAD (Mean Absolute Deviation) from the two meth-
ods. Table 2 (and boxplots of MSE and MAD from 1,000 simulations reported in
the longer version of this paper) clearly indicates that the log P-splines method
gives smaller MSE and MAD for σ(t), γ, and the volatility.

We now go back to the case study. To assess the accuracy of the estima-
tors, confidence intervals can be constructed. Asymptotic theorems in Sections 2
and 3 can be applied to construct the confidence bands and perform hypothesis
testing. Figures 3 and 4 display the confidence bands for both the drift and
volatility estimate using the asymptotic results from Section 2.2. The confidence
band from the local linear method (see Section 3.3) is very similar and thus not
plotted here. It appears that volatility is highest in the early 1980s when the
economy experienced high inflation and interest rates, as described in Section 4.1.
During that period, the confidence band is widest and the volatility is the most
inhomogeneous. The confidence bands for α(ti) and β(ti) are shown in Figure 5.
The estimation results of β(t1) clearly show mean reversion of the drift estimate.

We next apply the Wald test of Section 2.2 to test whether some of the
sub-models, such as Black-Scholes or CIR, are valid. When all coefficients for
α(ti), β(ti), and σ(ti), except the intercepts for β(ti) and σ(ti), are 0, γ = 1 gives
the familiar geometric Brownian motion (GBM) process of Black and Scholes
(1973). When all coefficients for α(ti), β(ti), and σ(ti), except the intercepts are
0, γ = 0.5 gives the CIR term structure model (Cox, Ingersoll and Ross (1985)).
When these restrictions are tested using the Wald test of Section 2.2., all p-values
are less than 0.0001. Thus both the Black-Scholes and CIR models are rejected.

4.3. Estimating value at risk

One application of the diffusion estimates is to calculate extreme quantiles,
called Value at Risk (VaR) in finance. VaR is the maximum loss or risk (credit
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Figure 3. Time-inhomogeneous log P-spline drift estimates with confidence
bands constructed using the asymptotic results in Section 2.2.

Figure 4. Time-inhomogeneous log P-spline volatility estimates with confi-
dence bands constructed using the asymptotic results in Section 2.2.
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Figure 5. Time-inhomogeneous log P-splines drift component estimates α(t)
and β(t) with confidence bands constructed using the asymptotic results in
Section 2.2.

risk, liquidity risk, market risk, etc.) during a fixed time period given a fixed
probability a financial institution is expected to incur after an extreme event or
a shock to the financial system (see Jorion (2000) for a detailed description of
VaR). It is of great value to a financial institution or a regulatory committee,
as it can be used to ensure the financial institution will still be solvent after an
extreme event. More formally, if ∆P (∆t) is the change in value (price) of the
assets from time t to t + ∆t, VaR is defined as following:

p = Prob(∆P (∆t) ≤ VaR). (4.1)

It says that with probability (1−p), the maximum loss over the next time period
∆t is VaR (see Tsay (2002, Chap. 7)).

Suppose we are interested in the VaR for the weekly three-month Treasury
bill in two weeks. The price of these Treasury bills is determined from the interest
rates which can be estimated using the semiparametric diffusion model (2.1). The
price of a zero-coupon bond that pays $1 at maturity (t = T ) is

Pt(T ) = Et

[
exp

(
−

∫ T

t
rvdv

)]
, (4.2)
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Table 3. Treasury bill price and Value at Risk for a 2-week horizon.

Inerest rate 0.0132 0.05 0.1
VaR 0.04832 0.15792 0.30591

Price 99.95 99.85 99.70

where drv = [α(v) + β(v)rv]dv + σ(v)rγ
vdWv (the market price of interest rate

risk is assumed to be 0 for simplicity). A zero-coupon bond has no cash dividend
(coupon) during its life. To compute the price of the bond, α(v), β(v), σ(v), and
γ can be replaced with their estimates at time t, and the expectation in (4.1) can
be computed using Monte Carlo simulation as in FJZZ.

We use three different current interest rate levels to estimate the price and
VaR: low (0.0132), median (0.05), and high (0.1). The data set ends in 2004
and the interest rate yields during that year are unusually low (0.0132 is the last
observation in this data set). The low interest rates were due to relentless rate
cuts by the Federal Reserve after the dot com crash and the September 11, 2001
terrorist attacks. We performed 10,000 simulation runs and report the price of
Treasury bills which pay $100 at maturity and the 95% (confidence) level VaR
(p = 0.05) for a 2-week horizon in Table 3, where α(v), β(v), σ(v), and γ are
estimated using log P-splines. The interest rates (with drift and volatility), price
of the bonds, and VaR are then obtained from these estimates.

The price in Table 3 is the average price of a Treasury bill that pays $100
at maturity from 10,000 simulation runs. The 95% (confidence) level VaR is the
difference between the maturity price ($100) and the 5% quantile of the price from
10,000 simulation runs. Thus, with probability 0.95, the maximum loss over the
next two weeks is 4.8 cents on $100 at the current interest level of 0.0132, while
the maximum loss increases to 30.59 cents on $100 if the current interest level
is 0.1. Financial institutions could have a significant amount of bond holdings,
such as Treasury bills, and this maximum loss (VaR) could be substantial, in the
millions or billions of dollars.

4.4. Discussion

From the case study of the weekly three-month Treasury bill data and some
limited simulations study, we find that the proposed log P-splines and local log-
linear approaches can be successfully applied to time-inhomogeneous diffusion
models. Our experience shows that log P-splines seem to be able to model the
volatility best. Log P-splines are also computationally efficient, and thus are rec-
ommended in practice. Both approaches guarantee that the volatility is positive,
an important appealing feature in practice. Inference is also readily available via
either the asymptotic theorems presented or regression bootstrap.
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We also need to point out that, when data is sampled at very high fre-
quency, extra attention needs to be taken to incorporate issues such as high
serial correlation and restrictions on the underlying diffusion process. These may
be considered in future research.
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