OPTIMAL BOUNDS FOR INVERSE PROBLEMS
WITH JACOBI-TYPE EIGENFUNCTIONS

Thomas Willer

Université de Provence

Supplementary Material

This note contains in section S1 the proof for the main result given in The-
orem 2, and in section S2 the proof for two preliminary results on needlets, i.e.

Lemma 1 and Theorem 7 in the main paper.

S1. Proof of the main result

We recall the three conditions required on the families of functions fo, ..., fm:
e Condition (i): for all i €{0,1,...,m}, f; € B} (M),

e Condition (ii): for all i #j, ||fi — f;||h > 26 for some § > 0,
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e Condition (iii’): foralli€ {1,...,m}, Py, < P and 3 o K(Py,, Pg,)
Blog(M + 1), where 0 < 0 < 18 and Ps denotes the probability distribution
of the process Y under the hypothesis f.

Consider Condition (iii’). Let I = [a,b] (the case I = [a,b[ is similar). If we
define the variables Y(w) = Y(w(. — a)/y/A()) and &(w) = E(w(. — a)/+/A())
for all w € V = L?([0,b — a], dx) then Model (2.1) in the main text is equiv-
alent to: V(w) = (Kf(. + a) /A + a),w)g + ez(w), which is equivalent to the
stochastic equation: VvVt € [0,b — da, ay, = Kf(t + a)\/Wdt + edW;
where (Wy)i>0 denotes the standard Wiener process. Then using Girsanov’s
formula, for all f,g € U, P is absolutely continuous with respect to P4, and

under the hypothesis g the likelihood ratio A¢(f, g) := %(Y) is distributed as:
log Ae(f, g) ~ N (—3]| X912 1 KE29)) ). Thus

1 K(f—
K(Pr,Pg) = EclnlAc(f,9)) = ~Elog(Aclg, )) = 2[R,
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Then Condition (iii’) can be replaced by

Condition (iii): fo = 0 and for all i € {1,...,m}, ||Kfi||%/ < 0log(M + 1)e?
where 0 < 0 < %.

Sparse cases

Condition (i) is satisfied if u; := 255(2ner 11, W50 [ W5 1|5 /™ belongs to
1"(M), where f; = y\j, n,. Using the first part of Lemma |1} u; = 0 whenever
li—jol > 2. So in the sequel we assume that j € {jo—1,jo,jo+ 1}, and the 1" norm
of (u;) is bounded by a constant M (independent of y > 0 and jy), if for instance

j <37 "M. We have ut = = DTy ZneZ [{(Wiom Wi lbinllz < el 4 12),
Wlth, using the bound of Theorem 6

27
Iy = 2t 2oy B (s gy ) T2 2],
k=1
2i
IZ —_ 2][7‘ES+(7172]([3+1)},Y7'[ Z |<1])]'O,T]1 )11))',1’1>‘ (2 —k4+ ]) (rt—2) ([3+1/2)
k=2-141

Using the second part of Lemma [1} we have for any ¢, [({j, ny, Wime )| < Cki.
Thus choosing any ¢ > w, we obtain Iy < c2ilmstr=2) (et m
Moreover Zz) ! k+1)7]i6;2)(ﬁ+1/2] < 2 Gu=(=2)(B+H1/2)+ " 56 for a large
enough (, I, < ¢2(msHre=2)(B+N)—Cretll—(m=2)(B+1/2)l+ )y 7 < I, Thus, we have,
for all j € {jo — 1,jo,jo + 1}, ulf < colmsHm=2)atly™ and condition (i) is

satisfied if, for a small enough ¢ depending on M,

y < 2 ols+H(1=2) (et )],

Condition (ii), using Theorem 6, is fulfilled with & = yP2Jo(P=2)(at1),
Condition (iii) is satisfied if II W)107”‘t))2d7\(t) < C. We have ), n(x) =
2, 41 ¢mtP1(x) and K*KPy = b?Py, thus

IK(Wjo ) Iy = D _[oresnd? < 27290 3 [ej 0 = 2720 [y i, 1T < C272V0.
1 1

Condition (iii) is then satisfied if Q <ec.
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Regular case

Condition (i): for ¢ € Ej,, let u; == ZJ'S(ZTIEZj [{(fe, W5 ™[5 0I5 /™. Once
again uj = 0 whenever [j —jo| > 2. Now let j € {jo — 1,jo,jo + 1}. Then we have
uf < c(Iy + 1), with

2i—1 2o~
[, = 2ilrs+m=2)(ect)] T[Zk T2 (et /2)( Z LW m0 Vi) N
—1 1=1
2 20!
L= sty N (2 — k1) BN 0 b))
k=211 =1

1
< e
Then, for x € R, let | x| denote the largest integer smaller than x. We have

Using Lemma (1| with some ¢ given later, we have [({;) n, Wjm,)

1 5 1 sy 5
— < < = <
_Z. (1+|l—2)o—1k|)C—Ck Z (1+ |20 )kJ_]_)C—Ck Zlc—Ck ’
1<[ 2077 k| <[ 20T K| >1

for C large enough. Moreover

1° 1 _ g (L4 [20TK])°
2 AT N_20Tk)E = 2 (1—ino—ikJ)C*Z 1

1> 20Tk |+1 1> 20T k|+1 1>1
1% + | 200k | 5
SCZ # S Ck y
>1

for  large enough. To obtain the last line, we used the fact that 6 > 1. Thus

201 18 5
=1 O e = ¢k’ and
2i—1
I; < c2imsHim=2) el m Z k(=2 1/2) 87 _ oils+8+31,
k=1

For I,, remark that for any ke {277+1,...,2)and any 1 € {1,..., 2001},

we have I— — z,iol = Z—]j — 2]—0 \2 3 O| So for such a k, as prev1ously,
201 19 20— 15 i _ )8
=1 (420 Tk)e = ~1=10 (141207 (2 —K)))¢ < ¢(2—k)° and
2
- . . 1

k=2-T+1
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Finally we have u; < ch[S+‘S+%]”y so fe belongs to B2 (M) if, for a small enough
¢ depending on M,
v < c27 o [s+6+1§1.

Condition (ii): for all e%, ¢V € Ej, with u # v, f,, — f, = 52?%1 (e —
E‘é)kélbjo momy - S0 by Theorems 7 and 6, we have
zjofmfl
Ite-flh > e Y (- =c? YK
k=1 {k | e #ey}

Let Ny denote the cardinality of the set {k € {1,... , 2Jo—m—T1 | Ep # ey, then
we have Ny, > c2)o and, since & > 0,

Nu,v
”fu_ fVH%l > C,YZ Z kZé :'YZNU,,V1+25 > C’YZZJO(H_ZM. (11)
k=1

Let us distinguish two cases. Suppose 2 < p < oo and let 1/p+1/q = 1. By
(1.1), and Holder’s inequality, we have

c2o 1428 < [T — fv,’u%z(u) < = follwe (= follLa -
Using Theorem 5, and the fact that, under our assumptions, qé — (q — 2)(x +
1/2) > —1, we have

zjofmfl
||fu_fV||Lq(u) < Cyzi(qu) (oc+1)( Z kqéf(qfl)(ocH/Z))l/q < C/yzio(leré))
k=1

fop (1
therefore ||fy — fv||£p(u) > cyP2lor(z+3),
Suppose now 1 < p < 2, we have, using (1.1)),
jo (1428 2 2—
242 < 1 — 22 ) < = Foll Ty ol Fu = Full 20

From Theorem 4, we infer, for all 0 < 0 < 7t/2,
2jo (1+) 1

- <
o leos Bl < CRmrg = K|\ {2009 + 1)at1/2

jo(T+)
Thus, for 1 large enough, [\j, n, (cosB)| < Czll?xﬂ/z (1+2]'0|€1)72‘§f’;\)2’ Moreover,
since & — (x+1/2) > 0,

ziofmfl

: 1
Ifu(cos B)—Fy(cos B)] < C»YZJO(OCJH] Z KO (x+1/2)
k=1

(14200 — X7))2

< C/yzio(%ﬂs)
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210 m—1 1
where in the last line we used the fact that for any 0, > m <
c Zl 1 12 Similarly the same bound holds for any /2 < 08 < m, thus we have

[fu— follLoo () < c2)° ), and, once again, ||fy — f\,H]Lp( > cyvzlop 778,
Condition (iii): we have /T;, > exp(%ZjO), so Condition (iii) is satisfied if for

all e* € Ej,, II(KH t))2d7\(’c) < ¢2) for a small enough constant c. We have

€

Z)O—m—1 2)0 m—1 .
fu=21421  BiokWiomme = 2k=1  2_1en Bjo kCjome tPUX), with By =
yskk5 Thus,

2jg—m—1 2io—m-1
2 2 _ 4—2vj 2
IK(FINE, 10 = Z[ Z Bio kB1Cjo e, = X 270 Z[ Z Bjo kCio i, U
1 k=1 1 k=T
2ip—m~—1 2jp—m—1
—2vj —2vj
=277 3 Bioaiomami I, 1 < €275 Z B x
k=1 =1
Z)O m—1
< 2 2oy 2 Z K2 — 2 2¥ioy 2025+ 1)jo
k=1

Vi o8+ )] . . (5-v)j .
So finally we need W < C20/2 e, 2%’ < C with a small enough

constant C.
S2. Proof of two new properties of needlets
Lemma 1. We have

1. V,j’, k, 1 such that [i' —j| > 2, ({5, , W5/ m,) =0,

2. ¥C >0, 3c¢ such that ¥j,j" k, Lwith i’ =i < 1, [(W5 1, W57 q) < m

Proof of Lemma[ll The needlets are \j, = fl_zj 241 CimaPu(x), with coeffi-
cients ¢; 1 = a(l/271)P1(M)y/bjn. So if i’ —j| > 2 then {72 +1,...,20 —1}n
(2'241,...,2" =1} =0, and Wine Wirm) =0, V(k,1).

For the second part of the lemma we use Theorem 4. For any 0, there exists
¢ such that, for all j, k,
1 2i/2

i (cosB)] < c - 0<fsm
W5 ( JI<cs We (27, c0s0) (1 +2]|9**)

We recall that wep(x) = (1-x)*(14%), and w e p(2;x) = (1—x427)F1/2(1 4
x +272)B+1/2 For a given { > 0 and j,j’, k, 1 such that [j' —j| < 1, we use this
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inequality for \p;.,, | with & = ¢+ 2, and for [pjs ;| with & = . Noticing that
w“)(g(Zj,cos 0) < wa,B(Zj/,cos 0) we obtain

[ wep(cosB) sin 0do
by <c2JJ ! _
(W50 Wyr )l < 0 Wu,p(2),cos0) (14210 — %UCH( +2i' — & )
I'koc[S
<c - LIG%, ,
~ " (minp<p<n 57 k,1(0))¢
with fj51(0) = (1 + 210 — Z¥))(1 + 270 — 7|) 0<0<mand [xap =
2] J‘T[ Wy, (cos 0) sin 0dO

0 wy,p (2 ,cos6) (1+2)‘9_7 )2

First we have mlnogegnfj,j/‘k‘l(e) = min{ijj/)kyl(%),fj,j/)kyl(znjl,)} > 1+

— T k=217 > ¢(14|k—27"1|). Second, let us divide L; x o g into two terms:
zh 371 j k.,
ks = o + Hiap with

. _ 5 (2 waﬁ(.cose) sin 0d0
ik, B 0 Wa,p(2),cos0) (14216 — ZE))2’
2, p=2 | Leplcos®)  sinbdd
1 Wep(2),c088) (1 4 270 — 2K|)2
_ 5 '3 W, p(—cos0) sin 6d0
Jo Wep(2,—cos8) (1+2im—0 — 2|2
_ 7 wp,«(cosB) sin 6d6
Jo wpa(2i,cos0) (1 4 2ijp — HZK)|)2
=L pa

We have sin 0w pg(cos0) = sin0(2 sin?(0/2))%(2 cos?(8/2))P < 1021, for all
0<0<7, and

W p(2;cos0) = (25in%(0/2) + 275)%H1/2(2 cos?(0/2) 4 272 BH1/2 > ¢ 92t

n2)

7T
1 i3 e 3 ae ae -
Thus, L o < ¢2 [ e ¢ [0’ Trrpemae < C since [17 55y is

finite, and the same goes for Ijz‘k)“ﬁ.

Thus, there exists C(x,) > 0 such that, for all (j,k), Ijx«p < Cla,p),
which completes the proof of the lemma. ]
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Theorem 7. If p € 2N*, there exist a constant cp > 0 and an integer ny, such
that, for any collection of numbers {A : k € I3}, j > 0, where I; C {1,2,... 21
and k,l € ljk#l= [k =1 > n,,

I Z Aklp),nkH > Cp Z |)\k‘pr] ﬂkH]Lv

kel kel

Proof of Theorem 7. Let p € 2N* and I C {1,2,... ,27}. We have the decompo-
sition H(Zkte Aktbj,nk)\ﬁp(m = A + B, where

A=Y Nlbnl?,
kel;
PH ey, AR (7
B= Y HG,J (T s, bonxax,
(pk)kel]-e/\ kel Pre J ke

and A = {(prlker;, | Pk € N, Zkelj px = p and Ju # v such that py >
0 and p, > 0}.

2/2
VWo,p (2 ,%) (142 arccos x—ZK|)
(Pr)ker; € A, we use Theorem 4 with 1 = % + 1 for every VP, , k € I;. There
exists C such that

1
. 0)|Px < C . 0)Px .
[ Wi (cos®)Ps < CTT @jrlcos0)? ] | (1120 — 2w

ke Ij ke Ij ke Ij

Let @;x(x) = for some 0 < s < min{T, oc\/LBH}' For

@ [N

Let u,v € I]-,u # v such that py > 0 and p,, > 0, and let nins = minkylelj kAL [k —
1|. We have

) k . )
[T0+20 S50 = (1+ 270 — ZEN(1+ 210 — Z20) = chu—v] > enine.
kel;

Thus we obtain

ALY
Z kaeI k HN)]»T]k|pk< C Z

pk' Tinf
(P Jker; €A HkEI kel (PrJker; €A

C(Zkelj |)‘k“95mk)p‘

Tinf

| Pk
P Ty, M -

(p.
| )Mk
erlj Pk kel
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Now let us proceed similarly to the sketch of the proof of Theorem 6 in the main
text, given in Kerkyacharian, Picard, Petrushev, and Willer (2007). Let us recall
the two main tools.

First, consider the maximal operator (Msf)(x) = supjsy (ﬁ II If(u)\sdu) ]/S,
where the supremum is taken over all intervals | C [—1, 1] which contain x, s > 0,
and |J| denotes the length of J. Then one can infer the following bound from
the Fefferman-Stein maximal inequality (see Fefferman and Stein (1971)). If
0<p,r<ooand0<s < min{p,r, %ﬁﬂ}’ then for any sequence of functions
(fy) on [—1,1]

0y

(e, , = el (Z00) 7,

NN+ 1 MMk ]
2

Second, set o = 1 and N, = —1, denote I, = [P+ and put

. 1/2
Hy = hyily, with hy = (ﬁ) , where Ty, is the indicator function of
I. Then [[Hy|lLr(w < ||Wjm |l (), and one shows in Kerkyacharian, Picard,

Petrushev, and Willer (2007) that, for any s > 0,
@im(x) S c(MHW)(x), x€[=1,1], vk=12,...,2,j>0.

We use these two results, with fy = Hy and r = 1. Noticing that the (Hy)

have disjoint supports, we obtain

2 2 2
1Y Ad@smlPoy <CIY_ MdHKIE, (= C >~ AP IHKIE
k=1 k=1

k=1
2
<c’ Z AP W5 1 (W)
k=1

So there exists C > 0 such that |B] < C ﬁ, and if we impose the condition on
I that nine > 2C, then we obtain [B] < %A, and thus

1
H(Z Akd’)’,nd”{qm 2 2 Z Ai\lll’i,nkﬂﬁp(uy

kel; kelj



