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Abstract: We consider inverse problems where one wishes to recover an unknown

function from the observation of a transformation of it by a linear operator, cor-

rupted by an additive Gaussian white noise perturbation. We assume that the

operator admits a singular value decomposition where the eigenvalues decay in a

polynomial way, and where Jacobi polynomials appear as eigenfunctions. This in-

cludes, as an application, the well known Wicksell’s problem. We establish asymp-

totic lower bounds for the minimax risk in a wide framework (i.e., with (Lp)1<p<∞

losses and Besov-like regularity spaces), which shows that the estimator of Kerky-

acharian, Picard, Petrushev, and Willer (2007) is quasi-optimal, and thus yields

the minimax rates. We also establish some new results on the needlets introduced

by Petrushev and Xu (2005) which appear as essential tools in this setting. Lastly

we discuss the interest of the results concerning the treatment of inverse problems

by wavelet procedures.
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1. Motivation

We consider the problem of recovering a function f from a blurred and noisy
version Y :

∀v ∈ V, Y (v) = (Kf, v)V + εξ(v),

where K is a linear operator between two Hilbert spaces: K : U 7→ V , ξ is a
Gaussian white noise on V , and for H a Hilbert space and h1, h2 ∈ H, (h1, h2)H

denotes the scalar product in H of h1 and h2. We assume that f belongs to
U = L2([−1, 1], µ(x)dx), with µ(x) = (1− x)α(1 + x)β , α, β > −1/2, and that K

admits a singular value decomposition (SVD), i.e., there exists an orthonormal
basis (called the SVD basis) formed by the eigenfunctions of the self-adjoint
operator K∗K (where K∗ is the adjoint of K). Moreover we assume that this
SVD basis consists of the classical Jacobi polynomials of type (α, β), and that
the corresponding sequence of eigenvalues tends to zero at a polynomial rate. We
name such problems “Jacobi-type inverse problems”.

The main motivation of this article is to establish asymptotic lower bounds
for the minimax risk in a wide framework, considering Lp([−1, 1], µ) losses, for
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all 1 < p < ∞, and a Besov-like regularity space. This, combined with the result
of Kerkyacharian, Picard, Petrushev and Willer (2007) (where upper bounds are
provided), shows some new rate phenomenom for inverse problems.

1.1. The results

The most popular technique for the treatment of inverse problems is prob-
ably singular value decomposition estimation, where the unknown function is
expanded in the SVD basis, and the corresponding coefficients are estimated
thanks to Y . Such techniques are very attractive theoretically and can be shown
to be asymptotically minimax in many situations (see e.g. Mathé and Pereverzev
(2003), Cavalier and Tsybakov (2002), Cavalier, Golubev, Picard and Tsybakov
(2002), Tsybakov (2000), Goldenshluger and Pereverzev (2003)). However there
are limitations to the minimax framework, in particular such estimators gener-
ally cannot estimate functions exhibiting inhomogeneous regularity. To avoid this
problem, several wavelet methods have been introduced during the last decade
(for example Donoho (1995) and Abramovich and Silverman (1998)), which are
minimax over wide sets of target functions, for example Besov spaces. Never-
theless such methods apply only to a category of inverse problems where the
operator is well-adapted to the structure of “first generation” wavelets, which
are built from a Fourier analysis perspective. Thus many wavelet estimators are
available whenever the operator displays some convolution structure (see for in-
stance Pensky and Vidakovic (1999), Fan and Koo (2002) and Kalifa and Mallat
(2003)).

The main interest here is to grapple with quite different inverse problems,
where the operator displays a polynomial structure. Classical wavelets cannot
be used, and new estimation techniques have been given by Kerkyacharian, Pi-
card, Petrushev and Willer (2007); one uses new wavelets built upon polynomials
(termed needlets, and introduced by Petrushev and Xu (2005)) to develop the
“NEEDD” estimator, and new spaces (which appear as adaptations of the clas-
sical Besov spaces) to assess its performances. Here we establish a lower bound
for the minimax risk that matches the rate of convergence of NEEDD (up to
log factors). Consequently we obtain the minimax rates in all the Jacobi-type
inverse problems, and we prove the quasi-optimality of NEEDD. Note also that
the results are established for all Lp([−1, 1], µ) losses, whereas in most works
cited previously, only the case p = 2 is considered, with one exception: for the
deconvolution problem in a periodic setting, Johnstone, Kerkyacharian, Picard
and Raimondo (2004), combined with Willer (2005), established the minimax
rates for all Lp([0, 1], dx) losses over Besov spaces. We draw a parallel between
those rates and the ones obtained here: we exhibit elbow effects, and we show
that the rates in the deconvolution model appear as a critical case of the rates in
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the Jacobi-type model. Moreover, we give an application of our results to Wick-
sell’s problem, which satisfies the required assumptions on the operator. This
problem concerns the recovery of the density of the radii of spherical particles
when a sample of planar cuts is given, and has many applications in medecine
and in biology.

In this paper, we only consider standard inverse problems where the operator
is known. Recently, SVD or wavelet estimators have also been developed for noisy
operators (see e.g. Efromovich and Koltchinskii (2002), Cavalier and Hengartner
(2005), Cavalier and Raimondo (2007), or Hoffmann and Reiss (2008)), and it
may be interesting in the future to expand our results to that setting.

1.2. The idea

The main idea behind NEEDD is to decompose the problem by using a
family of functions (the needlets) which in some sense “both quasi-diagonalizes
the operator K and the prior information on f” (to use the terms in Donoho
(1995)). In the lower bound problem here, a similar problem arises, as we need a
family of functions {fλ, λ ∈ Λ} ⊂ U representative of the difficulties of estimation
inside the regularity space considered for the risk. This means that the functions
fλ must be chosen such that:

• they are distant from one another in Lp(µ) norm,

• at the same time the distributions of the associated processes Y are close to
one another (in a Kullback sense, for example).

A natural way to build such hypotheses is to use functions that enjoy localization
properties, and whose images by K can be easily studied; here again needlets
are an essential tool. The hypotheses are built as linear combinations of such
functions, with some parameters left free, which we adjust optimally with respect
to the two constraints cited above. Then the minimal Lp(µ) distance between the
hypotheses yields the lower bound on the entire regularity space. This approach
of combining wavelets and lower bound techniques is classical, but the main tool
used here - the needlets - is not: properties of needlets are still not thoroughly
known, and in several ways they do not behave like classical wavelets. Thus,
in Section 5.4, we give a brief list of needlet properties and establish some of
them. We show that, in particular, the non-orthogonality of the needlets and the
heterogeneity of their Lp(µ) norms make the lower bound problem more difficult
than in other inverse problems, such as deconvolution for example (for which a
proof using the classical Meyer wavelets can be found in Willer (2005)).

The paper is organized as follows. In Section 2 we describe the model and
state the main result, in Section 3 we give an application to Wicksell’s problem,
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and in Section 4 we discuss the interest of the results within the literature on
inverse problems. Lastly, in Section 5, we give the proof of the main theorem.

2. Main Result

2.1. Model and assumptions

We are interested in nonparametric inverse problems in white noise, with a
polynomial structure of the operator. We define this framework as follows. Let f

be an unknown function belonging to the Hilbert space U = L2([−1, 1], µ(x)dx),
with µ(x) = (1 − x)α(1 + x)β , α, β > −1/2. The estimation problem consists of
recovering a good approximation to the function f from the observation of the
random variable Y corresponding to a blurred and noisy version of f :

∀v ∈ V, Y (v) = (Kf, v)V + εξ(v). (2.1)

Blurring effect: Let I = [a, b] or I = [a, b[, with −∞ < a < b ≤ ∞, and λ : I 7→
R∗

+ a continuous function. We set V = L2(I, λ(x)dx). Let K : U 7→ V be a linear
operator satisfying the two following conditions. First assume K∗K (where K∗

denotes the adjoint of K) is diagonalizable, with a countable set of eigenvalues
(denoted (b2

k)k∈N) that are strictly positive and decrease at a polynomial rate for
some ill-posedness coefficient ν > 0 (for two positive sequences (uk) and (vk),
the notation uk ³ vk means that there exist 0 < c1 ≤ c2 < ∞ such that c1vk ≤
uk ≤ c2vk): ∀k ∈ N∗, bk ³ k−ν . Second, assume that the classical Jacobi
polynomials normalized in U (we denote by Pα,β

k , or simply Pk, the polynomial of
degree k) appear as an orthonormal basis of eigenfunctions of K∗K. So Pk is the
polynomial of degree k such that

∫ 1
−1 PkPldµ = δk,l, and ∀k ∈ N, K∗KPk = b2

kPk.

Noise effect: ε > 0 is deterministic, and ξ is a Gaussian white noise on V :

∀v, w ∈ V,

{
ξ(v) ∼ N (0, ‖v‖2

V ),

E[ξ(v)ξ(w)] = (v, w)V .

2.2. Minimax rates

The aim of the paper is to establish asymptotic minimax rates (when ε → 0)
for the inverse problems described above, in a wide framework, i.e., for numer-
ous choices of functions f and of measures of estimation errors. For the lat-
ter, we consider all Lp(µ) losses (for any 1 < p < +∞) defined by, ∀u ∈ U ,
‖u‖Lp(µ) = [

∫ 1
−1 |u(x)|pdµ(x)]1/p. Concerning the target functions, we introduce

spaces Bs
π,r(M) below, which appear as an adaptation of the classical Besov



OPTIMAL BOUNDS 789

spaces. Let (ψj,η)j≥0,η∈Zj denote the tight frame of needlets described in Section
5.4. For any f ∈ U , we have the following decomposition:

f =
∑
j≥0

∑
η∈Zj

βjηψjη, where βjη = (f, ψjη)U .

Then for π ≥ 1, s ≥ 1/π, r ≥ 1, M > 0 we define

Bs
π,r(M) =

{
f ∈ U

∣∣∣ ∥∥∥∥(
2js

( ∑
η∈Zj

|βj,η|π‖ψj,η‖π
π

) 1
π

)
j≥−1

∥∥∥∥
lr
≤ M

}
.

If ψj,η were a classical wavelet, then Bs
π,r would correspond to a Besov space

(see e.g. Härdle, Kerkyacharian, Picard and Tsybakov (1998)), which is a very
general regularity space including as particular cases Sobolev and Holder spaces,
and which can be described very simply, thanks to any regular enough wavelet
basis. Such spaces are widely used to study the theoretical performance of wavelet
estimators in appropriate inverse problems. However, here the Bs

π,r correspond
to new spaces, characterized by needlets, and appear as a natural alternative
to the classical Besov spaces when the inverse problem no longer possesses a
convolution structure, but a polynomial structure. Details on this can be found
in Narcowich, Petrushev and Ward (2006), and in the appendix of Kerkyacharian,
Picard, Petrushev and Willer (2007).

We are interested in the minimax risk

Rε

(
Bs

π,r(M), Lp(µ)
)

:= inf
f̂

sup
f∈Bs

π,r(M)
Ef

(
‖f̂ − f‖p

Lp(µ)

)
,

where the infimum is taken over all σ(Y (t))t≥0−measurable estimators f̂ . The
results of Kerkyacharian, Picard, Petrushev and Willer (2007), concerning the
rates of convergence of the NEEDD estimator, give an immediate upper bound
for the risk. This is Theorem 1, where we recall that ν > 0 is a rate of decay of
the eigenvalues of the operator (bk ³ k−ν), and that α, β > −1/2 are parameters
characterizing U .

Theorem 1. For all 1 < p < ∞, π ≥ 1, r ≥ 1, and s > maxγ∈{α,β}{1/2− 2(γ +
1)(1/2 − 1/π) ∨ 2(γ + 1)(1/π − 1/p) ∨ 0}, there exists C > 0 such that:

Rε(Bs
π,r(M), Lp(µ)) ≤ C

[
log

(1
ε

)]p+1[
ε

√
log

(1
ε

)]ζp

,

where ζ = min{ζ(s), ζ(s, α), ζ(s, β)}, with

ζ(s) =
s

s + ν + 1/2
, ζ(s, γ) =

s − 2(1 + γ)(1/π − 1/p)
s + ν + 2(1 + γ)(1/2 − 1/π)

.
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The main purpose of the paper is to prove that these rates coincide with the
rates of the minimax risk, up to log factors. We will establish the following.

Theorem 2. For all 1 < p < ∞, π ≥ 1, r ≥ 1, and s ≥ 1/π, there exists C > 0
such that Rε(Bs

π,r(M), Lp(µ)) ≥ Cεζp, where ζ = min{ζ(s), ζ(s, α), ζ(s, β)}
with:

ζ(s) =
s

s + ν + 1/2
, ζ(s, γ) =

s − 2(1 + γ)(1/π − 1/p)
s + ν + 2(1 + γ)(1/2 − 1/π)

.

Note that the exact logarithmic factors of the minimax risk are not estab-
lished yet. We focus here only on the main rate εζ , so our results prove that
NEEDD is “quasi optimal” in Jacobi-type models.

3. Application to the Wicksell’s Problem

The Jacobi-type inverse models considered in this paper find applications in
practice, in particular with the well-known Wicksell’s problem (Wicksell (1925))
that corresponds to the following situation. Suppose a population of spheres is
embedded in a medium, with radii that are assumed to be drawn independently
from a density f . A random plane slice is taken through the medium, and
some spheres are intersected by it. They furnish circles, the radii of which yield
the points of observation Y1, . . . , Yn, as illustrated in Figure 3.1. The unfolding
problem is to determine the density of the spheres radii from the observed circle
radii. This problem arises in medicine, where the spheres might be tumors in
an animal’s liver (Nychka, Wahba, Goldfarb and Pugh (1984)), as well as in
numerous other contexts (biology, engineering, etc.), see for instance Cruz-Orive
(1983).

If one uses Lebesgue measure then, by a conditioning argument (see Wicksell
(1925)) and under some assumptions, the density of the circles radii is, ∀y ∈ [0, 1],
K0f(y) = y

∫ 1
y (x2 − y2)−1/2f(x)dx (up to a constant). However few articles

use this precise formulation of the problem. In the sequel we adopt the version

Figure 3.1. Wicksell’s problem: observation of radii of disks after a planar
cut of spheres.
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proposed by Johnstone and Silverman (1991), who replaced Lebesgue measure by
two weighted measures. So we observe Y following model (2.1) with K : Ũ 7→ V

given by 
Ũ = L2([0, 1], µ̃(x)dx), µ̃(x) = (4x)−1,

V = L2([0, 1[, λ(y)dy), λ(y) = 4π−1(1 − y2)
1
2 ,

Kf(y) = π
4 y(1 − y2)−

1
2

∫ 1
y (x2 − y2)−

1
2 f(x)dµ̃(x).

Johnstone and Silverman (1991) show that K∗K admits the following root eigen-
values and eigenfunctions: bk = π/16(1+k)−1/2, P̃k(x) = 4(k+1)1/2x2P 0,1

k (2x2−
1). Thus, up to changes in the variables (note Ũ instead of U , and hence
the notations P̃ and B̃s

π,r later on), this is a Jacobi-type inverse problem with
(α, β, ν) = (0, 1, 1/2). Our results show that NEEDD is a quasi-optimal esti-
mator, and Theorems 1 and 2 establish the rates for the minimax risk RWick

ε .
Neglecting log(1/ε) factors, we have RWick

ε [B̃s
π,r(M), Lp([0, 1], x3−2pdx)] ³ εζp,

where

ζ = min

{
s

s + 1
,
s − 2(1/π − 1/p)
s + 3/2 − 2/π

,
s − 4(1/π − 1/p)
s + 5/2 − 4/π

}
.

Thus we find rates new to the literature on Wicksell’s problem, but of course
several comments need to be made. First, we used a transformation, initiated
by Johnstone and Silverman (1991), of the original Wicksell problem. Other
statistical results are available, but stated in yet another version of the problem,
where one considers the squared radii of circles and spheres. Then a thorough
minimax study can be found in Golubev and Levit (1998) for the estimation
of the corresponding distribution function, and in Antoniadis, Fan and Gijbels
(2001), convergence rates are established for a wavelet density estimator, but only
in L2([0, 1], dx) norm and over particular Besov spaces. Second, we assumed that
the random perturbation is a Gaussian white noise on the space V introduced
above, and not a density perturbation as in the original problem. So here we add
to the variety of theoretical results on Wicksell: we draw a complete picture of the
problem in a minimax perspective, but by using a rather unusual representation.
Work still needs to be done to extend our results to a more practical setting;
research in that direction is initiated in Chapter 5 of Willer (2006), but a more
thorough investigation is under study.

4. Discussion

In the literature on statistical inverse problems, there are few minimax results
as general as the one we consider. Usually only the L2 case is considered, and
under the polynomial decay assumption of the eigenvalues, the rate ζ = s/(s +
ν + 1/2) (named “regular” rate) appears frequently (see Cavalier and Tsybakov
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(2002)). For more general Lp losses, only the case of deconvolution in a periodic
setting (up to our knowledge) has been studied, in Johnstone, Kerkyacharian,
Picard and Raimondo (2004) and in Willer (2005), and elbow effects appear,
with a second rate named “sparse”. It is interesting to draw a parallel between
such a problem, where classical wavelets are widely used tools, and polynomial
type problems, which require needlets.

For the deconvolution problem, minimax rates have been established for all
Lp([0, 1], dx) losses (1 < p < ∞), and over balls of a Besov space characterized
by parameters π ≥ 1, s ≥ 1/π, r ≥ 1, as above. Then the rates are given as in
Theorem 1 and 2 (up to the logarithmic factors) with ζ replaced by:

ζ = min

{
ζregular :=

s

s + ν + 1/2
, ζsparse :=

s − 1/π + 1/p

s + ν + 1/2 − 1/π

}
.

Then the deconvolution setting appears as a critical case of the Jacobi setting if
we set α = β = −1/2. So the rates in the Jacobi-type models are new, and note
that this novelty is not an artifact stemming from the weights on the space, since
in the Lebesgue case the rates for the Jacobi scenario (i.e. α = β = 0) do not
coincide with those of the wavelet scenario. Thus the origin of the differences
lies in the polynomial structure of the inverse problems, in opposition to the
convolution structure of the problems usually treated by first generation wavelet
methods.

These results illustrate the fact that the limitations met by classical wavelets
in inverse problem theory concerning the type of operators involved, can be
circumvented by using new wavelet constructions such as needlets. Similarly
other second generation wavelets, meaning wavelets which do not rely on Fourier
type constructions, may help to break new ground in statistical inverse problems.

5. Proofs

In this section we give a road map of the proofs of the main results. All the
details are given in the on-line version of the paper, available at the following
URL: http://www.stat.sinica.edu.tw/statistica.

5.1. General scheme of the proof

The proof of Theorem 2 requires well-known methods for minimax lower
bounds, as available in Tsybakov (2004), combined with new tools (i.e., needlets).
We use Theorem 2.5 in Tsybakov (2004), which involves the Kullback-Leibler
divergence K(P,Q) between two probability measures P and Q, defined by

K(P,Q) =

{∫
ln(dP

dQ)dP, if P ¿ Q;
+∞, otherwise.

http://www.stat.sinica.edu.tw/statistica
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Changing notation, and slightly modifying the conditions so as to include the
case m = 1 (the result remains true using τ = 1/

√
m + 1 instead of τ = 1/

√
m

in the proof), one has the following.

Theorem 3. Assume there exist m + 1 functions f0, . . . , fm (with m ≥ 1)
satisfying

• Condition (i): for all i ∈ {0, . . . ,m}, fi ∈ Bs
π,r(M),

• Condition (ii): for all i 6= j, ‖fi − fj‖p
p ≥ 2δ for some δ > 0,

• Condition (iii’): for all i ∈ {1, . . . ,m}, Pfi
¿ Pf0 and 1/m

∑
i≥1 K(Pfi

, Pf0)
≤ θ log(m + 1), where 0 < θ < 1/8 and Pf denotes the probability distribution
of the process Y under the hypothesis f .

Then inf f̂ supf∈Bs
π,r(M) Pf (‖f̂ − f‖p

p ≥ δ) ≥ π0, where π0 is a positive universal
constant.

Consider Condition (iii’). Using Girsanov’s formula, one can show that for
all f, g ∈ U , Pf is absolutely continuous with respect to Pg and K(Pf , Pg) =
1/2‖[K(f − g)]/ε‖2

V . Then Condition (iii’) can be replaced by

Condition (iii): f0 = 0 and for all i ∈ {1, . . . ,m}, ‖Kfi‖2
V ≤ θ log(m + 1)ε2,

where 0 < θ < 1/4.
We use Theorem 3 by building several sets of hypotheses {fi, i = 0, 1, . . . ,m}

satisfying the three conditions. Then, using Chebychev’s inequality, we have

inf
f̂

sup
f∈Bs

π,r(M)
Ef‖f̂ − f‖p

p ≥ π0δ.

With an appropriate choice of three sets {fi, i = 0, 1, . . . ,m}, depending on the
level of noise ε, δ yields the three expected rates. We detail the sparse cases
in Section 5.2 and then the regular case in Section 5.3. Throughout these two
sections, we use many (old or new) preliminary results on needlets, all of which
are given in Section 5.4.

5.2. Sparse cases

The sparse rates µ(α) and µ(β) are obtained, respectively, by applying
Theorem 3 to the following sets of functions: {f0 = 0, f1 = γψj0,η1} and
{f0 = 0, f1 = γψj1,η

2j1
}, for some parameters γ, j0 and j1 chosen so as to

satisfy conditions (i) to (iii). We detail only the proof for µ(α) (the proof for
µ(β) is similar).

Condition (i) is satisfied if uj := 2js(
∑

η∈Zj
|〈f1, ψj,η〉|π‖ψj,η‖π

π)1/π belongs to
lr(M), where f1 = γψj0,η1 . Using the first part of Lemma 1, uj = 0 whenever
|j − j0| ≥ 2. So in the sequel we assume that j ∈ {j0 − 1, j0, j0 + 1}, and the
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lr norm of (uj) is bounded by a constant M (independent of γ > 0 and j0), if
for instance uj ≤ 3−1/rM . Using the second part of Lemma1, we have for any
ζ, |〈ψj0,η1 , ψj,ηk

〉| ≤ cζ1/kζ . With a large enough ζ, and using the bounds of
Theorem 6, one can show that uπ

j ≤ c2j0[πs+(π−2)(α+1)]γπ. So Condition (i) is
satisfied if, for a small enough c depending on M , γ ≤ c2−j0[s+(1−2/π)(α+1)].

Condition (ii), using Theorem 6, is fulfilled with δ ³ γp2j0(p−2)(α+1).

Condition (iii) is satisfied if
∫
I([K(γψj0,η1)(t)]/ε)2dλ(t) ≤ C. We have ψj0,η(x)

=
∑2j−1

l=2j−2+1 cj,η,lPl(x) and K∗KPl = b2
l Pl, thus

‖K(ψj0,η1)‖2
V =

∑
l

[blcj,η1,l]2 ³ 2−2νj0
∑

l

[cj,η1,l]2 = 2−2νj0‖ψj0,η1‖2
U ≤ C2−2νj0 .

Condition (iii) is then satisfied if (γ2−νj0)/ε ≤ c.

In view of the three conditions, we set γ = cε2νj0 with a small enough c, and
2j0 ³ ε−1/(s+ν+(1−2/π)(α+1)). Then δ ³ ε(p[s+2(1/p−1/π)(α+1)])/(s+ν+(1−2/π)(α+1))

gives the sparse lower bound.

5.3. Regular case

Let m be an integer such that 2m ≥ n2, where n2 is the integer from Theorem
7 in the case p = 2. For some parameters γ and j0 ≥ m + 1 chosen further, we
consider, for ε ∈ {0, 1}2j0−m−1

, the 22j0−m−1
functions

fε = γ
2j0−m−1∑

k=1

εkk
δψj0,η2mk

,

for some δ satisfying δ > max[1, α+1/2, (1−2/π)(α+1/2)−1/π]. We only keep
some of these functions. By the Varshamov-Gilbert Theorem (see for instance
Tsybakov (2004)), there exists a subset Ej0 = {ε0, . . . , εTj0} of {0, 1}2j0−m−1

, and
two constants c > 0, ρ > 0 such that ∀0 ≤ u < v ≤ Tj0 ,

2j0−m−1∑
k=1

|εu
k − εv

k| ≥ c2j0 , Tj0 ≥ exp(ρ2j0) and fε0 = 0.

In the sequel we consider the set {fε, ε ∈ Ej0}.

Condition (i): for ε ∈ Ej0 , let uj := 2js(
∑

η∈Zj
|〈fε, ψj,η〉|π‖ψj,η‖π

π)1/π. Once
again uj = 0 whenever |j − j0| ≥ 2. Now let j ∈ {j0 − 1, j0, j0 + 1}. Using the
same arguments as in the sparse case, but with more technical proofs, one can
show that uj ≤ c2j[s+δ+1/2]γ. So fε belongs to Bs

π,r(M) if, for a small enough c

depending on M , γ ≤ c2−j0[s+δ+1/2].
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Condition (ii): for all εu, εv ∈ Ej0 with u 6= v, fu − fv =
∑2j0−m−1

k=1 γ(εu
k −

εv
k)k

δψj0,η2mk
. So by Theorem 7 and then Theorem 6, ‖fu−fv‖2

U ≥ cγ2
∑2j0−m−1

k=1

(εu
k − εv

k)
2k2δ = cγ2

∑
{k | εu

k 6=εv
k}

k2δ. Let Nu,v denote the cardinality of the set
{k ∈ {1, . . . , 2j0−m−1} | εu

k 6= εv
k}, then we have Nu,v ≥ c2j0 , and thus one shows

that ‖fu − fv‖2
U ≥ cγ22j0(1+2δ). Then distinguishing the cases 2 < p < ∞ and

1 < p < 2, one can prove by using the previous inequality, Hölder’s inequality,
Theorem 5, and Theorem 4, that ‖fu − fv‖p

Lp(µ) ≥ cγp2j0p(1/2+δ).

Condition (iii): we have
√

Tj0 ≥ exp([ρ/2]2j0), so (iii) is satisfied if for all εu ∈
Ej0 ,

∫
I([K(fu)(t)]/ε)2dλ(t) ≤ c2j0 for a small enough constant c. We have fu =∑2j0−m−1

k=1 βj0,kψj0,η2mk
=

∑2j0−m−1

k=1

∑
l∈N βj0,kcj0,ηk,lPl(x), with βj0,k = γεu

kkδ.
Then similarly to the sparse case, we have ‖K(fu)‖2

L2(I,λ) ≤ c2−2νj0γ22(2δ+1)j0 .

So finally we need ([2(δ−ν)j0γ]/ε) ≤ C with a small enough constant C.

In view of the three conditions, we set 2j0 ³ ε−1/(s+ν+1/2) and γ ³
ε(s+δ+1/2)/(s+ν+1/2), and we obtain the lower bound: δ ³ εps/(s+ν+1/2).

5.4. Description of Jacobi needlets

In this section we recall briefly the construction of Jacobi needlets introduced
by Petrushev and Xu (2005); for more details we refer the reader to that paper.
We recall that (Pk) denote the Jacobi polynomials normalized in U . The first
step consists of a Littlewood-Paley decomposition, involving some C∞ function
a(.), supported in [−2,−1/2] ∪ [1/2, 2], such that

∑
j≥0 a2(x/2j) = 1, ∀|x| ≥ 1.

Moreover we add the condition a(x) > c > 0 for 3/4 ≤ x ≤ 7/4 (so as to use
results established in Kerkyacharian, Picard, Petrushev and Willer (2007)). The
second step is to use, for each resolution j, a quadrature formula that involves
as knots the zeros of the Jacobi polynomial P2j , denoted by Zj = {ηk : k =
1, . . . , 2j}, and as coefficients the Christoffel numbers (see Szegö (1975)), denoted
by {bj,ηk

: k = 1, . . . , 2j}. We assume that the ηk = cos θj,k are ordered so that
η1 > η2 > · · · > η2j , and hence 0 < θj,1 < θj,2 < · · · < θj,2j < π. It is well-known
that (cf Szegö (1975)) θj,k ³ (kπ/2j) and bj,ηk

³ 2−jωα,β(2j ; ηk) with

ωα,β(2j ; x) := (1 − x + 2−2j)α+ 1
2 (1 + x + 2−2j)β+ 1

2 .

Then the Jacobi needlets are given by: ∀j ∈ N, k ∈ {1, . . . , 2j}, ψj,ηk
(x) =∑2j−1

l=2j−2+1 cj,η,lPl(x), with coefficients cj,η,l = a(l/2j−1)Pl(η)
√

bj,η. Some exam-
ples of needlets are given at the top of Figure 5.1. Now we give a list of their
properties needed to establish Theorem 2.

Similarities with first generation wavelets. First of all, needlets form a tight
frame: ∀f ∈ H, f =

∑
j∈N,η∈Zj

〈f, ψj,η〉ψj,η and ‖f‖2 =
∑

j∈N,η∈Zj
|〈f, ψj,η〉|2.
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Figure 5.1. For a given resolution j: some of the needlets ψj,ηk
(above), and

the values of all the L3 norms (below) as ηk varies

Second, each needlet ψj,ηk
is concentrated on a small interval centered on η, as

established in Petrushev and Xu (2005).

Theorem 4. For any l ≥ 1 there exists a constant Cl > 0 such that

|ψj,ηk
(cos θ)| ≤ Cl

1√
ωα,β(2j , cos θ)

2
j
2

(1 + 2j |θ − πk
2j |)l

, 0 ≤ θ ≤ π.

This almost exponential concentration property implies wavelet-like inequalities
for the Lp norms of linear combinations of needlets. This has been established
in Kerkyacharian, Picard, Petrushev and Willer (2007).

Theorem 5. If 0 < p < ∞, there exists a constant Cp > 0 such that for any
collection of numbers {λk : k = 1, . . . , 2j}, j ≥ 0,∥∥∥∥ 2j∑

k=1

λkψj,ηk

∥∥∥∥p

Lp(µ)

≤ Cp

2j∑
k=1

|λk|p‖ψj,ηk
‖p

Lp(µ).

Differences from first generation wavelets. Needlets do not issue from a transla-
tion/dilatation scheme. In particular, for a given resolution j, Lp norms are not
constant with respect to η (this is illustrated in Figure 5.1), and this plays an im-
portant role in the proofs of Theorems 1 and 2. The following bounds have been
established in Petrushev and Xu (2005) (upper bounds), and in Kerkyacharian,
Picard, Petrushev and Willer (2007) (lower bounds).
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Theorem 6. ∀ 0 < p ≤ ∞, ∀ j ∈ N, we have up to scalars depending only on p,

∀ 1 ≤ k ≤ 2j−1, ‖ψj,ηk
‖p ³

(
2j(α+1)

kα+1/2

)1− 2
p

,

∀ 2j−1 < k ≤ 2j , ‖ψj,ηk
‖p ³

(
2j(β+1)

(1 + (2j − k))β+1/2

)1− 2
p

.

Moreover, unlike first generation wavelets, needlets do not form an orthonor-
mal basis, but only a redundant frame. So we need two new results for the proof
of the minimax rates. First we need an upper bound for the scalar products
between needlets.

Lemma 1. We have

1. ∀j, j′, k, l such that |j′ − j| ≥ 2, 〈ψj,ηk
, ψj′,ηl

〉 = 0,
2. ∀ζ > 0, ∃cζ such that ∀j, j′, k, l with |j′ − j| ≤ 1, |〈ψj,ηk

, ψj′,ηl
〉| ≤ [cζ/(1 +

|k − 2j−j′ l|)ζ ].

Second, we need a lower bound for the Lp norm of linear combinations of
needlets. A result as general as the upper bound of Theorem 5 is impossible, but
we have the following result for needlets with a large enough distance between
the indexes of the η’s.

Theorem 7. If p ∈ 2N∗, there exist a constant cp > 0 and an integer np such
that, for any collection of numbers {λk : k ∈ Ij}, j ≥ 0, where Ij ⊂ {1, . . . , 2j}
and k, l ∈ Ij, k 6= l =⇒ |k − l| ≥ np,∥∥∥∥ ∑

k∈Ij

λkψj,ηk

∥∥∥∥p

Lp(µ)

≥ cp

∑
k∈Ij

|λk|p‖ψj,ηk
‖p

Lp(µ).

Proof of Lemma 1. The needlets are ψj,η =
∑2j−1

l=2j−2+1 cj,η,lPl(x), with coeffi-
cients cj,η,l = a(l/2j−1)Pl(η)

√
bj,η. So if |j′− j| ≥ 2 then {2j−2 +1, . . . , 2j − 1}∩

{2j′−2 + 1, . . . , 2j′ − 1} = ∅, and 〈ψj,ηk
, ψj′,ηl

〉 = 0, ∀(k, l). For the second part of
the lemma, we use Theorem 4. After numerous (but simple) inequalities for the
integrand, one obtains the desired upper bound for |〈ψj,ηk

, ψj′,ηl
〉U |.

Proof of Theorem 7. Let p ∈ 2N∗ and Ij ⊂ {1, . . . , 2j}. We have the decom-
position ‖(

∑
k∈Ij

λkψj,ηk
)‖p

Lp(µ) = A + B, where

A =
∑
k∈Ij

λp
k‖ψj,ηk

‖p
Lp(µ),

B =
∑

(pk)k∈Ij
∈Λ

p!
∏

k∈Ij
λpk

k∏
k∈Ij

pk!

∫ 1

−1

( ∏
k∈Ij

ψpk
j,ηk

(x)
)

µ(x)dx,
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and Λ = {(pk)k∈Ij
| pk ∈ N,

∑
k∈Ij

pk = p and ∃u 6= v such that pu > 0 and
pv > 0}. Let ϕj,k(x) = (1/

√
ωα,β(2j , x))[2j/2/(1 + 2j | arccos x − πk/2j |)2/s] for

some 0 < s < min{1, p/(α ∨ β + 1)}.
For (pk)k∈Ij

∈ Λ, by using Theorem 4 with l = 2/s+1 for every ψj,ηk
, k ∈ Ij ,

one can show that there exists C such that∑
(pk)k∈Ij

∈Λ

p!
∏

k∈Ij
|λpk

k |∏
k∈Ij

pk!

∏
k∈Ij

|ψj,ηk
|pk ≤ C

(
∑

k∈Ij
|λk|ϕj,ηk

)p

ninf
.

By using similar arguments as in the proof of Theorem 5 of Kerkyachar-
ian, Picard, Petrushev and Willer (2007) (based notably on the Fefferman-Stein
maximal inequality, see Fefferman and Stein (1971)) we have∥∥∥∥ 2j∑

k=1

|λk|ϕj,ηk

∥∥∥∥p

Lp(µ)

≤ C ′
2j∑

k=1

|λk|p‖ψj,ηk
‖p

Lp(µ).

So there exists C > 0 such that |B| ≤ C(A/ninf ), and if we impose the condition
on Ij that ninf ≥ 2C, then we obtain |B| ≤ (1/2)A, and thus∥∥∥∥(

∑
k∈Ij

λkψj,ηk
)
∥∥∥∥p

Lp(µ)

≥ 1
2

∑
k∈Ij

λp
k‖ψj,ηk

‖p
Lp(µ).
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