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Abstract: We treat the problem of testing for familial aggregation when sampling

from a population of a known size. And consider the setting where data from all

families in the population containing at least one affected member are obtained.

The results are compared to the setting where the population size is unknown and

data from a sample of families containing at least one affected member are obtained,

and to the setting where the population size is known and data from all families in

the population are obtained. Two kinds of local alternatives are considered: one

in which a predisposing factor is prevalent but has small penetrance; the other in

which the factor is penetrant but has small prevalence. It is found that knowing

the population size provides substantial advantage over settings where population

size is unknown, but that there is little advantage to settings where data from

all families are obtained. The methods are illustrated through an application to

data from a child survival study in northeast Brazil reported by Sastry (1997), and

reanalyzed by Yu and Zelterman (2002).
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1. Introduction

Testing for familial aggregation of common diseases has been the focus of
many methodological and statistical efforts. Sometimes, rates of disease in rela-
tives of diseased individuals (case probands) and in relatives of non-diseased in-
dividuals (control probands) are compared; see, for example, Khoury, Beaty and
Cohen (1993). Other methods take into account the information between rela-
tives, by using a random-effect model with latent family-specific factors (Liang
(1987), Commenges, Letenneur, Jacqmin, Moreau and Dartigues (1994), Com-
menges, Jacqmin, Letenneur and Van Duijn (1995), among others). Analogous
methods have not been developed, however, for the setting where family data
are obtained from a population of a known size. In cases where comprehensive
medical records are available, information on all individuals who might present
with a disease is potentially available. Motivated by an ongoing study of epilepsy
(Annegers, Hauser, Anderson and Kurland (1982)) we derive methods for these
cases in this paper.
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The study of epilepsy was carried out in Rochester, Minnesota. The medical
records of patients with epilepsy at the Mayo Clinic, the Olmsted Medical Group,
the Olmsted County Public Health Department, and the other medical facilities
that served the population of southeastern Minnesota were reviewed. The parents
of of the patients were identified and, through them, other descendants of the
parents of the patients. Patients were children living in Rochester at the time
of diagnosis, so everyone who might be diagnosed had a medical record there.
Furthermore, in most cases, siblings and parents were also residents of Rochester.
In fact, most of the other descendants were also born in Rochester, although
there were some cases of moving in or out. In addiction, other information on
residency was obtained from city directories and county plat books, as well as
medical records.

For study design in such settings, it would be helpful to understand the
degree to which obtaining information on the population size and on the compo-
sition of families without affected members would increase efficiency.

To investigate this, we compare three designs: one in which all families in
a population of a known size are obtained (Design I); one in which all affected
families in a population of a known size are obtained (Design II); and one in which
a sample of affected families is obtained from a population with an unknown size
(Design III).

To model the null hypothesis that diseases occur in individuals uniformly,
versus the alternative that there is a family-specific risk factor, a random-effect
model with a family-specific latent factor is used; conditionally, given the family-
specific latent factor, presence of disease in family members is independent and
identically distributed. Under the null hypothesis, the latent factor is a constant
and the disease statuses of individuals are independent Bernoulli variables with
the same expectation (the population disease rate). We consider settings where
reliable information about the population disease rate in the cohort under study
is not available externally.

The appropriate model for familial aggregation under the alternative depends
on the genetic architecture of the trait under consideration; of course genetic
factors are not the only ones that induce familial aggregation. In this paper, we
consider two broad classes of local alternatives: one in which the effect of a latent
family-specific factor with substantial prevalence tends to zero, and the other in
which the prevalence of the latent factor with a substantial effect tends to zero.

Since prior information on the population disease rate is absent, the null
hypothesis is composite and no uniformly most powerful tests, even locally most
powerful tests, exist. Therefore, we seek locally most powerful unbiased tests.
The usual approach of conditioning on the complete sufficient statistics for the
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null hypothesis can be applied to Designs I and III, but for Design II, there is
no complete sufficient statistic under the null hypothesis. However, in this case
there exist asymptotically unbiased tests of almost the same local power as that
of the locally most powerful unbiased tests applied to Design I.

In the next section, notation and the models are presented. In the third
section, complete sufficient statistics for the null hypothesis in the different de-
signs are presented. In the fourth section, locally most powerful unbiased tests
in the setting of substantial prevalence are developed. In the fifth section, locally
most powerful tests in the setting of substantial penetrance are developed. In the
sixth section, the results are examined in the context of a child survival study in
northeast Brazil reported by Sastry (1997), and reanalyzed by Yu and Zelterman
(2002).

2. Notation and Models

Let N denote the number of individuals in a population. Suppose that the
population is partitioned into families, and let I denote the number of families.
Here by a family we mean a group of people related by blood or marriage (see,
for example, Pfeiffer, Gail and Pee (2001)). The concept of families is only
approximate, and it is a simplifying assumption that families are independent
and family-specific latent factors are identically distributed. Let i index families
and j index subjects. Let Yij be the indicator that the jth subject in the ith
family is affected. Let di denote the number of affected members and ni the total
number of members in the ith family.

Under the null hypothesis of no familial aggregation, the Yij are independent
and identically distributed Bernoulli variables. Here, we consider two broad
classes of local alternatives: one corresponding to a common variant with a small
effect on the trait; the other corresponding to a rare variant with a substantial
impact on the trait.

Local alternative in which the predisposing factor is prevalent but has small
penetrance may be modeled using a latent variable. Let Ai denote independent
and identically distributed family-specific latent variables. Let F denote the
distribution function of the Ai. Suppose that the conditional probability given
Ai, that an individual from the ith family is diseased, is

P (Yij = 1|Ai) =
eα+θAi

1 + eα+θAi
. (2.1)

For convenience, let p0 denote eα/(1 + eα).
Local alternative in which the factor with a substantial effect is rare may be

modeled with a latent variable as

P (Yij = 1|Ai = 0) = p0 and P (Yij = 1|Ai = 1) = p1, (2.2)
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where p0 < p1, P (Ai = 1) = θ and P (Ai = 0) = 1 − θ. Actually, this model is a
special case of (2.1) where the latent variables Ai are Bernoulli.

Let Ia denote the number of families containing at least one affected member
in the sample. Let ms denote the number of families of size s in the population,
and ma

s denote the number of affected families of size s in the sample. Let S

denote the largest family size. Let M and Ma, respectively, denote the sequences
{m1, . . . ,mS} in the population and {ma

1, . . . ,m
a
S} in the sample. Let D denote

the total number of affected members in the sample. In Designs I and II, D is
also the total number of affected members in the population.

3. Complete Sufficient Statistics

To obtain unbiased tests, it is useful to consider complete sufficient statistics
under the null hypothesis. See, for example, Cox and Hinkley (1974, p.146).

In Design I, under the null hypothesis the likelihood is

pD
0 (1 − p0)N−D

I∏
i=1

(
ni

di

)
.

Since the likelihood belongs to the exponential family of distributions, it is easy to
see that the complete sufficient statistic for the null hypothesis is D. In addition,
under the null hypothesis, the maximum likelihood estimate (MLE) p̂ for p0 is
D/N .

In Design II, under the null hypothesis the likelihood is

S∏
s=1

(
ms

ma
s

)
[1 − (1 − p0)s]m

a
s [(1 − p0)s]ms−ma

s

Ia∏
i=1

(
ni
di

)
1 − (1 − p0)ni

,

where the first product is the probability of sampling families and the second
product is the probability of sampling subjects among affected families. The
above formula can be expressed as

pD
0 (1 − p0)N−D

S∏
s=1

(
ms

ma
s

) Ia∏
i=1

(
ni

di

)
,

where
∑

sms = N . By the factorization theorem, {D,Ma} is the minimal suffi-
cient statistic for the nuisance parameter {p0,M}. However, it is not complete.
See Appendix for a sketch of the proof. Therefore, there is no complete sufficient
statistic for the null hypothesis. But under the null hypothesis, the MLE p̂ for
p0 is also D/N .
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In Design III, under the null hypothesis the likelihood is

Ia∏
i=1

(
ni

di

)
pdi
0

(1 − p0)ni−di

1 − (1 − p0)ni
.

Since the above formula can be expressed as

pD
0 (1 − p0)

P

sma
s−D

∏Ia

i=1

(
ni
di

)∏
[1 − (1 − p0)s]ma

s
,

by the factorization theorem, {D,Ma} is sufficient statistic for the nuisance pa-
rameter {p0,M}. We can also show that it is also complete. Therefore, {D,Ma}
is the complete sufficient statistic for the null hypothesis. Let p∗ denote the MLE
for p0 under the null hypothesis, the solution to

∑Ia

i=1 nip
∗/[1 − (1 − p∗)ni ] = D.

4. Tests Against a Small Effect of Common Variants

In this section, we describe the locally most powerful unbiased tests against
the local alternative in which the predisposing factor is prevalent but has small
penetrance for the different designs.

4.1. The locally most powerful unbiased tests

In Design I, the likelihood is

I∏
i=1

∫ (
ni

di

)
pθ(a)di(1 − pθ(a))ni−didF (a),

where pθ(a) = eα+θa/(1+eα+θa). Here θ is the parameter of interest and {α, F} is
the nuisance parameter. Given the complete sufficient statistic D, the conditional
likelihood is ∏I

i=1

∫ (
ni
di

)
pθ(a)di(1 − pθ(a))ni−didF (a)∑∗ ∏I

i=1

∫ (ni

d̃i

)
pθ(a)d̃i(1 − pθ(a))ni−d̃idF (a)

,

where
∑∗ is over all nonnegative integers d̃1, . . . , d̃I such that

∑I
i=1 d̃i = D.

Usually, the derivative of the conditional log-likelihood evaluated at θ = 0
would be a locally most powerful unbiased test statistic. However, in this case,
the derivative at θ = 0 is

E(∂pθ(A1)
∂θ

∣∣∣
θ=0

)

p0(1 − p0)

[ I∑
i=1

(di − nip0) − E0

{ I∑
i=1

(di − nip0)|D
}]

,
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identically zero. Liang (1987), Commenges et al. (1994) and Commenges et al.
(1995) dealt with this issue by a transformation of the parameter: logitP (Yij =
1|Ai) = α+

√
θAi. In this case, the second order derivative of the conditional log-

likelihood evaluated at θ = 0 is the locally most powerful unbiased test statistic,
and is proportional to

I∑
i=1

(di − nip0)2 − E0

{ I∑
i=1

(di − nip0)2|D
}

. (4.1)

The nuisance parameter p0 in the above formula can be replaced by its MLE p̂;
this does not influence the power of the test statistic asymptotically. The exact
p-value can be obtained through a permutation procedure where D is fixed and
the disease statuses are permuted among subjects. An approximation based on
the z-score is described in the next section.

Similarly, for Design III , because the complete sufficient statistic for the null
hypothesis is {D,Ma}, the locally most powerful unbiased test statistic is

Ia∑
i=1

(di − nip0)2 − E0

{ Ia∑
i=1

(di − nip0)2|D,Ma
}

. (4.2)

The nuisance parameter p0 can be replaced by its MLE p∗; this does not influence
the power of the test statistic asymptotically. The exact p-value can be obtained
through a permutation procedure. An algorithm is described briefly in the next
section, along with an approximation based on the z-score.

For Design II, since there is no complete sufficient statistic, we cannot follow
the above steps to get the locally most powerful unbiased test. However, it might
be important to note that for Design I, the locally most powerful unbiased test
statistic is the projection of

∑I
i=1(di − nip0)2 on the orthocomplement of the

space spanned by {D}, while for Design III, the locally most powerful unbiased
test statistic is the projection on the orthocomplement of the space spanned by
{D,Ma}. Therefore, it is natural to consider the projection of

∑I
i=1(di − nip0)2

on the orthocomplement of the space spanned by {Ma}. This leads to the test
statistic

Ia∑
i=1

(di − nip̂)2 − E0

{ Ia∑
i=1

(di − nip0)2|Ma
}∣∣∣

p0=p̂
. (4.3)

The p-value can be calculated based on the z-score, the detail is described in
the next section. First of all, the above test statistic is asymptotically unbiased
because it does not depend on the composition of those unaffected families which
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are unavailable. Moreover, in Subsection 4.3, it is shown that the asymptotic
efficiency of this test is almost the same as that of (4.1) under Design I.

4.2. Computation of test statistics

For Design I, the test statistic (4.1) is denoted by SD, with the subscript
standing for “projection on {D}”, and is

SD =
I∑

i=1

{
d2

i − 2nip̂di −
[
ni

D

N
− ni

D(D − 1)
N(N − 1)

+ n2
i

D(D − 1)
N(N − 1)

− 2n2
i p̂

D

N

]}
.

If we replace (D − 1)/(N − 1) by D/N , this becomes

SD =
I∑

i=1

[
(di − nip̂)2 − nip̂(1 − p̂)

]
. (4.4)

Obviously, the difference between these two formulae is ignorable. The variance
of SD is described in the Appendix.

For Design II, the test statistic (4.3) is written as

SMa =
Ia∑
i=1

[
d2

i − 2nidip̂ − nip̂(1 − p̂) − n2
i p̂

2

1 − (1 − p̂)ni

]
. (4.5)

The variance of SMa is described in the Appendix.
For Design III, denote the test statistic (4.2) as SD,Ma . However, we do

not have an explicit formula for SD,Ma and its conditional variance. Here we
outline an algorithm (like the one in Yu and Zelterman (2002)) that facilitates the
computation of SD,Ma and its conditional variance. Let Xsj denote the number
of families of size s having j (s = 1, . . . , S; j = 1, . . . , s) diseased members. These
numbers are constrained by

S∑
s=1

s∑
j=1

jXsj = D and
s∑

j=1

Xsj = md
s , for s = 1, . . . , S.

First we generate all possible sets of nonnegative integers xsj that satisfy the
conditions. Then, for each set of integers, we can calculate the corresponding
probability

P ({Xsj} = {xsj}|D,Ma) =

∏S
s=1

∏s
j=1

(
s
j

)xsj/xsj !∑∗ ∏S
s=1

∏s
j=1

(
s
j

)x̃sj/x̃sj !
,
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where
∑∗ is summation over all possible sets {x̃sj} that satisfy the conditions.

Based on these probabilities, computation of SD,Ma and its conditional variance
is straightforward.

However, the above algorithm is time-consuming if we consider a population
of a moderate or large size. To overcome this difficulty, it is reasonable to propose
an approximation for SD,Ma . As a matter of fact, the hypergeometric distribution
can be approximated very accurately by a binomial distribution (Feller (1950),
Bennett and Franklin (1954), among others). Therefore, the distribution of di

given Ma and D can be approximated very well by the conditional distribution
of d̃i given d̃i > 0, where d̃i is a binomial variable with parameters ni and p∗.
Since

E(d̃i|d̃i > 0) =
nip

∗

1 − (1 − p∗)ni
and E(d̃2

i |d̃i > 0) =
nip

∗(1 − p∗) + n2
i p

∗2

1 − (1 − p∗)ni
,

an approximation for SD,Ma is

ŜD,Ma =
Ia∑
i=1

[
d2

i − 2nidip
∗ − nip

∗(1 − p∗) − n2
i p

∗2

1 − (1 − p∗)ni

]
. (4.6)

The variance of ŜD,Ma is described in the Appendix.

4.3. Asymptotic relative efficiency

In this subsection, in order to compare Design II with the others, we focus
on a special case of Design III, one in which all affected families are obtained
from a population with an unknown size.

Recall that the derivative of the conditional log-likelihood under the null
hypothesis for any of the three designs is zero. This implies (see the Appendix)

∂Eθ(SD)
∂θ

∣∣∣
θ=0

=
∂Eθ(SMa)

∂θ

∣∣∣
θ=0

=
∂Eθ(SD,Ma)

∂θ

∣∣∣
θ=0

= 0.

Therefore, we cannot use Pitman asymptotic efficiency (PAE, see Zacks (1985))
as a criterion. In order to compare relative efficiencies, for any test statistic T

such that E0(T ) = 0 and ∂Eθ(T )
∂θ |θ=0 = 0, we define

(∂2Eθ(T )/∂θ2|θ=0)2

NVar 0(T )

as the asymptotic efficiency of T , where the variance is taken at θ = 0. The ratio-
nale is that the locally most powerful test is the one maximizing Eθ(T )/

√
Var 0(T ),

as θ → 0, among all tests T such that E0(T ) = 0.
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First, by arguments in the Appendix, the asymptotic efficiencies of SD and
SD,Ma are, respectively,

AE(SD) =
Var 0(SD)

N
and AE(SD,Ma) =

Var 0(SD,Ma)
N

.

The Pythagorean decomposition implies that Var 0(E0{
∑

(di − nip0)2|D,Ma} −
E0{

∑
(di − nip0)2|D})/N measures the loss of efficiency when those unaffected

families and the population size are unavailable.
Furthermore, through some tedious calculations, it is shown that if the dis-

ease rate under the consideration is rare, AE(ŜD,Ma)/AE(SD) = o(1), where o(·)
is in the sense that p0 is tending to zero. In addition, if p0 is small,

AE(SMa) ≈ AE(SD) =
2
N

I∑
i=1

ni(ni − 1)[p2
0 + o(p2

0)].

In particular, in the case where ni ≡ n,

AE(SMa) ≈ AE(SD) = 2(n − 1)(p2
0 + o(p2

0)).

To sum up, if the population size is known, obtaining information on the
composition of those unaffected families provides little advantage for the test
for familial aggregation. Still, knowing the population size provides substantial
advantage over the settings where population size is unknown.

This section concludes with a numeric example. In Table 1, assuming ni ≡ n,
asymptotic relative efficiencies (ARE) ARE(SMa , SD) and ARE(ŜD,Ma , SD) are
presented for different settings. From this example, it seems that to test against
small effect of family factor, the local power of SMa is almost the same as that
of SD in all cases. This means that if the population size is known, then having
unaffected families is not important. But, compared to SD, the local power of
ŜD,Ma is very small. Particularly, for a rare disease, the ratio of local power of
two tests is extremely small. Although it increases with the population disease
rate, the local power of ŜD,Ma is still small for large population disease rate
in comparison to SD. This means that knowing the population size is very
important.

5. Tests Against a Rare Variant with a Substantial Effect

In this section, we describe the locally most powerful unbiased tests against
a rare variant with a substantial effect, under model (2.2). To be concordant
with model (2.1), take β = log[p1/(1 − p1)]/[p0/(1 − p0)] to measure the effect of
the rare variant. In the first three subsections, we temporarily assume that β is
known. In Subsection 5.4, we provide an estimate of β and analyze the sensitivity
of the results to the choice of β.
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Table 1. ARE(SMa , SD) and ARE(ŜD,Ma , SD).

p0 = 0.001 p0 = 0.01 p0 = 0.05 p0 = 0.1
n = 2 1.0000 1.0000 1.0000 1.0000
n = 3 1.0000 0.9996 0.9986 0.9980

ARE(SMa , SD) n = 4 0.9999 0.9993 0.9975 0.9972
n = 5 0.9999 0.9990 0.9967 0.9973
n = 6 0.9999 0.9987 0.9961 0.9980
n = 2 0.0000 0.0000 0.0000 0.0000
n = 3 0.0003 0.0034 0.0172 0.0357

ARE(ŜD,Ma , SD) n = 4 0.0007 0.0067 0.0343 0.0707
n = 5 0.0010 0.0101 0.0513 0.1051
n = 6 0.0013 0.0134 0.0680 0.1387

5.1. The locally most powerful unbiased tests

This subsection is parallel to Subsection 4.1. In Design I, the likelihood is
I∏

i=1

[θpdi
1 (1 − p1)ni−di + (1 − θ)pdi

0 (1 − p0)ni−di ].

The derivative of the conditional log-likelihood given the complete sufficient
statistic D at θ = 0, is

I∑
i=1

pdi
1 (1 − p1)ni−di

pdi
0 (1 − p0)ni−di

− E0

{ I∑
i=1

pdi
1 (1 − p1)ni−di

pdi
0 (1 − p0)ni−di

∣∣∣D}
.

Unlike Subsection 4.1, where the derivative of the conditional log-likelihood given
the complete sufficient statistic is zero, here it is non-zero and is the locally most
powerful unbiased test statistic. The above formula can be rewritten as

I∑
i=1

eβdi

[1 + (eβ − 1)p0]ni
− E0

{ I∑
i=1

eβdi

[1 + (eβ − 1)p0]ni

∣∣∣D}
, (5.1)

where p0 can be estimated by its MLE p̂ = D/N . The exact p-value can be
obtained through a permutation procedure, and an approximation based the
z-score is described in the next section.

Similarly, in Design III, the locally most powerful unbiased test is
Ia∑
i=1

eβdi

[1 + (eβ − 1)p0]ni
− E0

{ Ia∑
i=1

eβdi

[1 + (eβ − 1)p0]ni

∣∣∣D,Ma
}

, (5.2)

where p0 can be estimated by its MLE p∗. Again, the exact p-value can be
obtained through a permutation procedure, and an approximation based the
z-score is described in the next section.
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In Design II, the same arguments in Subsection 4.1 suggest the test statistic

Ia∑
i=1

eβdi

[1 + (eβ − 1)p̂0]ni
− E0

{ Ia∑
i=1

eβdi

[1 + (eβ − 1)p0]ni

∣∣∣Ma
}∣∣∣

p0=p̂
. (5.3)

The p-value can be calculated based on the z-score, the detail is described in
the next section. First of all, the above test is asymptotically unbiased because
it does not depend on the composition of those unaffected families which are
unavailable. Moreover, in Subsection 5.3, we show that the asymptotic efficiency
of this test is almost the same as that of (5.1) for Design I.

5.2. Computation of test statistics

For Design I, denote the test statistic (5.1) as TD. It can be calculated exactly
by using the hypergeometric distribution, but because of the intractable nature
of this distribution, an approximation is necessary. Note that the conditional
distribution of di given D can be approximated accurately by the distribution
of d̃i, where d̃i is a binomial random variable with parameters ni and p̂. Since
E(eβd̃i) = [1 + (eβ − 1)p̂]ni , an approximation to TD is

T̂D =
I∑

i=1

{ eβdi

[1 + (eβ − 1)p̂]ni
− 1

}
. (5.4)

The variance of T̂D is described in the Appendix.
For Design II, the test statistic (5.3) is

TMa =
Ia∑
i=1

1
[1 + (eβ − 1)p̂]ni

{
eβdi − [1 + (eβ − 1)p̂]ni − (1 − p̂)ni

1 − (1 − p̂)ni

}
. (5.5)

The variance of TMa is described in the Appendix.
For Design III, denote the test statistic (5.2) as TD,Ma . The same arguments

in Subsection 5.2 suggests an approximation for TD,Ma ,

T̂D,Ma =
Ia∑
i=1

1
[1 + (eβ − 1)p∗]ni

{
eβdi − [1 + (eβ − 1)p∗]ni − (1 − p∗)ni

1 − (1 − p∗)ni

}
. (5.6)

The variance of T̂D,Ma is described in the Appendix.

5.3. Asymptotic relative efficiency

In this subsection Pitman asymptotic efficiency (PAE, see Zacks (1985))
is used as a criterion to compare the asymptotic efficiencies of different test
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statistics. For any test statistic T with E0(T ) = 0, Pitman asymptotic efficiency
is (∂Eθ(T )/∂θ|θ=0)2/[NVar 0(T )].

In order to compare Design II with the two others, we focus on a special
case of Design III, one in which all affected families are obtained from a pop-
ulation with an unknown size. First, following the steps in Subsection 4.3, we
have PAE(TD) = Var 0(TD)/N and PAE(TD,Ma) = Var 0(TD,Ma)/N. Through
arguments in the Appendix and a Taylor expansion, it is shown that when β is
small, PAE(T̂D,Ma) is much less than PAE(T̂D); but if β is big, PAE(T̂D,Ma)
is not trivial in comparison to PAE(T̂D) and it may approximate PAE(T̂D) well
when β is large enough. Actually, the result in the latter situation is not sur-
pring. Imagine that β is big. In the sample obtained by Design III, there would
likely appear two clusters of families: one cluster with only one affected member
and the other with many affected members. This clear difference between two
clusters of families makes it easy to test against the local alternative. On the
other hand, although PAE(T̂D,Ma) may not be trivial, we have to keep in mind
that here we assume β is known. In the setting where N is unknown, it is difficult
to choose an appropriate β in the construction of T̂D,Ma .

Second, by arguments in the Appendix, we find that when the disease is rare
and β is small, PAE(TMa) ≈ PAE(T̂D) ≈ (1/(2N))

∑I
i=1 ni(ni − 1)p2

0(e
β − 1)4.

If β is moderate or big, we have PAE(TMa) ≈ PAE(T̂D) ≈ (1/(2N))
∑I

i=1{[1 +
eα

(
(eβ − 1)2/(1 + eα+β)2]ni − 1}, where α = log[p0/(1 − p0)].
We can make similar conclusions in testing against the second alternative:

if the population size is known, obtaining information on the composition of
those unaffected families provides little advantage, but knowing the population
size provides substantial advantage over the settings where population size is
unknown.

This subsection concludes with an example. In Table 2, assuming that
p0 = 0.01 and ni ≡ n, ARE(TMa , T̂D) and ARE(T̂D,Ma , T̂D) are presented.
The settings p1 = 0.02, 0.05, 0.10, 0.20 correspond to β = 0.70, 1.65, 2.39, 3.21,
respectively. From this example, it seems that to test against a rare variant with
a substantial effect, the local power of TMa is almost the same as that of T̂D

in all cases. This means that if the population size is known, having unaffected
families is not important. On the other hand, if the effect of the rare variant
is small or moderate, compared to T̂D, the local power of T̂D,Ma is very small
- knowing N is important. However, when the effect of the latent factor is big,
the local power T̂D,Ma could be close to that of T̂D. This implies that in this
case, those affected families contain almost all the information for the testing for
familial aggregation. Here we assume again that the effect the family risk factor
β is known, and knowing N is very helpful in finding an accurate estimate for β.
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Table 2. ARE(TMa , T̂D) and ARE(T̂D,Ma , T̂D).

p1 = 0.02 p1 = 0.05 p1 = 0.10 p1 = 0.20
n = 2 1.0000 1.0000 1.0000 1.0000
n = 3 0.9967 0.9971 0.9982 0.9995

ARE(TMa , T̂D) n = 4 0.9935 0.9949 0.9977 0.9998
n = 5 0.9904 0.9931 0.9978 0.9999
n = 6 0.9874 0.9918 0.9982 1.0000
n = 2 0.0000 0.0000 0.0000 0.0000
n = 3 0.0134 0.0796 0.2637 0.6059

ARE(T̂D,Ma , T̂D) n = 4 0.0266 0.1538 0.4695 0.8643
n = 5 0.0396 0.2230 0.6261 0.9582
n = 6 0.0524 0.2873 0.7422 0.9881

5.4. Sensitivity to the choice of β

In the preceding subsections, we temporarily assumed that β was known. In
the Appendix, we provide moment estimates of β for different settings. In the
following, we take the true value of β to be β0, but we use β rather than β0 in the
construction of T̂D and TMa . Therefore, the expressions of T̂D(β) and TMa(β)
emphasize their dependence on β, and we analyze the sensitivity of the results to
the choice of β. Here we only consider T̂D(β), consideration of TMa(β) is almost
the same.

Noting that ∂Eθ(T̂D(β))/∂θ|θ=0 is

I∑
i=1

{[
1 + eα (eβ − 1)(eβ0 − 1)

(1 + eα+β)(1 + eα+β0)

]ni

− 1 − nie
α (eβ − 1)(eβ0 − 1)
(1 + eα+β)(1 + eα+β0)

}
,

and PAE(T̂D(β)) = (∂Eθ(T̂D(β))/∂θ|θ=0)2/NVar 0(T̂D(β)), if the disease is rare
and β and β0 are small, PAE(T̂D(β)) approximates

∑
ni(ni−1)p2

0(e
β0 −1)4/2N ,

which is also an approximation to PAE(T̂D(β0)). Here we use two examples to
demonstrate the sensitivity to the choice of β. In Figure 1, when p0 = 0.01,
ratios of PAE(T̂D(β)) and PAE(T̂D(β0)) are presented for four different settings,
where the circles represent the points at β0 and β = 1 − 6 correspond to p1 =
0.027, 0.069, 0.169, 0.355, 0.600 and 0.803, respectively. From Figures 1 and 2, we
see that ratios are close to one if β is in β0 ± 0.5. The results for different values
of p0 are similar, so they are not reported here.

6. An Example

A study of child survival in northeast Brazil, summarized in Table 3, was
reported by Sastry (1997), and also analyzed by Yu and Zelterman (2002). This
was a household survey conducted as part of a Demographic and Health Survey
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Figure 1. PAE(T̂D(β))/PAE(T̂D(β0)) when p0 = 0.01.

program. This was a random sampling design and the data set included those
unaffected families. A reason to use this data-set as an example is that we want
to illustrate and compare the six tests developed in Sections 4 and 5.

In this example, N = 2, 946 and D = 430. The MLE of p0 under the null
hypothesis is p̂ = D/N = 0.146. For the design where a sample of affected
families is obtained but N is unknown, the MLE of p0 is p∗ = 0.259. To test
against a rare variant with a substantial effect under (2.2), we need to estimate
the log-odds ratio β in the construction of the tests. For the random sampling
setting in which unaffected families are also available, following steps in the
Appendix, moment estimates of p0 and p1 are 0.071 and 0.591, respectively. This
implies that an estimate for β is 2.937. For the design in which the affected
families are obtained and N is know, following steps in the Appendix and using
p0 = p1 = 0.146 and θ = 0 as initial values, moment estimates of p0 and p1 are
0.095 and 0.490, respectively. This implies that an estimate of β is be 2.207 in
this case. This example shows that these two estimates are very close.

In Table 4, we present the values of six different test statistics. Among them,
SD, SMa and ŜD,Md are from Section 4 for the first kind of local alternative, while
T̂D, TMa and T̂D,Ma are from Section 5 for the second kind of local alternative.
This example shows that, for both local alternatives, knowing N can boost the
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Table 3. Child survival data reported by Sastry (1997).

Number of Number of Number of affected siblings
siblings families 0 1 2 3 4 5 6 7+

1 267 255 12
2 285 239 44 2
3 202 143 41 15 3
4 110 69 30 9 2 0
5 104 43 34 15 9 3 0
6 50 15 18 8 5 3 0 1
7 21 4 4 7 4 2 0 0 0
8 12 1 2 4 3 1 1 0 0

Table 4. Values and Z-scores of six test statistics.

Test Value Variance Z-score
SD 159.50 256.08 9.98

H01 SMa 210.75 317.09 11.95
ŜD,Ma 26.55 143.04 2.23

T̂D 6064.65 100605.10 19.12
H02 TMa 6295.61 120032.80 18.17

(β̂ = 2.207) T̂D,Ma 637.98 29266.46 3.73

power substantially but, if N is known, having unaffected families provides little
advantage.

7. Discussion

This paper is motivated by a study of epilepsy (Annegers et al. (1982)). The
sampling design is one in which all the affected families in a particular population
of a known size is obtained. If the population size were unknown, the power of
the tests based on the affected families only would be very limited, because one
would be dealing only with the testing for homogeneity of the diseased cases
among affected families. Knowing the population size boosts the power of the
test for familial aggregation considerably. Since the families without any affected
member are not available, we look at how much efficiency is lost caused by not
having them. We find that even though all unaffected families are available in
that population, the gain of relative efficiency is trivial.

A contribution of the paper is a procedure through which we can easily de-
velop the locally most powerful unbiased tests for testing for familial aggregation.
That is, starting with the complete sufficient statistic for the null hypothesis, the
locally most powerful unbiased test can be constructed on the conditional log-
likelihood. Here the procedure is applied repeatedly to a number of sampling
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designs. In addition, it is also applied to the case of proband studies in Fang
(2006), in which two types of control groups are examined and compared. More-
over, Fang (2006) also adjusts the methods in this paper to account for covariates,
such as age.

It might be of interest to note that the methods developed in the Section
4 are robust in the sense that they do not depend on the distribution of the
latent variable. One might specify some parametric distribution, say normal,
for the latent variable to gain some power. This is practical despite possible
misspecification.

Future research works will focus on developing approaches to the testing for
familial co-aggregation of two types of diseases when the sample size is known.
However, the procedure developed here cannot be generalized to testing for fa-
milial co-aggregation since the complete sufficient statistic does not exist even for
the random sampling design. Additionally, much more effort must be put into
this problem because the study of two diseases is far more complicated than that
of a single disease. For instance, we need to consider whether two diseases share
the same mechanism, whether they are caused by two different mechanisms, or
whether one disease is the cause of the other.

Appendix

Available at http://www.stat.sinica.edu.tw/statistica/ as an online
supplement.
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