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This supplement contains proofs of lemmas in Appendix A and some supplemental
large sample theory results in Appendix B. All section and equation numbers refer to
the main article.

Appendix A. Proofs

PrOOF OF LEMMA 1. We show that (i) = (i) = (iii) = (i).

(i) = (ii): The dual cone of coni(A) is coni(A)* = {b: b'z; < 0 for all z; € A}.
By the Duality Theorem for finite cones (e.g. Panik, 1993, Theorem 4.2.1), coni(A)** =
coni(A). Suppose that (ii) is false, i.e. coni(A) # R™. Then there is a nonzero b €
coni(A)*. But then —b'z; > 0 for all z; € A, and there is a quasi-complete separation
of the sample (X (™), 4(™)). This contradicts the assumption of overlap, hence (ii) holds.

(ii) = (iii): Assume that coni(A) = R™, and let b € R™ be arbitrary. Since (ii)
holds, —b € coni(A) and

—b= Z)\ij, zZ; € A,

Jj=1

for some constants A; > 0. Hence

0<bb=> X(=bz) <Y Nlblla=Iblad A
Jj=1 j=1 Jj=1

Suppose b # 0 but ||b|4 < 0. Then A\; > 0 for some j, and the right side of (5.1) is
strictly negative, a contradiction. Therefore (2.6) holds. Moreover, if ||b]|4 = 0, then
b'b = 0 by (5.1) again, and (2.7) holds.

(iii) = (i): If (2.7) holds and 0 # b € R™, ||b||4 = —minze 4 2'b > 0. Thus there
is a z € A such that z2'b < 0.
PROOF OF COROLLARY 1. The proof, which is essentially the same as the proof of equiv-
alence of norms in a finite-dimensional normed space (see e.g. Schecter, p. 83), is included
here for completeness. Suppose that the conclusion of the corollary does not hold. Then
there is a sequence b, = (bp1,...,bnm)t, n = 1,2,..., such that ||b,|.a/|bn] — O as
n — co. Since (2.8) holds for positive «, without loss of generality assume ||b,|| =1 for
all n. The unit sphere in IR™ is compact, so there is a convergent subsequence b, ) — b



with ||b]] = 1. Clearly || - ||.4 is continuous. Then this implies that ||b]|.4 = 0 for some
b # 0, contradicting (iii) of Lemma 1, and the proof is complete.
PrOOF oF LEMMA 2. Without loss of generality, assume that y; = 0 for i = 1,...,r

and y; = 1 for i = r +1,...,n. We show that (S1) and (S2) are equivalent to (ii) of
Lemma 1.
(ii) = (S1) and (S2):

For the binary case, suppose that coni(A) = IR™. Then from (2.9), the set
{x1,...,2x,} has full rank m. Suppose neither & nor F is all of R™. Since 0 is
in R™, it follows from Lemma 3 in Appendix A that there are \; > 0 so that 0 =
i N+ 3o A=), or YT Ny = Y01y A, Therefore SN F # 0.

(S1) and (S2) = (ii):
If either S or F is R™, then clearly coni(A) = R™. Suppose S NF # 0. Let

z € R™. Since the rank of (x1,...,x,) is m, there are constants ¢y, ...,c, such that
chml £y e = chml e (5.1)
i=r+1 i=r+1

Since SN F # 0, there is a w € SNF. Thus w = Y\ a;x; = > ., . bjx;, where
a;,b; > 0, and

i=1 i=r+1

Combining (5.1) and (5.2), we know for any constant M,

Zczwﬂr Z J(—x;) + Y Magwi+ »  Mbi(—

1=r+1 i=1 i=r+1
Choose M > 0 large enough so that

Ma;+c¢c; > 0, 1=1,...,r;
Mb;,—c; > 0, i=r4+1,....n
The result then follows. —
Lemma 3 Suppose that coni(z,...,z;) = R™.

(a) There are positive constants Ay > 0,..., A\ > 0, such that Zle Aiz; =0;
(b) For any z € R™, there exist constants \y > 0,..., ;> 0, such that z = Zle NiZi.
PROOF. Since coni(z1,...,2z,) = R™, there are constants C;; > 0, so that

k
—z; :ZCijzj, fori=1,... k.

i=1
Then,

k k
0 = ZZi_ZZZ = ZZJ+ZZC’JZJ

=1 j=1

Z 1+ZC” Z/\jzj,
j=1

j=1
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where \; =1+ Zle C;; > 1 > 0. Part (a) holds. For Part (b), for any z, there are
d; > 0 so that z = Zle d;z;. From part (a), there are ¢; > 0 so that Zle c;izi = 0.
Thus

k k k
2= czi+ Y dizi=Y (ci+di)z,
i=1 i=1 i=1
and ¢; +d; > 0 for all i. Part (b) follows. 0

Appendix B. Large Sample Properties of MLE and the
Posterior

C.1. Notation and Assumptions. We consider the general multinomial choice model
given by (1.1) and (1.4) in Section . Assume that for ¢ = 1,...,n, the m x k matrices
X,’s are i.i.d. with distribution function F. Given X, y; is multinomial(1, p(X;, 8)),
where p(X;,8) = (p1(X;,8),...,p:(X;:,8)), and p;(X;,B) is defined by (1.4). Let
& = (&, ---,&k),t = 1,...,n, be i.i.d. random vectors with a permutation invariant
distribution. Let G(uq,...,ux—1) be the (k — 1)-dimensional common distribution func-
tion of (&1 — &k, - .-, &ik—1 — &ix), and define

A(XiJ) = ((ﬂhg —Xi1), ., (wij - fEi,jq), (wij - wi,j+1)7 s (wij - wzk))t
Then
pi(Xi,B) = G(zij —xa)'B,.... (; —zu)'B) = G(A(X,5)8).

The likelihood of 3 based on (X (™, y(™) is

n

L(B) = [ G(A(X:,:)8).

i=1
Denote A defined in (2.4) as A", and define

C(X("),y(")) = sup{C>0: mj?) 2'8 < —C| 8| for all B € R™}.
ze n

Let V,;f, V?jf, and V§jkf be the ith first order partial derivative, the (7, j)th second
order partial derivative, and the (i, j, k)th third order partial derivative of f respectively.
Also, let (B);; be the (¢, j)th coordinate of a matrix B. Let By be the true parameter
value of 3.

We need the following conditions.

C1: G is a continuous distribution with support R*™* and 0 < G(u) < 1 for all
uec R

C2: Eg,|log G(A(X1,y1)8)| is finite and is a continuous function of 8 € R™ ',



C3: There exists an integer n, such that

Pg, (X ™) 4™y - coni(A™)) = R™) > 0.

C4: The prior of 3 is proper and has a density m with respect to Lebesgue measure; 7
is continuous and positive at Gg.

C5: Each coordinate of X; has finite expectation under 3.

C6: V;G and V%G are bounded for all ¢ and j.

Cr: Eﬁ0|V?jkG(A(X1,yl)ﬁ)(A(Xl,yl))lﬂ < oo for all 4,4, k, 1, h.
C8: The Fisher information, I(3), based on (X7,y1), is nonsingular for all 8 € R™.

For any positive integer j and D C IR", define

- T G(A(X:,y:)Bo)
Zi0) = b s 11 G x, yom)

Lemma 4 Under Conditions C1 and C2, for any 3, there is a neighborhood N(3) such
that Eg,Z1(N(B)) > —o0.

ProOF. Let N(B,1/k) ={0 € R™ : ||@ — B|| < 1/k}. Since G is continuous,
inf  (—log G(A(X;,v:)0)) T —log G(A(X;,y:)3).
penitl (7108 G(A(X,:)8)) T —log G(A(X, :)B)

By the Monotone Convergence Theorem, we have

kh_)rx;o Eg, 0€N1(%f’1/k)(—log G(A(X;,y:)0)) = Eg,(— log G(A(X;,v:)8)) < cc.

Hence, for some k,

B eeNl(r,laf,1/k)(_ log G(A(X,:)0)) < .

The conclusion follows. 0

Lemma 5 Under C3, there exists a compact set D C R™ such that Eg,Z, (D) > 0.

PrOOF. We will show there is a large positive number M with ||Go]| < M < oo and

— G(A(X;,y:)B0)

Bg, inf Y log 200 5 (.
% sl 28 GA(X:, 41)B)
Let
B = {(X"), y™)): coni(A™)) = R™};

B. = Bn{(X®) ym)y. (X)) 4y > e} e >0.
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Since C(X (™) y(m+)) > 0 for all (X-) y("™)) € B and Pg,(B) > 0 under C3, there
exists ¢ > 0 with Pg,(B.) > 0. For all (X(”* ,y(™)) € B,, by an argument similar to
the one proving (3.2),

IN

> log G(A(X,:)8) log H(—=C(X "),y 8]))
=1

IA

log H(—e[|B]),

where H is the cumulative distribution function of min;;—1, . (&1 —&1;). Then for any
M >0,

Eﬁozn*{”ﬁ‘l > M}

= Eg, » logG(A(X;,y:)B0) — Eg, sup Zloga A(Xi,y:)B)

i=1 I8lI>M ;=
> Ep, ylog G(A(Xi,y:1)B0) — EgoIp. sup ZlOgG A(Xi,y:)B)
i=1 IBIl>M ;5
> Eg, » logG(A(X;,:)B0) — Ep,Ip, Ly log H(—¢|8])
>

=1
> Eg, Y 1ogG(A(Xi,y:)B0) — Pa,(Bc)log H(—eM).
=1

Since lim s, H(—eM) = 0, we can choose a large enough M so that the above quantity
is positive. O

C.2. Asymptotic Properties of the MLE. Let B% be the maximum likelihood
estimator of 3 based on the observations (X (™, y(™).

Theorem 5 Under Conditions C1-C3, we have

Bflw — By asn — oo a.s. Pg,.
ProOF. Under C1-C3, the conclusions of Lemmas 4 and 5 hold. These, in turn, satisfy
the assumptions of Lemma 7.54, Lemma 7.83 and Theorem 7.49 of Schervish (1995).
Hence the MLE of 3 is consistent. 0

Lemma 6 Under C5 and C6,

E"(a%i

Ba (5 e CALmB) ] = -106)

Proor. (5 and C6 justify the interchange of differentiation and integration, and we
obtain the conclusions. 0

(A(Xl,yl)ﬂ)> = 0

Lemma 7 Under C7, there exists a function H.(X1,y1,03) such that

2 82
9308, log G(A(X1,y1)Bo) — 95,08,

sup
IB=Boll<r

log G(A(Xl,ynﬁ)’g H(X1, 10 0)



for all i and j, and

71‘11% EBOHT(thla/gO) =0.

PrROOF. Use the one term Taylor expansion. 0O
Theorem 6 (Asymptotic Normality of the MLE). Under C1-C38 and C5-CS8,

V(BM — By) — N(0,1(Bo)™") in distribution as n — oo.

PrROOF. Theorem 5 guarantees that the MLE is consistent, and Lemmas 6 and 7 give
the assumptions of Theorem 7.63 of Schervish (1995). 0

L.3. Asymptotics of Posteriors under a Proper Prior. In this subsection, we assume
a proper prior of 3 is used.

Theorem 7  Under C1-C3, the posterior distribution of B, mo(-|X ™, y(™), satisfies
mo(U|X™ y™) =1 a.s. Pg,

for any open neighbor U of By.

Proor. The Kullback-Leibler number (3, 3) is continuous due to C2, and the prior
puts positive mass on every open neighborhood of By by C4. These facts together with
Lemmas 4 and 5 imply that the assumptions of Theorem 7.80 of Schervish (1995) are
satisfied. 0

Theorem 8 Let g, be the posterior density of E;l(ﬁ—ﬁn) and ¢ be the k-dimensional
standard normal density, where 3, is the observed Fisher information matriz of 3 based
on (X y(™). Under C1-CS8, for each compact set D C R™ and € > 0,

lim Pgo(su% lgn(u) — d(u)] > €) = 0.
n—oo u e

Proor. This follows from Theorem 7.89 and 7.102 of Schervish (1995). 0

C.4. Asymptotics of Posteriors under an Improper Prior. We add the following
condition.

e C4': The improper prior, 7y, of 3 has a density with respect to Lebesgue measure
and is continuous and positive at By. Furthermore, with Pg,-probability 1, there
exists an integer N < oo, which depends on (X, y), such that

N
/Hf(Xi,yi\,@)wo(dﬁ) < 0.

Theorem 9  With C4 replaced by C4', Theorems 7 and 8 still hold.
PROOF. Define the stopping time

N=inf{n>1: /Hf(XuyiLB)Wo(d,B) < o0}
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By C4/, Pg,(N < o0) = 1. From the Strong Markov Property (cf. Billingsley, 1995), N
is independent of the sequence (Xnin,YN+n)n>1- Clearly the asymptotic behavior of
the sequence (X, yn)n>1 is the same as that of the sequence (X nin, YN+4n)n>1. Let

1Y, /(X5 yilB)m0(dB)

7y (d3) = .
v () TTIY, f(X4,:l8)m0(dB)

Then for any B C R™,

Jp T f(Xi yil B)mo (d8)

/ HN+n (X, 9l B)mo(dB)

fB iVJJr\;L+1 f mezW)WN(dﬂ)
inVJJF\;LH i,yi|ﬁ)7TN(d/3)

Hence the posterior with a sample of size N 4+ n and improper prior 7 is the same as the
posterior with another independent sample of size n and proper prior 7. For any given

(XN 4N apply Theorem 7 and 8. This completes the proof. 0
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