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Appendix A. Proofs

Proof of Lemma 1. We show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii): The dual cone of coni(A) is coni(A)∗ = {b : btzi ≤ 0 for all zi ∈ A}.

By the Duality Theorem for finite cones (e.g. Panik, 1993, Theorem 4.2.1), coni(A)∗∗ =
coni(A). Suppose that (ii) is false, i.e. coni(A) 6= IRm. Then there is a nonzero b ∈
coni(A)∗. But then −btzi ≥ 0 for all zi ∈ A, and there is a quasi-complete separation
of the sample (X(n),y(n)). This contradicts the assumption of overlap, hence (ii) holds.

(ii) ⇒ (iii): Assume that coni(A) = IRm, and let b ∈ IRm be arbitrary. Since (ii)
holds, −b ∈ coni(A) and

−b =
i∑

j=1

λjzj , zj ∈ A,

for some constants λj ≥ 0. Hence

0 ≤ btb =
i∑

j=1

λj(−btzj) ≤
i∑

j=1

λj‖b‖A = ‖b‖A
i∑

j=1

λj .

Suppose b 6= 0 but ‖b‖A < 0. Then λj > 0 for some j, and the right side of (5.1) is
strictly negative, a contradiction. Therefore (2.6) holds. Moreover, if ‖b‖A = 0, then
btb = 0 by (5.1) again, and (2.7) holds.

(iii) ⇒ (i): If (2.7) holds and 0 6= b ∈ IRm, ‖b‖A = −minz∈A ztb > 0. Thus there
is a z ∈ A such that ztb < 0.
Proof of Corollary 1. The proof, which is essentially the same as the proof of equiv-
alence of norms in a finite-dimensional normed space (see e.g. Schecter, p. 83), is included
here for completeness. Suppose that the conclusion of the corollary does not hold. Then
there is a sequence bn = (bn1, . . . , bnm)t, n = 1, 2, . . ., such that ‖bn‖A/‖bn‖ → 0 as
n→∞. Since (2.8) holds for positive α, without loss of generality assume ‖bn‖ = 1 for
all n. The unit sphere in IRm is compact, so there is a convergent subsequence bn(k) → b
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with ‖b‖ = 1. Clearly ‖ · ‖A is continuous. Then this implies that ‖b‖A = 0 for some
b 6= 0, contradicting (iii) of Lemma 1, and the proof is complete.
Proof of Lemma 2. Without loss of generality, assume that yi = 0 for i = 1, . . . , r
and yi = 1 for i = r + 1, . . . , n. We show that (S1) and (S2) are equivalent to (ii) of
Lemma 1.
(ii) ⇒ (S1) and (S2):

For the binary case, suppose that coni(A) = IRm. Then from (2.9), the set
{x1, . . . ,xn} has full rank m. Suppose neither S nor F is all of IRm. Since 0 is
in IRm, it follows from Lemma 3 in Appendix A that there are λi > 0 so that 0 =∑r
i=1 λixi +

∑n
i=r+1 λi(−xi), or

∑r
i=1 λixi =

∑n
i=r+1 λixi. Therefore S ∩ F 6= ∅.

(S1) and (S2) ⇒ (ii):
If either S or F is IRm, then clearly coni(A) = IRm. Suppose S ∩F 6= ∅. Let

z ∈ IRm. Since the rank of (x1, . . . ,xn) is m, there are constants c1, . . . , cn such that

z =
r∑
i=1

cixi +
n∑

i=r+1

cixi =
r∑
i=1

cixi +
n∑

i=r+1

(−ci)(−xi). (5.1)

Since S ∩ F 6= ∅, there is a u ∈ S ∩ F . Thus u =
∑r
i=1 aixi =

∑n
i=r+1 bixi, where

ai, bi > 0, and

0 =
r∑
i=1

aixi −
n∑

i=r+1

bixi. (5.2)

Combining (5.1) and (5.2), we know for any constant M,

z =
r∑
i=1

cixi +
n∑

i=r+1

(−ci)(−xi) +
r∑
i=1

Maixi +
n∑

i=r+1

Mbi(−xi).

Choose M > 0 large enough so that

Mai + ci ≥ 0, i = 1, . . . , r;
Mbi − ci ≥ 0, i = r + 1, . . . , n.

The result then follows.

Lemma 3 Suppose that coni(z1, . . . ,zk) = IRm.

(a) There are positive constants λ1 > 0, . . . , λk > 0, such that
∑k
i=1 λizi = 0;

(b) For any z ∈ IRm, there exist constants λ1 > 0, . . . , λk > 0, such that z =
∑k
i=1 λizi.

Proof. Since coni(z1, . . . ,zk) = IRm, there are constants Cij ≥ 0, so that

−zi =
k∑
i=1

Cijzj , for i = 1, . . . , k.

Then,

0 =
k∑
i=1

zi −
k∑
i=1

zi =
k∑
j=1

zj +
k∑
i=1

k∑
j=1

Cijzj

=
k∑
j=1

(1 +
k∑
i=1

Cij)zj =
k∑
j=1

λjzj ,
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where λj = 1 +
∑k
i=1 Cij ≥ 1 > 0. Part (a) holds. For Part (b), for any z, there are

di ≥ 0 so that z =
∑k
i=1 dizi. From part (a), there are ci > 0 so that

∑k
i=1 cizi = 0.

Thus

z =
k∑
i=1

cizi +
k∑
i=1

dizi =
k∑
i=1

(ci + di)zi,

and ci + di > 0 for all i. Part (b) follows.

Appendix B. Large Sample Properties of MLE and the
Posterior

C.1. Notation and Assumptions. We consider the general multinomial choice model
given by (1.1) and (1.4) in Section . Assume that for i = 1, . . . , n, the m × k matrices
Xi’s are i.i.d. with distribution function F . Given Xi, yi is multinomial(1,p(Xi,β)),
where p(Xi,β) = (p1(Xi,β), . . . , pk(Xi,β)), and pj(Xi,β) is defined by (1.4). Let
ξi = (ξi1, . . . , ξik), i = 1, . . . , n, be i.i.d. random vectors with a permutation invariant
distribution. Let G(u1, . . . , uk−1) be the (k− 1)-dimensional common distribution func-
tion of (ξi1 − ξik, . . . , ξi,k−1 − ξik), and define

A(Xi, j) = ((xij − xi1), . . . , (xij − xi,j−1), (xij − xi,j+1), . . . , (xij − xik))t.

Then

pj(Xi,β) = G((xij − xi1)tβ, . . . , (xij − xik)tβ) = G(A(Xi, j)β).

The likelihood of β based on (X(n),y(n)) is

L(β) =
n∏
i=1

G(A(Xi, yi)β).

Denote A defined in (2.4) as A(n), and define

C(X(n),y(n)) = sup{C > 0 : min
z∈A(n)

ztβ ≤ −C‖β‖ for all β ∈ IRm}.

Let ∇if , ∇2
ijf , and ∇3

ijkf be the ith first order partial derivative, the (i, j)th second
order partial derivative, and the (i, j, k)th third order partial derivative of f respectively.
Also, let (B)ij be the (i, j)th coordinate of a matrix B. Let β0 be the true parameter
value of β.

We need the following conditions.

C1: G is a continuous distribution with support IRk−1 and 0 < G(u) < 1 for all
u ∈ IRk−1.

C2: Eβ0 | logG(A(X1, y1)β)| is finite and is a continuous function of β ∈ IRm−1.
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C3: There exists an integer n∗ such that

Pβ0((X(n∗),y(n∗)) : coni(A(n∗)) = IRm) > 0.

C4: The prior of β is proper and has a density π with respect to Lebesgue measure; π
is continuous and positive at β0.

C5: Each coordinate of Xi has finite expectation under β0.

C6: ∇iG and ∇2
ijG are bounded for all i and j.

C7: Eβ0 |∇3
ijkG(A(X1, y1)β)(A(X1, y1))l,h| <∞ for all i, j, k, l, h.

C8: The Fisher information, I(β), based on (X1, y1), is nonsingular for all β ∈ IRm.

For any positive integer j and D ⊂ IRm, define

Zj(D) = inf
β∈D

log
j∏
i=1

G(A(Xi, yi)β0)
G(A(Xi, yi)β)

.

Lemma 4 Under Conditions C1 and C2, for any β, there is a neighborhood N(β) such
that Eβ0Z1(N(β)) > −∞.

Proof. Let N(β, 1/k) = {θ ∈ IRm : ‖θ − β‖ < 1/k}. Since G is continuous,

inf
θ∈N(β,1/k)

(− logG(A(Xi, yi)θ)) ↑ − logG(A(Xi, yi)β).

By the Monotone Convergence Theorem, we have

lim
k→∞

Eβ0 inf
θ∈N(β,1/k)

(− logG(A(Xi, yi)θ)) = Eβ0(− logG(A(Xi, yi)β)) <∞.

Hence, for some k,

Eβ0 inf
θ∈N(β,1/k)

(− logG(A(Xi, yi)θ)) <∞.

The conclusion follows.

Lemma 5 Under C3, there exists a compact set D ⊂ IRm such that Eβ0Zn∗(Dc) > 0.

Proof. We will show there is a large positive number M with ‖β0‖ < M <∞ and

Eβ0 inf
‖β‖>M

n∗∑
i=1

log
G(A(Xi, yi)β0)
G(A(Xi, yi)β)

> 0.

Let

B = {(X(n∗),y(n∗)) : coni(A(n∗)) = IRm};
Bε = B ∩ {(X(n∗),y(n∗)) : C(X(n∗),y(n∗)) > ε}, ε > 0.
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Since C(X(n∗),y(n∗)) > 0 for all (X(n∗),y(n∗)) ∈ B and Pβ0(B) > 0 under C3, there
exists ε > 0 with Pβ0(Bε) > 0. For all (X(n∗),y(n∗)) ∈ Bε, by an argument similar to
the one proving (3.2),

n∗∑
i=1

logG(A(Xi, yi)β) ≤ logH(−C(X(n∗),y(n∗))‖β‖)

≤ logH(−ε‖β‖),

where H is the cumulative distribution function of minl 6=j=1,...,k(ξ1l− ξ1j). Then for any
M > 0,

Eβ0Zn∗{‖β‖ > M}

= Eβ0

n∗∑
i=1

logG(A(Xi, yi)β0)− Eβ0 sup
‖β‖>M

n∗∑
i=1

logG(A(Xi, yi)β)

≥ Eβ0

n∗∑
i=1

logG(A(Xi, yi)β0)− Eβ0IBε sup
‖β‖>M

n∗∑
i=1

logG(A(Xi, yi)β)

≥ Eβ0

n∗∑
i=1

logG(A(Xi, yi)β0)− Eβ0IBε sup
‖β‖>M

logH(−ε‖β‖)

≥ Eβ0

n∗∑
i=1

logG(A(Xi, yi)β0)− Pβ0(Bε) logH(−εM).

Since limM→∞H(−εM) = 0, we can choose a large enough M so that the above quantity
is positive.

C.2. Asymptotic Properties of the MLE. Let β̂Mn be the maximum likelihood
estimator of β based on the observations (X(n),y(n)).

Theorem 5 Under Conditions C1–C3, we have

β̂Mn → β0 as n→∞ a.s. Pβ0 .

Proof. Under C1–C3, the conclusions of Lemmas 4 and 5 hold. These, in turn, satisfy
the assumptions of Lemma 7.54, Lemma 7.83 and Theorem 7.49 of Schervish (1995).
Hence the MLE of β is consistent.

Lemma 6 Under C5 and C6,

Eβ

( ∂

∂βi
logG(A(X1, y1)β)

)
= 0;

Eβ

[( ∂2

∂βi∂βj
logG(A(X1, y1)β)

)
i,j=1,...,m

]
= −I(β).

Proof. C5 and C6 justify the interchange of differentiation and integration, and we
obtain the conclusions.

Lemma 7 Under C7, there exists a function Hr(X1, y1,β) such that

sup
‖β−β0‖≤r

∣∣∣∣ ∂2

∂βi∂βj
logG(A(X1, y1)β0)− ∂2

∂βi∂βj
logG(A(X1, y1)β)

∣∣∣∣≤ Hr(X1, y1,β0)
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for all i and j, and

lim
r→0

Eβ0Hr(X1, y1,β0) = 0.

Proof. Use the one term Taylor expansion.

Theorem 6 (Asymptotic Normality of the MLE). Under C1–C3 and C5–C8,

√
n(β̂Mn − β0)→ N(0, I(β0)−1) in distribution as n→∞.

Proof. Theorem 5 guarantees that the MLE is consistent, and Lemmas 6 and 7 give
the assumptions of Theorem 7.63 of Schervish (1995).

L.3. Asymptotics of Posteriors under a Proper Prior. In this subsection, we assume
a proper prior of β is used.

Theorem 7 Under C1–C3, the posterior distribution of β, π0(·|X(n),y(n)), satisfies

π0(U |X(n),y(n))→ 1 a.s. Pβ0

for any open neighbor U of β0.

Proof. The Kullback-Leibler number I(β0,β) is continuous due to C2, and the prior
puts positive mass on every open neighborhood of β0 by C4. These facts together with
Lemmas 4 and 5 imply that the assumptions of Theorem 7.80 of Schervish (1995) are
satisfied.

Theorem 8 Let gn be the posterior density of Σ−1
n (β−β̂n) and φ be the k-dimensional

standard normal density, where Σn is the observed Fisher information matrix of β based
on (X(n),y(n)). Under C1–C8, for each compact set D ⊂ IRm and ε > 0,

lim
n→∞

Pβ0( sup
u∈D

|gn(u)− φ(u)| > ε) = 0.

Proof. This follows from Theorem 7.89 and 7.102 of Schervish (1995).

C.4. Asymptotics of Posteriors under an Improper Prior. We add the following
condition.

• C4′: The improper prior, π0, of β has a density with respect to Lebesgue measure
and is continuous and positive at β0. Furthermore, with Pβ0-probability 1, there
exists an integer N <∞, which depends on (X,y), such that∫ N∏

i=1

f(Xi, yi|β)π0(dβ) <∞.

Theorem 9 With C4 replaced by C4′, Theorems 7 and 8 still hold.

Proof. Define the stopping time

N = inf{n ≥ 1 :
∫ n∏

i=1

f(Xi, yi|β)π0(dβ) <∞}.
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By C4′, Pβ0(N <∞) = 1. From the Strong Markov Property (cf. Billingsley, 1995), N
is independent of the sequence (XN+n, yN+n)n≥1. Clearly the asymptotic behavior of
the sequence (Xn, yn)n≥1 is the same as that of the sequence (XN+n, yN+n)n≥1. Let

πN (dβ) =
∏N
i=1 f(Xi, yi|β)π0(dβ)∫ ∏N
i=1 f(Xi, yi|β)π0(dβ)

.

Then for any B ⊂ IRm,

π(β ∈ B|X(N+n),y(N+n)) =

∫
B

∏N+n
i=1 f(Xi, yi|β)π0(dβ)∫ ∏N+n
i=1 f(Xi, yi|β)π0(dβ)

=

∫
B

∏N+n
i=N+1 f(Xi, yi|β)πN (dβ)∫ ∏N+n
i=N+1 f(Xi, yi|β)πN (dβ)

.

Hence the posterior with a sample of size N +n and improper prior π is the same as the
posterior with another independent sample of size n and proper prior πN . For any given
(X(N),y(N)), apply Theorem 7 and 8. This completes the proof.
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