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Abstract: In the context of longitudinal data analysis, we study a random function

X that represents patients or subjects observed at randomly distributed points.

Principal components analysis (PCA) is useful in understanding the random effects

of X. In this paper, we estimate the mean and covariance functions of X by wavelet

methods. Proposed wavelet estimators give interesting performances over a wide

class of functions, even if the regularity parameters of the original functions are

not assumed to be greater than 2. In another problem of longitudinal analysis,

we study the regression of observations at recorded times, when the number of

observations per unit is assumed to be a finite integer. In this context, under

Gaussian assumptions, our wavelet estimator could be proved to be optimal.
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projection estimation, principal components methods, wavelet decomposition.

1. Introduction

Research in different disciplines involves data from high-dimensional re-
peated measurements of the same object. Depending on how measurements are
recorded across times, densely or sparsely, we have different ways to analyze and
process them.

When measurements are taken on a dense time grid, data typically consist
of one observation function per each subject. The statistical analysis of a sample
of such graphs is called “Functional Data Analysis” (FDA).

On the other hand, when data are recorded at sparse time points, for each
subject we have only, say, m observations at m time points. Moreover, data
always come with experimental errors. Longitudinal data arise commonly in
health sciences and engineering applications, under different terminology, with
the defining characteristic that individuals are measured repeatedly through time.
Longitudinal data analysis (LDA) is similar to FDA in that one can suppose an
underlying function exists. The difference between their analyses comes out in
two ways: the errors, and the continuity of the observations. In many different
models, these points are more conceptual than actual. However, longitudinal data
require special statistical methods because the observations of an individual are
correlated, and this must be taken into account.
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1.1 Considered models

In this paper, LDA is scrutinized with the model

Yij = Xi(Tij) + εij , i = 1, . . . , n j = 1, . . . ,m,

where the observations Yij of n subjects are recorded at random times Tij with
experimental errors εij . For each subject i, we have m data points (m is usually
small). Our aim is to estimate the behaviour of the random process X from the
nxm-matrix of observations (Yij , Tij)i,j . In this context, principal components
analysis (PCA) is very useful in explaining the effects of discretely recorded
results on statistical estimators. PCA is a technique for simplifying a dataset,
by reducing it to a few essential dimensions. It was studied in early works by
Grenander (1968) and more recently by Rice and Silverman (1991), Ramsay and
Silverman (1997), and many others. Nonparametric methods for unbalanced
longitudinal data were studied by Boularan, Ferré and Vieu (1995).

Yao, Müller and Wang (2005) proposed a procedure to estimate functional
principal component scores for sparsely recorded data. They used the local
weighted polynomial smoothing method to estimate the mean function µ(u) =
E (X(u)), and the fitting of local lines (planes) (Fan and Gijbels (1996)) to esti-
mate the covariance function ω(u, v) = Cov (X(u), X(v)). These techniques are
applicable for FDA problems but, in the case of LDA, some special conditions
on the random process X and its derivatives are required.

In this paper, we introduce wavelet estimators for the mean and the co-
variance, and we investigate their performances under L2 risk. Without any
conditions on the derivatives of the process X, our estimators give interesting
performances.

In mean estimation, an approach using a functional regression model is cho-
sen. Under a few conditions on the process X, our wavelet estimator µ̂ of the
mean function µ has the following rates of convergence (over Besov classes):[

(nm)−
2s

2s+1 +

∫ 1
0 Var (X(u))du

n

]
,

where s is the regularity parameter of the mean function. We remark that,
for an extreme case where n << m → ∞, our rates of convergence become
(
∫ 1
0 Var (X(u))du/n), which corresponds to the case where n entire graphs Xi(u)

are observed. For another extreme case where only few observations of each
individual are observed (m << n), especially when m is a finite integer, the
rates of convergence would be proved to be minimax for the uniform design
under Gaussian assumptions (see more details in Comment 3.2).

For the covariance estimations, we have two results.
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• If the mean function is known, then our wavelet estimator gives rates of
convergence of (nm)−γ/(γ+1), where γ is the regularity parameter of the
covariance function.

• If the mean function is unknown, then two unknown functions µ and ω need
to be estimated consecutively. In this case, we get more complicated rates
of convergence that depend on both regularity parameters, s of µ and γ of
ω (see more details in Corollary 4.3 and Comments 4.7).

1.2. Discussion

In this subsection, we explain the choice of linear wavelet methods, and we
present a more complete schema of the wavelet estimation for longitudinal data.

• We begin in the general case where the only condition on X is supu∈[0,1] Var
X(u) = ‖ω‖∞ < ∞; this is simple, and easily verified in many applied
problem. Assuming more conditions on X could help us deal with techni-
cal difficulties (for example, in Subsection 3.3, we use Gaussian properties
to simplify the Kullback divergence, which plays the leading role in lower
bound controls) but, on the other hand, we lose the generality of the prob-
lem.

• We have observations Yij from n independent individuals. For each in-
dividual i, m observations are taken at m random recorded time points.
These m observations are correlated, which makes the problem more inter-
esting and also more complicated. Analyzing these correlations is also one
of main goals of LDA. However, these correlations also disturb analysis of
X’s behavior, especially when the number of correlated observations goes
to infinity. A simple method is used here to obtain good estimates of X’s
behavior even as m goes to infinity. We use the projection method to es-
timate the mean and covariance functions. Upper bounds of the quadratic
risk can be obtained for any orthogonal basis. Using wavelet bases could
simplify the upper bounds, as shown in the covariance estimations. In ad-
dition, wavelet estimations give us the idea of applying wavelet shrinkage
procedures, which has the following benefits,

1. Building adaptive estimators-adaptive procedures which do not depend
on the regularity parameters of mean and covariance functions.

2. Instead of being limited to quadratic risk, we can investigate the per-
formance of wavelet estimators in Lp, with p > 1. Moreover, shrinkage
wavelet estimators have better convergence rates over function space
Bs

p,q where 1 < p < 2, than linear estimators.
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However, wavelet shrinkage procedures pose other difficulties. Especially,
the wavelet estimated coefficients require more conditions and properties, con-
centration inequalities for example, which can be difficult when the number of
correlated observations goes to infinity. Even in the case where m is a finite
integer, more assumptions on the process X are required to deal with technical
difficulties. A more complete wavelet estimation schema for LDA could be de-
composed into several steps, with different results and different interpretations
for each step.

1. First step: we present non-adaptive linear wavelet procedures for mean and
covariance estimations. In this step, general conditions apply to the number
of correlated observations, m, and to the random process X. For the extreme
cases, m = 1 and m = ∞, the convergence rates of the mean estimation can
be obtained. Moreover, a minimax result of mean estimation is introduced
and proved for the Gaussian case with a finite integer m. We could have a
more complicated result for the mixed model, where the mean and covariance
functions are unknown and must be consecutively estimated.

2. Second step: Adaptive results for mean and covariance estimations (known-
mean case), using wavelet shrinkage procedures can be obtained under the
following assumptions:

• m is a finite integer.
• X is a bounded random process or a Gaussian process with moment

conditions.
• Brownian motion: When m is not a finite integer, more information

about X could be required to control the behavior of wavelet estimated
coefficients; an interesting adaptive result for mean estimation can be
proved when the zero-mean random process δ(u) = X(u)−E(X(u)) is a
Brownian motion.

This paper presents the first step of this wavelet estimation schema. Results and
difficulties from the second step are to be presented and detailed in our next
papers. The remainder of this paper is organized as follows. In Section 2, we
present briefly the model of longitudinal data and the PCA method. In Section
3, we introduce the wavelet estimator of the mean function and its minimax
performance. The wavelet estimator of the covariance function is introduced in
Section 4. A short proof of Theorem 3.1 is presented in Section 5.

2. Model and PCA Method

Let X,X1, . . . , Xn be independent and identically distributed random func-
tions on [0, 1], satisfying

∫ 1
0 Var (X(u))du < ∞. We consider the model

Yij = Xi(Tij) + εij , i = 1, . . . , n, j = 1, . . . ,m,m ≥ 2, (2.1)
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where the observations Yij are recorded at time points Tij with zero-mean errors
εij . Usually, the noises εij are assumed to have normal distribution; here the
Gaussian assumption is not required except in Section 3.3. We assume that (see
also Yao, Müller and Wang (2005)) the following hold.

• The Tij are independent and uniformly distributed in [0, 1].

• The εij are i.i.d. variables with zero mean and finite variance E(ε211) = σ2 <

∞.

• The Xi, Tij , and εij are independent.

A main objective of longitudinal data analysis is to study the behaviour of the
random function X. PCA is a useful technique to explain the random effects of
X, which are briefly presented in the next subsection.

2.1. PCA method

The PCA method is based on interpreting the covariance function ω(u, v) =
cov (X(u), X(v)) as the kernel of a linear mapping on the space L2([0, 1]) of
square-integrable functions on [0, 1], taking α(.) to ωα(.) defined by (ωα)(u) =∫
I α(v)ω(u, v)dv.

Using Mercer’s theorem (e.g., Indritz (1963, Chap. 4)), we can write

ω(u, v) =
∞∑

j=1

λ2
jηj(u)ηj(v),

where λ2
j are the positive ordered eigenvalues (λ2

1 ≥ · · · ≥ 0), and ηj are the
corresponding eigenfunctions of the function ω(u, v).

Because the eigenfunctions ηj form a complete orthonormal sequence of
L2(I), for each i we have

Xi(t) = µ(t) +
∞∑

j=1

ζijηj(t), (2.2)

where µ(t) = E(Xi(t)) = E(X(t)), and ζij =
∫ 1
0 Xi(t)ηj(t)dt is the jth random

effect of the ith subject (for each i, the random variables ζij are uncorrelated
because of the orthogonality between ηj and ηk,j 6= k). This decomposition is also
called the “functional principal component expansion” and helps us understand
the behaviour of X. For example, when the eigenfunction η1 admits a turning
point in a part of [0, 1] where the other eigenfunctions are mostly flat, this turning
point is likely to appear with high probability in the random function X. Again,
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if all eigenfunctions are close to zero in a given part of [0, 1], we may conclude
that X is close to its mean in this region.

Unfortunately in the model (2.1), the functions µ and ω that play the leading
role in the PCA method are unknown; we must estimate these functions from the
data (Yij , Tij). In the present paper, we investigate the performance of projection
estimators under L2 risk. Section 3 presents the projection estimator of the mean
function µ and its asymptotic performance when a wavelet basis is used. The
covariance estimation is presented in Section 4.

3. Estimation of the Mean Function

Here we estimate the mean function µ. The projection estimator and its
asymptotic behaviour are given in Subsection 3.1 (Thm. 3.1). In Subsection 3.2,
we apply the projection procedure for a compactly supported wavelet basis; in
that case, interesting rates of convergence can be proved for all bounded µ in a
Besov ball (Corollary 3.1).

3.1 Projection estimation for the longitudinal data model

The main idea is to project the observations Y on a basis where the signal
f is well concentrated. If E = (ek)k∈N is an orthonormal basis of L2([0, 1]), and
µ ∈ L2([0, 1]) we can write

µ(x) =
∑
k∈N

αkek(x) with αk =
∫ 1

0
µ(x)ek(x)dx.

For all finite integers M > 0, take

PM (E)µ(x) =
M∑

k=1

αkek(x).

The idea of this projection estimation is simple: approximate µ by its projection
onto the first M functions of the basis E , and replace the coefficients (αk)k≤M

by their estimators (α̂k)k≤M .
From the longitudinal data (Yil, Til), we build the coefficient estimators

α̂k =
1

nm

n∑
i=1

m∑
j=1

Yijek(Tij), k = 1, . . . ,m.

For each individual i, using the data (Yil, Til) (i fixed, j=1,. . . ,m), we have the
auxiliary coefficient estimators

α̂ki =
1
m

m∑
j=1

Yijek(Tij), k = 1, . . . ,m.
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The projection estimator is written as

µ̂M (E)(x) =
M∑

k=1

α̂kek(x) =
1
n

n∑
i=1

µ̂Mi(E)(x), (3.1)

where µ̂Mi(E)(x) =
∑M

k=1 α̂kiek(x).
For all finite integers M > 0, we investigate the asymptotic behaviour of µ̂M .

The choice of M depends on the basis E , and is discussed later.

Theorem 3.1.(Uniform Case) Suppose that ω(u, u) = Var (X(u)) ≤ ‖ω‖∞ <

∞,∀u ∈ [0, 1]. For all bounded µ ∈ L2([0, 1]), there exists a positive constant C,
not depending on M , such that

E‖µ̂M (E)−PM (E)µ‖2
2≤C

[
M

nm
(‖µ‖2

∞+σ2+‖ω‖∞)+
2

∫ 1
0 Var (X(u)) du

n

]
.(3.2)

Comment 3.1. According to Theorem 3.1, the distance between the estimator
µ̂M (E) and the projection PM (E)µ admits an upper bound that depends on the
number of experimental units (n) and on the number of observations per unit
(m), but does not depend on the orthonormal basis E .

We remark that our main interest is in the L2 risk

R2(µ̂m, µ) = E‖µ̂M (E) − µ‖2
2 =

∫ 1

0
(µ̂m(u) − µ(u))2du.

Note that R2(µ̂m, µ) ≤ 2(E‖µ̂M (E) − PM (E)µ‖2
2 + E‖PM (E)µ − µ‖2

2), where the
first term is bounded using Theorem 3.1. In the next section, we will see that the
second term can be bounded if we apply the projection procedure for a reasonable
basis. Then the finite integer M will be chosen to equilibrate these two terms.
This choice is discussed later.

3.2. Performance of wavelet estimation on a Besov class-upper bound

In this section, we illustrate the previous theory with the case where E is a
compactly supported wavelet basis on [0, 1], and we consider the performance of
the projection estimation for all bounded µ in a ball of radius L in a Besov space
Bs

2∞([0, 1]). The regularity parameter s is assumed to be smaller than a known
integer (N + 1) (see Härdle, Kerkyacharian, Picard and Tsybakov (1998)). We
define

B(s, L) = {f ∈ L2([0, 1]) | max(‖f‖∞, ‖f‖Bs
2∞

) ≤ L < ∞}.
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Let φ be a scaling function of a multi-resolution analysis (a father wavelet) and
ψ be the associated mother wavelet. Let, as always,

φjk(x) = 2
j
2 φ(2jx − k), ψjk(x) = 2

j
2 ψ(2jx − k), k ∈ Z, j = 0, 1, . . .

As was stated above, the two functions φ and ψ are supposed to be compactly
supported.

• Conditions on the father wavelet function:
There exists a bounded non-increasing function Φ such that∫ 1

0
Φ(|u|)du < ∞, |φ(u)| ≤ Φ(|u|), (a.s)

∫
Φ(|u|)|u|N+1du < ∞.

• Conditions on the mother wavelet function:∫ 1

0
ψ(u)ukdu = 0 ∀k = 0, . . . , N.

Let VJ be the linear subspace of L2([0, 1]) spanned by {φJ,k(x), k = 0, . . . , 2J−1};
VJ is also spanned by the first 2J elements of the basis E = {ψj,k, k = 0, . . . , 2j −
1, j ≥ −1}.

For each J > 0, we have the orthogonal projection on VJ as

PVJ
µ(x) = P2J (E)µ(x) =

2j0−1∑
k=0

αj0kφj0k(x) +
J−1∑
j=j0

2j−1∑
k=0

βjkψjk(x), j0 ≥ 0.

Under the above conditions on the wavelet functions, we have (see Meyer (1990))

‖µ−P2J (E)µ‖2 = ‖µ−PVJ
µ‖2 ≤ ‖µ‖Bs

2∞
2−Js, ∀µ ∈ Bs

2,∞([0, 1]), 0 < s < N+1.

Apply Theorem 3.1 with M = 2Jnm ³ (nm)1/(2s+1). We write µ̂nm = µ̂M (E) =
µ̂2Jnm (E), δ = X − µ. Then, for all µ ∈ B(s, L), we have:

1. E‖µ̂nm −PVJnm
µ‖2

2 ≤ C
[

2Jnm

nm

(
‖µ‖2

∞ + σ2 + ‖ω‖∞
)

+ 2E‖δ‖2
2

n

]
≤ C1

2Jnm

nm +

C2
E‖δ‖2

2
n ;

2. ‖µ − PVJnm
µ‖2

2 ≤ L2−2Jnms.

By using the wavelet basis E , with M = 2Jnm ³ (nm)1/(2s+1), we have the
following convergence properties of the wavelet estimator µ̂nm for all µ in a ball
of radius L in a Besov space Bs

2∞([0, 1]) (0 < s < N + 1).
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Corollary 3.1. Under the above conditions on the wavelet functions, and the
conditions of Theorem 3.1, for all µ ∈ B(s, L), we have

E‖µ̂nm − µ‖2
2 = E‖µ̂nm − PVJnm

µ‖2
2 + ‖PVJnm

µ − µ‖2
2

≤
(

C1
2Jnm

nm
+ L2−2Jnms

)
+ C2

E‖δ‖2
2

n

³

[
(nm)

−2s
2s+1 +

∫ 1
0 Var (X(u))du

n

]
.

Comment 3.2. Corollary 3.1 gives us an upper bound on L2 risk for the case
where the recorded times Tij are uniformly distributed. For the non-uniform case,
where the density g of random times Tij is such that 0 < gmin ≤ g(x) ≤ gmax < ∞,
a similar result can be obtained by assuming E

(
(δ ◦ G−1(u))2

)
≤ C < ∞,∀u ∈

[0, 1]:

sup
µ◦G−1∈B(s,L)

E‖µ̂nm − µ‖2
2 ≤ C

gmin

(
(nm)−

2s
2s+1 +

gmax

∫ 1
0 Var(X(u))du

n

)
,

where G(x) =
∫ x
0 g(u)du.

When m >> n, we observe n curves Xi(u) of a random function X(u) =
µ(u) + δ(u). In this case, without any special conditions on X, our rates of
convergence become the familiar

∫ 1
0 Var (X(u))du/n.

When m << n, m < n1/2s ⇔ n−1 ≤ (nm)−2s/(2s+1), and C(nm)−2s/(2s+1)

plays the most important part of the rates of convergence, which corresponds to
the optimal rates of the regression model. This makes sense because when m = 1
we have n observations Yi = µ(Ti)+ ε∗i with i.i.d. errors ε∗i , so µ̂nm is the wavelet
estimator of the regression model. Moreover, when m is a finite integer, we can
prove the optimality of our wavelet estimator under Gaussian assumptions, see
the next subsection.

3.3. Lower bound under Gaussian assumptions

In this subsection, we investigate the optimality of our estimator under the
assumptions that m is a finite integer, the noises εij are i.i.d. zero-mean Gaussian
variables with finite variance E(ε2ij) < ∞, and X is a Gaussian process.

Theorem 3.2. Under the above assumptions,

inf
τ̂

sup
µ∈B(s,L)

E‖τ̂ − µ‖2
2 ≥ Cn− 2s

2s+1 , (3.3)

where inf τ̂ indicates the infimum over the set of all possible estimators τ̂ of µ.
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Comment 3.3. Corollary 3.1 shows the performance of our wavelet estima-
tor µ̂nm. For the case where m is a finite integer and X has finite covariance,
Corollary 3.1 has it that

sup
µ∈B(s,L)

E‖µ̂nm − µ‖2
2 ³ (nm)−

2s
2s+1 +

∫ 1
0 Var (X(u))du

n
³ n− 2s

2s+1 .

Theorem 3.2 provides the lower bound for all possible estimators τ̂ of µ,

sup
µ∈B(s,L)

E‖τ̂ − µ‖2
2 ≥ Cn− 2s

2s+1 ≥ C sup
µ∈B(s,L)

E‖µ̂nm − µ‖2
2,

which shows the optimality of our wavelet estimator µ̂nm.

4. Estimation of the Covariance Function

In this section, the covariance function ω(u, v) will be estimated from the
data (Yij , Tij) of the model (2.1). There are two cases corresponding to known
and unknown mean functions µ. We start with the known µ case. Subsection 4.1
presents the covariance projection estimator. For the unknown-mean-function
case, the cross-estimator is introduced and studied in Subsection 4.2. Theorem
4.3 and Theorem 4.4 show the asymptotic performances of covariance estimators.
We will see that theses performances depend on the orthogonal bases which are
used in the projection procedures. Subsection 4.3 investigates the L2 risk of these
estimators when wavelet-tensor bases are used.

4.1. Projection estimation for the known-mean-function case

We want to estimate the covariance function of X from the data (Yij , Tij) of
the model (2.1):

Yij = Xi(Tij) + εij

= µ(Tij) + δi(Tij) + εij , i = 1, . . . , n; j = 1, . . . ,m.

The fact µ is known implies that Zij = Yij − µ(Tij) are observable with Zij =
δi(Tij) + εij , i = 1, . . . , n; j = 1, . . . ,m. For each i = 1, . . . , n, we write Riq =
Ti,2q−1, Uiq = Zi,(2q−1), εiq1 = εi,(2q−1), Siq = Ti,2q, Viq = Zi,2q, and εiq2 = εi,2q.
Then we have l = [m/2] sub models

Uiq = δi(Riq) + εiq1,

Viq = δi(Siq) + εiq2,

with i = 1, . . . , n, q = 1, . . . , l.
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Let Π = {πk, k ∈ N} be an orthonormal basis of L2([0, 1]2). For all ω ∈
L2([0, 1]2), we have the decomposition

ω(u, v) =
∑
k∈N

ckπk(u, v), ck =
∫ 1

0

∫ 1

0
πk(u, v)ω(u, v)dudv.

PM1(Π)ω is the orthogonal projection of ω on the subspace spanned of the first
M1 elements of Π,

PM1(Π)ω =
M1∑
k=1

ckπk.

In the known-mean-function case, the projection estimator ω̂M1(Π) of the
covariance function is written as

ω̂M1(Π)(u, v) =
M1∑
k=1

ĉkπk(u, v),

with the unbiased estimator of coefficient ck being

ĉk =
1
n

n∑
i=1

1
l

l∑
q=1

UiqViqπk(Riq, Siq) =
1
n

n∑
i=1

ĉk,i, l = [
m

2
],

where ĉk,i = (1/l)
∑l

q=1 UiqViqπk(Riq, Siq).

Theorem 4.3. Let ω(u, v) = E [δ(u)δ(v)] and h(s, t, u, v) = E [δ(s)δ(t)δ(u)δ(v)]
be such that

|ω(u, v)|≤‖ω‖∞<∞,∀(u, v)∈[0, 1]2, |h(s, t, u, v)|≤‖h‖∞<∞,∀(s, t, u, v)∈[0, 1]4.

For any finite integer M1 > 0, we have

E‖ω̂M1(Π) − PM1(Π)ω‖2
2

≤ C

2M1

nm
C(σ, ω, h) +

‖h‖∞
n

M1∑
k=1

(∫
[0,1]2

|πk(u, v)|dudv

)2
 , (4.1)

where C(σ, ω, h) = 2σ2‖ω‖∞ + σ4 + ‖h‖∞.

Comment 4.4. In the mean estimation of Section 3, the upper bound of
E‖µ̂nm − PM (E)µ‖2

2 does not depend on the orthonormal basis E , the wavelet
basis is used only to bound the term E‖µ − PM (E)µ‖2

2 (see Comment 3.1).
For covariance estimation, the upper bound of E‖ω̂M1(Π) − PM1(Π)ω‖2

2 de-

pends on the basis Π, more precisely, it depends on
∑M1

k=1

(∫
[0,1]2 |πk(u, v)|dudv

)2
.
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In Subsection 4.3, we prove that this term can be bounded when a wavelet-tensor
basis is used in the projection procedure. The choice of M1 is also discussed in
Subsection 4.3.

The mean function µ is hidden from the data (Yij , Tij) of model (2.1). The
best thing we can do is to replace the unknown function µ by a ”good” estimator
µ̂ and apply the projection procedure with µ̂. In the next subsection, in order to
have a ”good” estimator of µ, we introduce the cross-estimator µ̂(i),M , and study
the performance of the associated covariance estimator.

4.2. Projection estimation for the unknown-mean-function case

In Section 3, under conditions on µ and δ, we have a projection estimator
µ̂M (E)(u) for which

E‖µ̂M (E) − µ‖2
2 ≤ C

(
M

nm
+

E‖δ‖2
2

n

)
+ ‖PM (E)µ − µ‖2

2 = v2
nm(M).

Cross estimators
For each 1 ≤ i0 ≤ n, the projection estimation procedure of Section 3 can be

applied to the data (Yij , Tij)i = 1, . . . , n, i 6= i0, j = 1, . . . ,m, to get the estimator

µ̂(i0),M (u) =
M∑

k=1

α̂(i0),kek, α̂(i0),k =
1

(n − 1)m

n∑
i=1,i6=i0

m∑
j=1

Yijek(Tij).

The asymptotic behaviour of µ̂(i0),M is the same as that of µ̂:

E‖µ̂(i0),M − µ‖2
2 ≤ v2

(n−1)m(M) ³ v2
nm(M).

Return to the model (2.1) where Zij = Yij − µ(Tij) = δi(Tij) + εij with
the Zij not observable. For each i, by replacing {µ(Tij)}ij by known values
{µ̂(i),M (Tij)}ij , j = 1, . . . ,m, we have approximative values Z∗

ij of Zij ,

Z∗
ij = Yij − µ̂(i),M (Tij) ≈ Zij = δi(Tij) + εij ;

= Zij + µ(Tij) − µ̂(i),M (Tij) = Zij + ∆i(Tij),

where ∆i(u) = µ(u) − µ̂(i),M (u).
In the same way, we have the approximative values (U∗

iq, V
∗
iq), with

U∗
iq = Z∗

i,2q−1 = Zi,2q−1 + ∆i(Riq) = Uiq + ∆i(Riq), U∗
iq ≈ δi(Riq) + εiq1,

V ∗
iq = Z∗

i,2q = Zi,2q + ∆i(Si1) = Viq + ∆i(Siq), V ∗
iq ≈ δi(Siq) + εiq2,

for all q = 1, . . . , l with l = [m/2]. We remark that U∗
iq, V

∗
iq are observable and

Uiq, Viq are not.
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In this subsection, we consider (Π) as a tensor basis of L2([0, 1]2). The
projection estimator ω̂∗

M1
(Π)(u, v) is written as

ω̂∗
M1

(Π)(u, v) =
M1∑
k=1

ĉ∗kπk(u, v), πk(u, v) = πk1(u)πk2(v),

where

ĉ∗k =
1
n

n∑
i=1

1
l

l∑
q=1

U∗
iqV

∗
iqπk(Riq, Siq), l =

[m

2

]
.

Theorem 4.4. Let E = {ei}i∈N be an orthonormal basis of L2([0, 1]). Under
the conditions of Theorem 4.3, we have

E‖ω̂∗
M1

(Π) − ω̂M1(Π)‖2
2 ≤

M1∑
k=1

(W (πk2, πk1) + W (πk2, πk1)) v2
nm(M)

+
M1∑
k=1

C(
4‖π2

k‖∞
nm

+ 1)v∗n, (4.2)

where

W (f, g) =
2‖f2‖∞

nm
+ (

∫ 1

0
|f(u)|du)‖f‖∞(

∫ 1

0
|g(v)|dv)2,

v2
nm(M) = C

(
M

nm
+

E‖δ‖2
2

n

)
+ ‖PM (E)µ − µ‖2

2,

v∗n = M
M∑
t=1

(∫ 1
0 e4

t (u)du

n3
+

1
n2

)
+ ‖PM (E)µ − µ‖4

2.

Comment 4.5. Theorem 4.4 gives us an upper bound of E‖ω̂∗
M1

(Π)− ω̂M1(Π)‖2
2

dependent on the tensor basis Π (as in Theorem 4.3). Replacing the unknown
mean function µ by its cross-estimator µ̂(i),M implies that the upper bound de-
pends on the performance of µ̂(i),M and also the basis E (more precisely, it con-
tains v2

nm(M) and v∗n).
The choice of M and M1 depend on the bases E and Π. This choice is

discussed in the next subsection where we see that the complicated terms of the
upper bound lead to simple rates of convergence.

4.3. Wavelet estimation for the covariance function

In this subsection we illustrate the results of Theorem 4.3 and Theorem 4.4
with the case where the basis (Π) is a compactly supported wavelet-tensor basis
on [0, 1]2.
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To simplify the notation we suppose that the wavelet basis is described in
the following way: Π = {ψ∗

j,k, j ∈ N, k ∈ Aj} where, for each j ∈ N, Aj is a set
with cardinality of order 22j . We have∫

[0,1]2
|ψ∗

j,k(u, v)|dudv ≤ C12−j , ‖(ψ∗
j,k)

2‖∞ = C222j with C1, C2 < ∞

We recall some facts that hold under classical properties of regularity and
vanishing moments (see Meyer (1990)).

For all functions

ω =
∞∑

j=0

∑
k∈Aj

β∗
j,kψ

∗
j,k, ω ∈ L2([0, 1]2),

‖ω − PVJ1
ω‖2 = ‖ω −

∑
j≤J1

∑
k∈Aj

β∗
j,kψ

∗
j,k‖2 ≤ ‖ω‖Bγ

2,∞([0,1]2)2
−J1γ . (4.3)

Apply Theorem 4.3, with M1 ³ 22J1 ³ (nm)1/(1+γ) such that PM1(Π) = PVJ1
,

and by writing ω̂nm = ω̂M1(Π), we have:

E‖ω̂nm − PVJ1
ω‖2

2 ≤ C

22J1

nm
+

1
n

∑
j≤J1

∑
k∈Aj

2−2j

 = C(
22J1

nm
+

J1

n
). (4.4)

From (4.3) and (4.4), we have the following result.

Corollary 4.2(Known-mean-function case). Under the conditions of Theorem
4.3, and assuming classical properties of regularity and moment vanishing of
wavelet functions ψ∗

j,k, for all

ω ∈ B2(γ, L) = {ω ∈ L2([0, 1]2) | max(‖ω‖∞, ‖ω‖Bγ
2,∞([0,1]2)) ≤ L < ∞}

when mγ << n, by taking 22J1 ³ (nm)1/(γ+1) we have

E‖ω̂nm − ω‖2
2 ≤ 2(E‖ω̂nm − PVJ1

ω‖2
2 + ‖PVJ1

ω − ω‖2
2)

≤ C

(
22J1

nm
+ 2−2J1γ

)
³ (nm)−

γ
γ+1 .

Comment 4.6. By using a wavelet-tensor basis, the L2 risk of our estimator can
be bounded by C(nm)−γ/(γ+1), which depends on the number of experimental
units (n), on the number of observations per unit (m), and on the regularity
parameter of the covariance function (γ).
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In practice, when longitudinal data are studied, the number of observations
per unit (m) is usually a small integer, so mγ << n.

The covariance function ω is often assumed to be two-times differentiable
for the convergence of estimators. In our estimation procedure, the regularity
parameter γ can take any positive value and we have the convergence of ω̂nm.

We write W (πk) = W (πk1, πk2) + W (πk2, πk1), so

W (ψ∗
j,k) ≤ C(

2j

nm
+ 2−j) = C2−j(

22j

nm
+ 1).

For Theorem 4.4, we consider the wavelet basis E of L2([0, 1]) as in Corollary 3.1,
we have ∫ 1

0
e4
t (u)du =

∫ 1

0
ψ4

jk(u)du ≤ C2j , C < ∞.

With M = 2J and under classical properties of regularity and moment vanishing
of wavelet functions, we have

v2
nm(M) = C(

2J

nm
+

C1

n
) + ‖PVJ

µ − µ‖2
2 ≤ C

(
2J

nm
+

C1

n
+ 2−2Js

)

v∗n = C

(
2J

∑
j≤J

2j−1∑
k=0

[ 2j

n3
+

1
n2

])
+ ‖PVJ

µ−µ‖4
2 ≤ C

(
23J

n3
+

22J

n2
+ 2−4Js

)
.

When m is a finite integer, by taking 2J ³ n1/(2s+1), we have v2
nm(M) ≤

Cn−2s/(2s+1), v∗n ≤ Cn−4s/(2s+1). Applying Theorem 4.4, by taking 22J1 < Cn,
we have

E‖ω̂∗
M1

(Π)−ω̂M1(Π)‖2
2 ≤ C

∑
j≤J1

∑
k∈Aj

[
2−j

(
22j

nm
+1

)
n− 2s

2s+1 +
(

22j

nm
+1

)
n− 4s

2s+1

]
≤ C

(
2J1n− 2s

2s+1 + 22J1n− 4s
2s+1

)
≤ C

(
2J1n− 2s

2s+1 +
22J1

n

)
, with s ≥ 1

2
.

Corollary 4.3(Unknown-mean-function case). Let m be a finite integer. Under
the conditions of Theorem 4.4, and classical properties of regularity and moment
vanishing of wavelet functions, ∀µ ∈ B(s, L1), s ≥ 1/2,∀ω ∈ B2(γ, L2), we have

E‖ω̂∗
n − ω‖2

2 ≤ 3(E‖ω̂∗
n − ω̂M1(Π)‖2

2 + E‖ω̂M1(Π) − PVJ1
ω‖2

2 + ‖PVJ1
ω − ω‖2

2)

≤ C

(
2J1

n
2s

2s+1

+
22J1

n
+ 2−2J1γ

)
³ Cn−τ ,
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with τ = γ/(γ + 1), if s > 1/2 + γ, by taking M1 ³ 22J1 ³ n1/(γ+1); τ =
[2s/(2s + 1)][2γ/(2γ + 1)], if 1/2 ≤ s < 1/2 + γ, by taking M1 ³ 22J1 ³
n[2s/(2s+1)][2/(2γ+1)].

Comment 4.7. If µ is much smoother than ω, s > 1/2 + γ, the fact of re-
placing the unknown mean function by its wavelet estimator does not affect the
performance of the covariance estimation procedure (n−γ/(γ+1)).

When m is a finite integer, in order to estimate the mean function µ, view
the model (2.1) as a regression model. Then the assumption s ≥ 1/2 is quite
natural.

5. Proof

We are interested in the quadratic risk of linear estimators. The orthogonal
projection method controls quadratic risk with estimated coefficients. The main
idea of our proofs is that each estimated coefficient can be decomposed into
several terms that are processed differently. We present a very short version of the
proof of Theorem 3.1 to illustrate this idea. One can see that the main difficulties
usually come from the ”δ” term-the term containing the random process δ = X−
E(X). The ”functional principal components expansion” of X (or δ), presented
in Section 2.1, is useful in the analysis.

The complete proofs of our main theorems can be found in the on-line version
of this paper at: http://www.stat.sinica.edu.tw/statistica.
Mean estimation - upper bound

Write

Aki1 =
1
m

m∑
j=1

µ(Tij)ek(Tij) − αk,

Aki2 =
1
m

m∑
j=1

δi(Tij)ek(Tij) =
∑
l≥1

ξil

|
∑m

j=1 ek(Tij)ηl(Tij)|
m

,

Aki3 =
1
m

m∑
j=1

εijek(Tij).

So that E(A2
ki1) ≤ ‖µ‖2

∞/m, E(A2
ki3) ≤ σ2/m, and also

E(A2
ki2)

2
≤ E

[( ∑
l≥1

ξil

m∑
j=1

ek(Tij)ηl(Tij)−< ek, ηl >

m

)2
]

+E

[( ∑
l≥1

ξil < ηl, ek >
)2

]

http://www.stat.sinica.edu.tw/statistica
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=
∑
l≥1

λ2
l E

[
()2

]
+

∑
l≥1

λ2
l < ηl, ek >2

=
∑
l≥1

[
λ2

l

∑m
j=1 E

(
e2
k(Tij)η2

l (Tij)
)

m2
+ λ2

l < ηl, ek >2

]

=
1
m

∫ 1

0
e2
k(t)

[ ∑
l≥1

λ2
l η

2
l (t)

]
dt +

∑
l≥1

λ2
l < ηl, ek >2

≤ ‖ω‖∞
m

+
∑
l≥1

λ2
l < ηl, ek >2 .

Using Parserval’s equality, we have

E‖µ̂M (E) − PM (E)µ‖2
2

=
1
n2

n∑
i=1

E‖µ̂Mi(E) − PM (E)µ‖2
2 =

1
n2

n∑
i=1

M∑
k=1

E
(
(αki − αk)2

)
=

1
n2

n∑
i=1

M∑
k=1

E(A2
ki1) + E(A2

ki2) + E(A2
ki3)

≤ M

nm
(‖µ‖2

∞ + σ2 + 2‖ω‖∞) + 2
1
n

M∑
k=1

∑
l≥1

λ2
l < ηl, ek >2

=
M

nm
(‖µ‖2

∞ + σ2 + 2‖ω‖∞) + 2
E‖PM (E)δ‖2

2

n
.
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Härdle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A. (1998). Wavelet, Approximation

and Statistical Applications. Lecture Notes in Statistics. 129, Springer Verlag, New York.

Indritz, J. (1963). Methods in Analysis. Macmillan, New York.

Meyer, Y. (1990). Ondelettes et Opérateurs. Hermann, Paris.



684 TRUNG TU NGUYEN

Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis. Springer, NewYork.

Rice, J. and Silverman, B. W. (1991). Estimating the mean and covariance structure non para-

metrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53, 233-243.

Tsybakov, A. B. (2004). Introduction a l’Estimation Non-parametrique. Springer.

Yao, F., Müller, H. G., and Wang, J. L. (2005). Functional data analysis for sparse longitudinal

data. J. Amer. Statist. Assoc. 100, 577-590.
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