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Abstract: A Wishart model is proposed for random distance matrices in which the

components are correlated gamma random variables, all having the same degrees of

freedom. The marginal likelihood is obtained in closed form. Its use is illustrated by

multidimensional scaling, by rooted tree models for response covariances in social

survey work, and unrooted trees for ancestral relationships in genetic applications.
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1. Introduction

Distance matrices are widely used in genetic work to study the ancestral

relationships among extant species or taxa. The emphasis in early work was on

distance measures based on quantitative traits supposedly evolving by Brown-

ian diffusion with occasional speciation splits (Cavalli-Sforza and Edwards (1967)

and Felsenstein (1973)). In later work, distances were measured from aligned se-

quence data by counting the fraction of homologous sites at which each pair of

species differs. In order to use this fraction to estimate the ancestral tree, a trans-

formation is needed to correct for multiple and back-substitutions. In addition, it

is necessary, or at least helpful for efficient estimation, to know the variances and

covariances of these transformed proportions. These transformation and variance

formulae are based on models that are specific to genetic evolution. For details,

see Bulmer (1991).

Distance matrices, also called dissimilarity matrices, are widely used in ar-

chaeological work to discern relationships among artifacts. The aim is to under-

stand trading patterns, the migration of populations, and the transfer of tech-

nology among early civilizations. The methods used to measure the distance

between two artifacts based on expert assessment of stylistic elements or techno-

logical properties are necessarily subjective and ad hoc. By contrast with genetic

applications, there is little theory to use as a guide for measuring distance or

constructing statistical models. Such applications call for generic models and

methods of estimation. For a range of examples and areas of application, see the

1970 volume edited by Hodson, Kendall and Tǎutu (1970).
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In both areas of application, relationships are expressed mathematically as

an unrooted tree with leaves labelled by artifacts or taxa. The aim is to estimate

this tree, including edge lengths. For example, Bulmer’s genetic substitution

model gives rise naturally to a criterion for estimation, which is weighted least

squares since the model is specified only by means and covariances. Felsenstein’s

Brownian diffusion model is more detailed because it determines the joint dis-

tribution of the distances, not just their means and covariances. The diffusion

model gives rise to two criteria, weighted least squares and maximum likelihood,

which are not equivalent when applied to distance matrices. Thus all three cri-

teria derived from two models are different.

The variances and covariances implied by the diffusion model are exactly

quadratic in tree distances, whereas those derived from sequence substitution

data are approximately linear (Gascuel (1997)). Exact linearity of covariances is

seldom a reasonable assumption because it implies that the the observed distance

matrix D is a tree (Sections 4 and 7). Thus the slightest departure of D from

tree form contradicts exact linearity. For non-genetic applications, the generic

Brownian diffusion model seems best because it is not degenerate in this sense.

It is also scale equivariant.

In addition to specific models and areas of application, there is a parallel lit-

erature that emphasizes computational algorithms, neighbor joining (NJ) being

the best known algorithm for the estimation of an unrooted tree from a dis-

tance matrix (Saitou and Nei (1987)). Generally speaking, a criterion such as

maximum likelihood or weighted least squares has several local optima, each tree

achieving roughly the same value of the criterion. By contrast, an algorithm such

as NJ identifies a single tree, which may not be a stationary point of any statisti-

cally natural criterion. The relation between algorithms, criteria and statistical

models is further complicated by the fact that many authors seem unaware of

the distinctions. For a discussion of the relation between neighbor-joining and

least squares, see Gascuel and Steel (2006).

The first goal of this paper is to obtain the likelihood function in closed form

for Wishart distance matrices, in essence Felsenstein’s Brownian diffusion model

not restricted to trees. The second is to illustrate the application of rooted trees

as a model for response covariances in social survey applications.

2. Wishart Distance Matrices

Let S ∼ Wd(Σ) be a random symmetric matrix of order n having the Wishart

distribution on d degrees of freedom with parameter Σ = E(S) of rank n. If S is

observed, the log likelihood function is

l(Σ;S) = −1
2d tr(Σ−1S) − 1

2d log det(Σ)
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for Σ in the space of positive definite symmetric matrices. This is an exponential-

family model with canonical parameter W = Σ−1, dispersion parameter 2d−1,

cumulant function − log det(Σ), and deviance function

− log det(Σ−1S) − n + tr(Σ−1S).

If S has full rank, the deviance is minimized at the observation Σ = S. The

parameterization used here matches the gamma parameterization for generalized

linear models with quadratic covariance function

cov(Sij, Skl) =
(ΣikΣjl + ΣilΣjk)

d
.

Thus, Wishart-based generalized linear models can be constructed, and certain

models used in the analysis of spatial data are linear on the mean-value scale.

However, most of the models considered in this paper are not linear on any

transformed scale.

In a number of applications the matrix S is not fully observed. Instead, only

the distance matrix with components

Dij = Sii + Sjj − 2Sij (2.1)

is available. Note that if Sij = 〈yi, yj〉 is the inner product of two vectors in Rd,

Dij = 〈yi − yj, yi − yj〉 is the squared distance between the points. Consequently

Dii = 0, and the square roots satisfy the triangle inequality. We denote by

S ∈ PDn the set of positive definite symmetric matrices, and by Dn the image

of PDn under the linear transformation (2.1). Apart from the diagonal elements

being zero, the characteristic property of a distance matrix D ∈ Dn is that D

is negative definite on contrasts. A contrast is a linear combination α whose

coefficients add to zero, and negative definiteness means

α′Dα = −2α′Sα ≤ 0

since S is positive definite. Some, but not all, elements of D satisfy the trian-

gle inequality. In some contexts, such as multi-dimensional scaling, the terms

similarity matrix and dissimilarity matrix are used (Hodson, Sneath and Doran

(1966), Sattath and Tversky (1977) and Semple and Steel (2003, 2004))

The expected value of D is a matrix with components

∆ij = E(Dij) = Σii + Σjj − 2Σij .

The covariances are

d cov(Dij ,Dkl) = 2|Σik + Σjl − Σil − Σjk|
2

=
1

2
|∆ik + ∆jl − ∆il − ∆jk|

2. (2.2)
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The latter expression has a natural geometric interpretation in the context of

unrooted tree models (Section 4). Thus, even if the distinct components of S are

uncorrelated, strong correlations are present among the components of D.

It turns out that the marginal Wishart model is also of the natural exponent-

ial-family type, although this is not entirely obvious. Because of the relation

between quasi-likelihood and exponential family models (McCullagh and Nelder

(1989)), the quasi-likelihood estimating function derived from (2.2) coincides

with the log likelihood derivative as determined by the Wishart model. Thus

maximum quasi-likelihood coincides with maximum likelihood provided that the

maximum is unique. Unfortunately, most of the examples discussed here exhibit

multiple local maxima. The likelihood function is needed to discriminate among

competing local maxima, so quasi-likelihood alone is not satisfactory.

The likelihood function based on a statistic T (Y ) is usually obtained di-

rectly from the marginal density function f(t; θ) of T by computing density ra-

tios f(t; θ)/f(t; θ′). In the present context, the density of S is available, and it

is straightforward in principle to compute the joint moments or cumulants of D.

No convenient expression is available for the density, so the likelihood function

is not easily obtained in this way. The solution is to calculate the likelihood

function indirectly without deriving the density function.

3. Gaussian Models

3.1. General

It is convenient here to introduce the distributional symbol Y ∼ N(K, µ,Σ)

for a generalized Gaussian random vector in Rn. The subspace K ⊂ Rn is

called the kernel. The meaning is that for any linear transformation such that

LK = 0, the linearly transformed vector LY is Gaussian LY ∼ N(Lµ,LΣL′)

in the conventional sense. This implies that the matrix LΣL′ is positive semi-

definite. Here we assume strict positive definiteness in the sense that α′Σα > 0

for non-zero α ∈ K0, the space of linear functionals or contrasts that take the

value zero on K.

Two parameter values (µ1,Σ1) and (µ2,Σ2) are equivalent if L(µ1 −µ2) = 0

and L(Σ1 − Σ2)L
′ = 0. In other words, µ1 − µ2 ∈ K and Σ1 − Σ2 ∈ sym2(K ⊗

Rn), the space of matrices spanned by xv′ + vx′ with x ∈ K and v ∈ Rn.

Equivalent parameter values determine the same distribution. If an identifiable

parameterization is required, we can take µ to be a point (coset) in Rn/K, and

similarly for Σ. Identifiable parameterizations are not especially helpful and we

make little use of them.

Certain spatial covariance functions such as −|x − x′|ν for 0 < ν < 2 are

not positive definite in the ordinary sense, but are nonetheless positive definite
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on the space of simple contrasts (Stein (1999, Sec. 2.9)). The associated Gaus-

sian process is also defined on contrasts by setting K = 1, the space of constant

functions. If observations are made at n points x1, . . . , xn in the plane, with

Yi observed at xi, the distribution may be written in the form Y ∼ N(1, 0,Σ)

with Σij = −|xi − xj |
ν . The mean can be replaced by any vector µ ∈ 1 without

affecting the distribution. With additive treatment effects superimposed in the

usual way, the distribution becomes Y ∼ N(1,Xβ,Σ), where X is the model

matrix. Once again, all points in the coset Xβ + 1 determine the same distri-

bution, which means that the intercept is not identifiable. In practice, we would

usually include a white-noise component with Σij = σ2
0δij − σ2

1 |x − x′|ν , so that

there are two variance components to be estimated. For specific examples, see

McCullagh and Clifford (2005).

In general, the matrix Σ in N(K, µ,Σ) is not positive definite. However,

if x ∈ K and v ∈ Rn we may add to Σ any matrix of the form xv′ + vx′

without affecting the value of LΣL′, and thus without affecting the distribution

of contrasts. All such versions are equivalent. If the columns of the matrix K are

vectors in K, we may add to Σ a suitably large multiple of KK ′ so that Σ+KK ′

is positive definite. There is no loss of generality in assuming Σ to be positive

definite, so we write W = Σ−1 for the inverse.

The log likelihood for (β,Σ) can be obtained by choosing a full-rank linear

transformation LY such that ker(L) = K, and using the conventional expression

for the density. The quadratic form in the exponent is

(y − Xβ)′L′(LΣL′)−1L(y − Xβ).

The matrix Q = ΣL′(LΣL′)−1L is a projection with kernel K, and self-adjoint

with respect to the inner product 〈u, v〉 = u′Wv, i.e. 〈u, Qv〉 = 〈Qu, v〉. It

follows that Q is the unique orthogonal projection with kernel K. Specifically, if

the columns of K form a basis for K, Q = I−K(K ′WK)−1K ′W , and the matrix

of the quadratic form is WQ. The determinantal factor in the likelihood is the

square root of

|LΣL′|−1 = |(LΣL′)−1| =
Det(L′(LΣL′)−1L)

|LL′|
=

Det(WQ)

|LL′|
,

where Det() is the product of the non-zero eigenvalues. Thus, the log likelihood

function for the parameter θ = (β,Σ) in the model Y ∼ N(K,Xβ,Σ) is

l(θ; y,K) = 1
2 log Det(WQ) − 1

2(y − Xβ)′WQ(y − Xβ). (3.1)

This function is constant on equivalence classes in the parameter space, which

means that equivalent versions of (β,Σ) give the same likelihood.
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The particular case of most interest here is the one in which the kernel is

K = X = span(X). Then β is eliminated from the likelihood and (3.1) reduces

to the residual likelihood

l(θ; y,K) = 1
2 log Det(WQ) − 1

2y′WQy = 1
2 log Det(WQ) − 1

2 tr(WQS)

(Patterson and Thompson (1971), Harville (1974, 1977) and Stein (1999, Sec.6.4)).

At this point it is convenient to introduce the symbol S ∼ W1(K,Σ) for the gener-

alized Wishart distribution of the random matrix S = Y Y ′ when Y ∼ N(K, 0,Σ).

From the preceding calculations we observe that S is sufficient, and the log like-

lihood function is l(θ;S,K) = log Det(WQ)/2 − tr(WQS)/2.

The relevance of this calculation to distance matrices is as follows. The

mapping (2.1) is a linear transformation on symmetric matrices. It has a kernel

equal to the space sym+ of additive symmetric matrices, i.e. matrices of the form

Aij = vi + vj with v ∈ Rn, which is the same as sym2(1 ⊗ Rn). Thus, if S has

the ordinary Wishart distribution W1(Σ) with rank one, the distance matrix D

is distributed as

−D ∼ W1(1, 2Σ) = W1(1,−∆),

which we denote by D ∼ W−

1 (1,∆) with kernel 1 ⊂ Rn. Consequently the log

likelihood function based on D is

l(∆;D) = 1
2 log Det(WQ) + 1

4 tr(WQD), (3.2)

with K = 1 and Q = I − K(K ′WK)−1K ′W . The log likelihood is expressed as

a function of W = Σ−1, but it is constant on equivalence classes, so it depends

only on ∆.

Tunnicliffe-Wilson (1989) and Cruddas, Reid and Cox (1989) have taken the

REML argument a step farther by ignoring scalar multiples of Y in addition to

translation by K. The marginal log likelihood based on the standardized residual

QY/‖QY ‖ is

ľ(Σ; y,K) = −n−p
2 log(y′Σ−1Qy) − 1

2 log |Σ| − 1
2 log |K ′Σ−1K| + 1

2 log |K ′K ′|

= −n−p
2 log tr(WQS) + 1

2 log Det(WQ), (3.3)

which is constant on scalar multiples of Σ. Thus, if only relative distances are

available, the log likelihood is

n−p
4 log tr(WQD) + 1

2 log Det(WQ),

where p = dim(K) and n − p = rank(Q). Note that S necessarily has rank one,

so tr(WQS) = Det(WQS).
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3.2. Gaussian matrix model

In order to deal with distance matrices of rank d > 1 we proceed as follows.

Let Y be a Gaussian random matrix of order n × d with moments

E(Y ) = Xβ, cov(Yir, Yjs) = ΣijΓrs.

The columns of the model matrix X span a subspace X ⊂ Rn of dimension p, and

β is a matrix of order p × d. The conventional way of writing this model is Y ∼

N(Xβ,Σ ⊗ Γ), with unknown parameters β,Σ,Γ to be estimated. For present

purposes it is replaced by the generalized Gaussian distribution N(X⊕d, 0,Σ ⊗

Γ) with kernel K = X⊕d of dimension pd in Rnd. If LX = 0, then LY ∼

N(0, (LΣL′)⊗Γ) in the conventional sense. The argument used in the preceding

section gives the log likelihood for (Σ,Γ) in the form

l(Σ,Γ; y,X ) = 1
2 log Det(WQ ⊗ Γ−1) − 1

2 tr(y′WQyΓ−1)

= 1
2 rank(Γ) log Det(WQ) − n−p

2 log Det(Γ) − 1
2 tr(y′WQyΓ−1),

where Q = I − X(X ′WX)−1X ′W is of order n and rank n − p.

If Γrs = δrs is known, then each column of Y is an independent replicate,

and the log likelihood reduces to

d
2 log Det(WQ) − d

2 tr(WQS) = d
2 log Det(WQ) + d

4 tr(WQD), (3.4)

where S = Y Y ′/d. For X = 1, this is the log likelihood for the Wishart model

D ∼ W−

d (1,∆) on which all calculations in Section 5 are based. The degrees of

freedom enters only as a multiplicative factor, so it is irrelevant for most purposes

whether d is known or not. If Γ = γδrs, the maximum-likelihood estimator of γ

for fixed Σ is tr(WQS)/(n − p), and the profile log likelihood is

d
2 log Det(WQ) − d(n−p)

2 log tr(WQS).

This function is constant on scalar multiples of Σ, a generalization of (3.3) to

matrices S of rank d ≥ 1.

4. Trees Rooted and Unrooted

A non-negative symmetric matrix Σ of order n is called a rooted [n]-tree if

Σij ≥ min(Σik,Σjk) (4.1)

for all i, j, k in [n] = {1, . . . , n}. The tree inequality (4.1) is the condition that per-

mits a non-negative symmetric matrix to be represented graphically as a rooted
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tree. The value Σij is the distance from the root to the junction at which the

leaves i, j occur on separate branches. For a diagram and further explanation,

see Felsenstein (2004, p.395). No distinction is drawn here between the matrix

representation (Table 1b) and the graphical representation (Figure 1) of the same

tree.

As a graph, each edge in the tree is labelled naturally by the set of leaves

that occur as terminal nodes on that branch. Thus, the root edge is labelled

[n] = {1, . . . , n}, each leaf edge is a singleton {i}, and each leaf node is an

element. Every tree has a unique canonical decomposition

Σ =
∑

r

λrbrb
′

r = BΛB′

in which br is the indicator vector for edge r, Λ is diagonal and λr > 0 is the

edge length. The associated Boolean tree (or topological type) BB′ is obtained

by replacing each edge length by one. In a binary or bifurcating tree, each non-

leaf edge splits into exactly two branches, so the number of edges is 2n − 1. A

non-binary tree has fewer edges.

The canonical decomposition has a natural variance-components interpreta-

tion in which the response Yi is measured at leaf i. Given the Boolean tree BB′,

we associate with each edge r an independent random variable ηr with variance

λr. Then the sum Y = Bη has covariance matrix Σ. In other words, var(Yi)

is the sum of the variances of the ηs on all edges from the root to the leaf, and

cov(Yi, Yj) is the sum of the variances on all branches that include both leaves.

To each rooted [n]-tree Σ there corresponds an unrooted [n]-tree defined by

∆ij = Σii + Σjj − 2Σij

which is the distance between the two leaf nodes. More directly, a non-negative

symmetric matrix ∆ is an unrooted tree if ∆ii = 0 and

∆ij + ∆kl ≤ max{∆ik + ∆jl, ∆il + ∆jk} (4.2)

for all i, j, k, l not necessarily distinct. This is called Buneman’s four-point metric

condition after Buneman (1971). For further details, see Semple and Steel (2003,

Chap. 7). The set of rooted trees is a subset of PDn, and the unrooted trees are

a subset of Dn.

Each edge r of an unrooted tree splits the leaves into two non-empty blocks,

those on the left and those on the right. Denote the split by br in matrix form,

i.e. br(i, j) = 1 if leaves i, j occur in the same block, or the same side of edge r.

Every unrooted tree has a canonical decomposition of the form

∆ij =
∑

r

λr b̄r(i, j),
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where λr > 0 is the edge length, and b̄r is the Boolean complement of br. Thus

b̄r(i, j) = 1 if the path from i to j includes edge r. The associated Boolean tree
∑

b̄r has edges of unit length. The number of edges is at most 2n − 3.

To each pair of terminal nodes (i, j) there corresponds a directed path of

length ∆ij from i to j. To each pair of paths (i, j) and (k, l) there corresponds

an intersection whose signed length is

∆ij,kl = 1
2(∆il − ∆lj + ∆jk − ∆ki).

The sign is positive if the intersection is traversed in the same direction on each

path, otherwise negative or zero. If {ηr} are independent non-negative random

variables with mean and variance λr, the sum D̃ij =
∑

ηr b̄r(i, j) is a random

matrix whose mean is ∆. Furthermore, D̃ is an unrooted tree, and if the ηs

are strictly positive D̃ has the same topology as ∆. The covariance matrix

of order n2 × n2 is cov(D̃ij , D̃kl) = |∆ij,kl|. It follows that the n2 × n2 path

intersection matrix |∆ij,kl| has rank equal to the number of edges in ∆, i.e. at

most 2n − 3. By contrast, the upper trianglular components in the Wishart

matrix D ∼ W−

d (1,∆) are linearly independent even for d = 1. Thus the matrix

of squared path intersection lengths ∆2
ij,kl in (2.2) has rank n(n − 1)/2.

If Σ is constant on the diagonal all leaves are equi-distant from the root,

and the tree is called spherical. The associated unrooted tree contains a central

point such that all leaves are equi-distant from the centre. Spherical trees arise

in genetic models under the assumption that mutations occur at the same rate

on all lineages, so spherical trees are called ‘clock-like’. Spherical unrooted trees

satisfy the ultrametric inequality ∆ij ≤ max(∆ik,∆jk). The coalescent model

(Kingman (1982a,b)) is a probability distribution on unrooted spherical trees.

5. Single-Matrix Applications

5.1. Multi-dimensional scaling

Gower (1966) considered the problem of recovering the Euclidean configura-

tion of a set of n points from the matrix D of observed squared distances. We

can express this as a formal model D ∼ W−(1,∆) with

∆ = ∆0 − M − σ2
0In,

where ∆0 ∈ sym+ belongs to the kernel, M is positive definite of rank 2, and σ2
0In

represents departures from the target two-dimensional configuration. Gower as-

sumed that the eigenvalues beyond the first two were small, but he did not assume

that they were equal, nor did he use a formal model for the joint distribution
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of the distances. His solution was to transform the squared distances to inner

product form

Sij = −
Dij − D̄i. − D̄.j + D̄

2
,

preserving distances but eliminating ∆0. In matrix form S = −QDQ/2 where

Qij = δij − 1/n is the exchangeable projection with kernel 1. In distributional

form, S ∼ W(1,Σ) with Σ = M ′ + σ2
0Q/2 where M ′ is symmetric with rank 2.

The matrix M ′ was estimated by choosing the best rank 2 least-squares approx-

imation to S. The fitted two-dimensional configuration is the set of n points

(ξ1i, ξ2i) where the eigenvectors are scaled so that ‖ξr‖
2 = λr. The configuration

is unique up to planar rotations and reflections. This least-squares projection

coincides with the maximum-likelihood solution in the Wishart model.

5.2. Rooted trees for correlated responses

Although the models of this paper are designed for covariance matrices and

distance matrices, the following example taken from Ehrenberg (1981) shows that

the techniques may be used to good effect on correlation matrices. In the course

of a questionnaire for U.K. television viewers, adults were asked whether the

‘really liked to watch’ each of ten programmes, four broadcast by ITV and six

by the BBC. Table 1a shows the sample correlation matrix of the ten responses,

reordered so that the first five are sports programmes, and the last five are news

and current affairs.

A function for fitting rooted and unrooted trees was written in R. It takes the

canonical decomposition generated by an initial tree and uses Newton-Raphson to

compute the coefficients by maximum likelihood in the Wishart model Wd(K,Σ).

If at any iteration some of these coefficients are zero, the procedure moves to an

equivalent binary tree of an adjacent, randomly chosen, topological type until

a local maximum is found. In general, the likelihood function has several lo-

cal maxima, but the number of local maxima is much less than the number of

topological types. All 19 fitted coefficients are positive, so the fitted matrix is

at least a local maximum of the likelihood function. The analysis was actually

performed on the correlation matrix in Table 3 of Ehrenberg (1981), with ITV

programmes followed by BBC programmes in alphabetical order. The output is

shown in Table 1b. The programmes have been permuted for visual effect, so

that the structure can more easily be seen from the fitted matrix. The main

partition is a contrast of the first five programmes with the remainder, which

happens to be the contrast between sports programmes and current affairs. The

same contrast and the resulting simplification were also noted by Ehrenberg, who

used this permuted matrix to argue that tables are superior to graphs for convey-

ing quantitative information. Within sports programmes, the main contrast is
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Table 1a. Viewer preference correlation matrix for 10 programmes

WoS 1.000 0.581 0.622 0.505 0.296 0.140 0.187 0.145 0.093 0.078
MoD 0.581 1.000 0.593 0.473 0.326 0.121 0.131 0.082 0.039 0.049

GrS 0.622 0.593 1.000 0.474 0.341 0.142 0.181 0.132 0.070 0.085

PrB 0.505 0.473 0.474 1.000 0.309 0.124 0.168 0.106 0.065 0.092

RgS 0.296 0.327 0.341 0.309 1.000 0.121 0.147 0.064 0.051 0.097
24H 0.140 0.122 0.142 0.124 0.121 1.000 0.524 0.395 0.243 0.266

Pan 0.187 0.131 0.181 0.168 0.147 0.524 1.000 0.352 0.200 0.197

ThW 0.145 0.082 0.132 0.106 0.064 0.395 0.352 1.000 0.270 0.188

ToD 0.093 0.039 0.070 0.065 0.051 0.243 0.200 0.270 1.000 0.155

LnU 0.078 0.049 0.085 0.092 0.097 0.266 0.197 0.188 0.155 1.000

Table 1b. Fitted tree for viewer preference correlation matrix

WoS 0.99 0.59 0.61 0.48 0.32 0.10 0.10 0.10 0.10 0.10
MoD 0.59 1.01 0.59 0.48 0.32 0.10 0.10 0.10 0.10 0.10

GrS 0.61 0.59 0.99 0.48 0.32 0.10 0.10 0.10 0.10 0.10

PrB 0.48 0.48 0.48 1.00 0.32 0.10 0.10 0.10 0.10 0.10

RgS 0.32 0.32 0.32 0.32 1.00 0.10 0.10 0.10 0.10 0.10
24H 0.10 0.10 0.10 0.10 0.10 0.96 0.51 0.36 0.25 0.20

Pan 0.10 0.10 0.10 0.10 0.10 0.51 1.01 0.36 0.25 0.20

ThW 0.10 0.10 0.10 0.10 0.10 0.36 0.36 0.99 0.25 0.20

ToD 0.10 0.10 0.10 0.10 0.10 0.25 0.25 0.25 1.03 0.20

LnU 0.10 0.10 0.10 0.10 0.10 0.20 0.20 0.20 0.20 1.01

between Rugby Special and the others, which are soccer and professional boxing.

The fitted correlation matrix is also illustrated by a conventional tree diagram

in Figure 1.

One objection to the preceding analysis is that the model is geared for co-

variance matrices rather than correlation matrices. Although the fitted matrix

is positive definite, it is not a correlation matrix because the diagonal entries are

not exactly one. This objection can be partially answered by using the reduced

model consisting of spherical trees, constant on the diagonal. The fitted matrix

is then a multiple of a correlation matrix. In this instance, the multiple is 0.9990

and the fitted matrix differs only slightly from Table 1b. The deviance for the

reduced model is 0.053.

It may appear that the matrix of fitted covariances is not a good approxima-

tion to the observed covariances. However, the deviance is only 0.051, distributed

approximately as d−1χ2
36 where d is the sample size or degrees of freedom, which

is not reported. To see whether this value is large, a small-scale simulation was

run with Gaussian data generated from the distribution with covariance matrix
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Figure 1. Rooted tree illustrating an approximate correlation matrix. For

each pair of variables, the correlation in percent is the distance from the root

to the junction at which the pair split.

in Table 1b. For each simulation, the fitted tree was obtained, and the deviance

computed. For d = 100, the null distribution of deviances is roughly 1.06χ2
36,

only slightly larger than the nominal χ2 on (n− 1)(n − 2)/2 degrees of freedom.

The nominal approximation is even better for d = 1, 000. Thus, if the sample

size is 1,500 or less, the discrepancy between the observed covariance matrix and

the fitted tree is compatible with the tree model.

This tree model is a standard tool in genetics where the supporting argument

is based on evolutionary processes. It is remarkable that it works so well in this

application where no comparable supporting argument is available.

5.3. Unrooted trees for genetic distances

Table 2a shows the genetic distances between seven species, dog, bear, rac-

coon, weasel, seal, sea lion, cat and monkey, as given by Sarich (1969) and

reported by Felsenstein (2004) to illustrate tree clustering algorithms. For dis-

tance matrices of this sort, the normal practice in the genetics literature is to

fit an unrooted tree by least squares as if the distinct components of D were

independent. Weights are sometimes used, and if these are based on the current

estimate of ∆, the procedure is equivalent to quasi-likelihood. In the Wishart

model D ∼ W−

d (1,∆), each component has a gamma distribution with variance

proportional to the square of its expected value. Furthermore, the covariance of
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Table 2a. Immunological distances for eight species

Dog Bear Raccn Weasel Seal S-lion Cat Monkey

Dog 0 32 48 51 50 48 98 148
Bear 32 0 26 34 29 33 84 136
Raccoon 48 26 0 42 44 44 92 152
Weasel 51 34 42 0 44 38 86 142
Seal 50 29 44 44 0 24 89 142
Sea lion 48 33 44 38 24 0 90 142
Cat 98 84 92 86 89 90 0 148
Monkey 148 136 152 142 142 142 148 0

Table 2b. Unrooted fitted tree for eight species

Dog Bear Raccn Weasel Seal S-lion Cat Monkey

Dog 0.00 32.00 45.57 51.95 50.28 50.14 100.83 154.85
Bear 32.00 0.00 26.62 33.00 31.33 31.19 81.88 135.90
Raccoon 45.57 26.62 0.00 44.41 42.73 42.59 93.29 147.31
Weasel 51.95 33.00 44.41 0.00 40.83 40.69 86.63 140.65
Seal 50.28 31.33 42.73 40.83 0.00 24.00 89.71 143.73
Sea lion 50.14 31.19 42.59 40.69 24.00 0.00 89.57 143.59
Cat 100.83 81.88 93.29 86.63 89.71 89.57 0.00 148.00
Monkey 154.85 135.90 147.31 140.65 143.73 143.59 148.00 0.00

Table 2c. Spherical unrooted tree for eight species

Dog Bear Raccn Weasel Seal S-lion Cat Monkey

Dog 0.00 45.21 45.21 45.21 45.21 45.21 90.26 145.50
Bear 45.21 0.00 27.40 39.12 38.35 38.35 90.26 145.50
Raccoon 45.21 27.40 0.00 39.12 38.35 38.35 90.26 145.50
Weasel 45.21 39.12 39.12 0.00 39.12 39.12 90.26 145.50
Seal 45.21 38.35 38.35 39.12 0.00 23.58 90.26 145.50
Sea lion 45.21 38.35 38.35 39.12 23.58 0.00 90.26 145.50
Cat 90.26 90.26 90.26 90.26 90.26 90.26 0.00 145.50
Monkey 145.50 145.50 145.50 145.50 145.50 145.50 145.50 0.00

two components is proportional to the square of their path intersection length.

This is in close accord with evolutionary notions, such as Brownian diffusion for

quantitative traits, provided that squared differences are used.

Table 2b gives the unrooted tree, and Table 2c gives the unrooted spherical

tree, both fitted by maximum likelihood using software described in the preceding

section. The graphical representations in Figure 2a,b shows the edge lengths but

emphasizes the topology. Figure 11.8 of Felsenstein (2004), obtained by the NJ

algorithm, is similar to Figure 2a, but the topologies are different. The spherical

tree in Figure 2b is different from the UPGMA tree in Figure 11.6 of Felsenstein

(2004), but the topologies are the same.
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Figure 2a. The tree in Table 2b with deviance 0.0584. There is no

root or central point, but the monkey branch has been arbitrarily split

into two vertical parts for aesthetic reasons.

Figure 2b. Spherical tree in Table 2c with deviance 0.2090. Each

sub-tree has a central point at the mid-point of the longest path.

The residual deviances for the two trees are 0.0584 and 0.2090, respectively.

Neither the set of trees nor the subset of spherical trees is a manifold. However,

if the tree is binary with all edge lengths positive, each sufficiently small neigh-

bourhood is a manifold of dimension f = 2n− 3, or f = n− 1 for spherical trees.
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Standard asymptotic theory for large d or small dispersion implies that residual

deviances are distributed as χ2/d on n(n − 1)/2 − f degrees of freedom. The

hypothesis that the tree is spherical may be tested by comparing the reduction

in deviance with the residual deviance by the ratio

F =
(0.2090 − 0.0584)/6

0.0584/15
= 6.44.

The standard F6,15 approximation indicates that the spherical model is not con-

sistent with the data. Although the limit distribution is correct for fixed n as

d → ∞, the approximation is suspect because some of the fitted edge lengths are

small and the two fitted trees do not have the same topology. Nevertheless, the

F approximation is in reasonably good agreement with simulation.

Both likelihood functions have further local maxima that are only slightly

less than the values reported. For example, the log likelihood for spherical trees

has a local maximum with deviance 0.2531 at a tree of the topological type shown

in Figure 2a. The log likelihood for general trees has local maxima on trees of

several different shapes. The NJ-tree shown in Figure 11.8 of Felsenstein (2004)

has a deviance of 0.0607, and the likelihood has a local maximum with deviance

0.0587 on trees of the same shape. However, the likelihood does not appear to

have a local maximum on non-spherical trees of the shape illustrated in Figure 2b.

6. Generalized Linear Models

6.1. Link functions and power transformation

Although linear models are not especially useful for distance matrices, it is

possible to introduce a link function acting component-wise in such a way that

D ∼ W−(1,∆) is the sampling distribution, ∆ = E(D) is the mean-value pa-

rameter and g(∆) is a tree. Such transformations are potentially useful if the

distance measure is non-linearly related to the genetic distance. Power transfor-

mations are the most natural in this context. When the power model is used for

Sarich’s data in Section 5.3, the residual deviance is reduced by about 8%, from

0.0584 at λ = 1 to 0.0539 at λ = 1.4. This is certainly not a significant decrease,

so there is no evidence that the model is improved by transformation.

An alternative approach following the lines of Box and Cox (1964) is to ap-

ply the power transformation directly to the matrix D, so the model is Dλ ∼

W−(1,∆), where ∆ = E(Dλ) is a tree. If the density h(D;∆) of the distribu-

tion W−(1,∆) were available, the likelihood function h(Dλ;∆)
∏

i<j(λDλ−1
ij ) for

(λ,∆) could be used for inference. Unfortunately, this density is not available,

and the calculations in Section 3 are not sufficient to determine the likelihood

function for this transformation model.
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6.2. Comparison of Wishart distance matrices

Suppose that D1 ∼ W−

d (1,∆1) and D2 ∼ W−

d (1,∆2) are two independent

distance matrices indexed by the same set of objects. For example these might

be genetic distance matrices for the same set of species, but determined by two

different methods or distinct traits. Alternatively, for a given set of landmarks,

D1 and D2 might be distances measured on two images of the same or similar

object. It is natural to ask whether the distance matrices are homogeneous, or

similar, and if so to combine them. More generally, there might be k matrices

on d1, . . . , dk degrees of freedom, all supposedly independent and measuring the

same configuration.

This structure suggests a number of simple models of the generalized linear

type for k matrices as follows:

∆i =















∆ (homogeneous configurations)

∆ exp(βi) (similar configurations)

∆i (general),

(6.1)

where ∆ ∈ D, and β1, . . . , βk are scalars. The intermediate model implies that

the matrices ∆1, . . . ,∆k are proportional to ∆. In genetic applications, it is

natural to replace ∆ by ∆γ , for some positive scalar γ, and impose the condition

that ∆ be an unrooted tree.

The log likelihood function is

1
2

∑

i

di log Det(WiQi) + 1
4

∑

i

di tr(WiQiDi),

where W−1
i = const−∆i/2, and Qi is the associated orthogonal projection with

kernel 1. The likelihood ratio statistic may be used for model comparisons in the

usual way provided that the degrees of freedom are either known or equal.

7. Discussion

The likelihood function (3.4) is most easily computed using standard matrix

operations including eigenvalue decompositions. The derivative vector and the

Fisher information matrix, both of which are needed for the Newton-Raphson

algorithm, are also easily evaluated using standard matrix operations. For the

important special case in which X = 1 and Σ is a tree, Felsenstein’s (1973) prun-

ing algorithm may be used to compute the likelihood. This sequential algorithm

exploits the tree structure to generate implicitly the spectral decomposition of

the matrix WQ.
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The distinction between rooted and unrooted trees is not always obvious.

The social-science example in Section 5.2 uses rooted trees as a model for struc-

tured covariance matrices. Most of the discussion in the genetics literature con-

cerns rooted trees, and most diagrams show a root, but virtually all of the fitted

models are unrooted (Felsenstein (2004, p.256)). For example, the Brownian dif-

fusion model for the value of a phenotype at the terminal leaves is formulated

initially as the standard Gaussian model Y ∼ N(1µ,Σ), with scalar µ, and Σ in

the space of rooted trees. This model is identifiable but the parameters are not

estimable, in part because the space of rooted trees includes the space 1⊗1. By

reduction to contrasts, Felsenstein (1973) replaces this model with the general-

ized Gaussian model N(1, 0,Σ) with kernel 1, and notes that only the unrooted

tree is identifiable from observations at the leaves. Although Felsenstein obtains

an algorithm for computing the likelihood, the induced Wishart model W−

d (1,∆)

is not commonly used for the estimation of phylogenetic trees from distance ma-

trices. The reasons for this are not entirely clear, but computational efficiency

may be a consideration.

In the estimation of genetic phylogenies, it is necessary to distinguish between

distances computed by counting substitutions in homologous sequence data, and

squared distances computed using Euclidean distances for quantitative traits.

Poisson-type models are appropriate for the former, Wishart-type models for the

latter. Were it not for complications associated with insertions and deletions,

and multiple substitutions at the same locus, the distance matrix D computed

from sequence data would itself be a tree. This degeneracy is implied not only by

the Poisson model cov(Dij ,Dkl) = |∆ij,kl|, but by any model for covariances that

is an additive function of edge lengths. An additive covariance matrix implies

that the matrix cov(Dij ,Dkl) has rank equal to the number of edges in ∆. Since

the distance matrix measured from sequence data is not ordinarily a tree, exact

additivity of covariances is ruled out and the unmodified Poisson model must be

rejected. Thus, an adequate model for the additional effects of insertions and

deletions, multiple substitutions, transitions, transversions and non-synonymous

substitutions is essential in order to model departures of D from ∆ (Bulmer

(1991)). This argument does not rule out approximate linearity (Gascuel (1997))

provided that the approximation is used judiciously.

The Wishart model is not degenerate in the same way that the unmodified

Poisson model is degenerate: no linear combination of the components has zero

variance. In addition, if each leaf edge in ∆ is positive and d ≥ n, the Wishart

model has positive density at all points in the space of distance matrices. It

does not assign zero probability to any event that is likely to occur. Although
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the Wishart model is not designed with sequence data in mind, it generates a

consistent estimate of the tree, though not with maximum efficiency.
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