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Appendix A: Proof of Theorem 3.2.1

Lemma A.1. Suppose that conditions (Al) and (A2) in Assumption 3.2.1 are satisfied.
Then, for « fixed and j > i, there exists ¢ = ¢, = ¢,(1,7; @) = o(1) that asymptotically

achieves the level «.

Lemma A.2. Suppose that the assumptions in Lemma A.1 are satisfied and ¢,, = o(1).

Then, for i < k*, P(A; k.a|k = k*) converges to zero as n — oo.

Lemma A.3. Suppose that the assumptions in Lemma A.1 are satisfied, ¢, = o(1), and

TnzCn — 00 asn — 00. Then, for j > k%, P(Rp ja|k = k*) converges to zero as n — oo.

Proof of Theorem 3.2.1. First, note from (3.1) that
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where g1 (k*, M) is a positive function of k* and M. Lemma A.2 then provides the result
that the under-fitting probability converges to zero n — co. Since P(k > k*|k = k*) < «ap
by the design of the permutation procedure, in general, we obtain that lim, .., P(k =
K| k=k*)>1— .

If ¢ = ¢, = o(1) is chosen such that Tz Cn — 00, then we achieve the desired result

by Lemma A.3.

Proof of Lemma A.1. Since, for j > i(= x), 0 < 67 — 67 = Oy((Inn)?*/n)) and &3
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converges to o2 in probability from Lemma 5.4 of Liu et al. (1997), where 6

as in Liu et al., there exist B, and N, such that P ( i = o) > B, (hm)2 =1) < a for all
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n > N,. Thus for n > N,, there exists ¢ = ¢, < B, (hm ” such that
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Proof of Lemma A.2. For i < k*,

P(Aijali = k) = P(62 < (1 +¢,) 6

Kk =FkK")
= Pu(67>0.+C, 67 <(14¢,) 65)+ Pe(67 <05+ C, 67 < (1+cp) 67.)

= P1+P2a

where C' is a positive constant in Lemma 5.4 of Liu et al. (1997) for which Py (57 >
o2+ C) = 1 as n — oo. Since 7. — 05 = 0,(1), ¢, = o(1) and C > 0, we get for k = k*,
P =P (67 >00+C, 67 < (1+¢,) 61.) < Ppe(67 — 03 > C — c,0%.)
which converges to zero. Also,
Py=Pu(62 <02+ C, 62 <(1+¢,) 6%) < Pe(62 <02+ C),

and thus P, converges to zero by Lemma 5.4 of Liu et al.

Proof of Lemma A.3. Note that

PRy jialk = k) = P(64- = (1 + ¢y) 62|k = k) = Py (6 — G2 > ¢, 55).



From Lemma 5.4 of Liu et al. (1997), for j > k*, 0 < 3. — 67 = Op((Inn)?/n) and

55 = 05 + 0,(1). If ¢, = o(1) is chosen such that TmECn = 00,

22 42
Pk*(&,f,* — A? > cn AZ.) = P« (Uk* i > Cn(lnnn)2> —0 as n— oo.
Appendix B: Proof of Theorem 3.2.2

Note that in this revision, the conditions (C1) and (C2) in Assumption 3.2.2 are
replaced by (Al) and (A2) of Assumption 3.2.1.

Lemma B.1. Suppose that conditions (C1), (C2) and (C3) in Assumption 3.2.2 are
satisfied. Then the n; = u* (I — H;(T)+))pu* satisfy the followings:

(i) m; is a decreasing function of 7.
(i) 1/n* =1/mp—1 = O(lnn/n).

Lemma B.2. Suppose that the assumptions in Lemma B.1 are satisfied. For «q fixed
and j > 1, there exists ¢ = ¢, = ¢,(i,7; ®/M,,) that asymptotically achieves the level
ag /M, where M, /\/n* — 0 as n — oo.

Lemma B.3. Suppose that the assumptions in Lemma B.1 are satisfied. For ¢ < k*,

Hp+ (7)) — Hi(T4+) is idempotent.

Lemma B.4. Suppose that the assumptions in Lemma B.1 are satisfied. For i < k*,
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where By = Hys (Ty+) — Hye (Ti+), Ba = ¢(I — Hy«(T1+)), Bs = H;(7;) — H;i(T,+), and

y'(
P(Ai,k*;a|"'€ - k*) S P (Zz,n +

g7 _ —2u (I — Hy(Tp))e
in 20_0m )

for e =y — E(y|z,x = k*).



Lemma B.5. Suppose that the assumptions in Lemma B.1 are satisfied. For ¢ < k¥,
Vin = y"(B1+ By + B3)y/(200y/1i) = Op(VInn) + hyp, where \/nc,, = O(1) and hy,, <
Yiny/Mi/ (200) for 7;, such that 0 < limy, (1 —7in) < 1.

Proof of Theorem 3.2.2.
We first show that P(k < k*|k = k*) — 0 as n — oo. Note that for V;,, = y7(B; +
By + B3)Y/(20'0\/E) (Z < k*),

P<Ai,k*;a |/€ - k*) S P (Zz,n + ‘/i,n - hi,n Z (1 - 7@,n)ﬁ/(200))
< P(6Z~zn+‘~/;n > 6\/7?/(200))
S E(eZz,n+f/7,,n)/e\/m/(200)’

where Zm = Zin/ (1 =7in)nn), f/,n = (Vin—hin)/ (1 =7i,)nn), and \/7; = Vii/Inn,
and the last inequality is obtained by Markov’s inequality. Then,
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where §y(k*) is a positive function of k*. Since Z;,, + Vi, = 0,(1) and % = o(1), the
upper bound will converge to zero under a mild condition on M such as the one described




in Assumption 3.2.2 (C3). Then, by using P(k > k*|k = k*) < o, we can show that
lim, o P(k = k* | kK = k*) > 1 — ap. Similarly as in Theorem 3.2.1, by choosing ¢ = ¢,
such that y/nc, = O(1) and the corresponding oy approaches to zero, we can achieve the

desired result.

Proof of Lemma B.1. Let X; 1 (t) = (X;(¢) ®i1(¢)), where @;11(t) = ((x1—tiv1) T, ..., (20—
tiv1)T)T. Note that n; = pu*? (I — Hy(T4))pu* is a decreasing function of i, which can be
proved by showing that
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where a2, = &l | (¢)(I — H;(t))i+1().
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Thus, for Xp 1 = Xpe1(Th+), Tpr = Tps (T ), * = p(7p+) and H; = Hy(7p+),
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where (2y,.41,...,%,) are the observations in [+, 1] and I — Hy«_1 = (byy,;) . Under (C1),

it can be shown that for large n, n* > Dyn/Inn, where D; is a positive constant.

Proofs of Lemma B.2. and Lemma B.3.
The proof of Lemma B.3, which is based on lengthy and straightforward matrix alge-
bra, is omitted, and the proof of Lemma B.2. is sketched below.

62-52
——5*, under the
J

Suppose that for some a,, > 0 such that a,, = oo as n — o0, Z,, = a,

null hypothesis of K = 4, converges in distribution to Z with a cumulative distribution



function F'(-) and the probability density function f(-). We then see that for j > i,

% = P(RSS(i) > (1+ ¢,)RSS(j)|k = i) = P(Z, > &,) ~ 1 — F(é,),

~ o . . . ~ d ~ d . .
where ¢, = a,c,. Since L 18 proportional to —f (cn)%cn and 7-g, is proportional

to — Vir/lﬁ", where 1//n* < ,/}5‘1’; = gn, a slowly increasing function of n, ¢,, such that

m/f( ) -Lé, — 0 as n — oo satisfies the condition of M = M, such that M/\/n* — 0

as n — oo. Using that Z,/a, = O, (W) it can also be shown that for appropriately
chosen ¢, \/nc, = O(1) since \/nc, =

oo at least as fast as \/n/{M,(Inn)? } does as n — o0o. For example, if f is a chi-square

is slowly increasing and a, /v/n —

density with finite degrees of freedom, then ¢, such that ¢, = a,c, = Dylnn for 0 <

D5 < 1 can be used.

Proof of Lemma B.4.
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Noting that y = p* + € when k = k* and (I — Hgp(T¢+))p* = 0, the right hand side is
equivalent to
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Proof of Lemma B.5.

(i) YTBI}’/@UO\/m) =y (Hpe (The) — Hy (T4))y /[ (2004/T5) = Op(\/H). This can be
obtained by using 63. — of = O,(1/y/n) and 1//n; < 1/\/n* = O(\/m)

(ii) y'Boy/(200y/m) = ¢ y'(I — Hp(T4))y/(200y/T) = O,(vInn) for a choice of

¢ = ¢, such that ¢y/n = O(1). This can be shown because /n/n; = O(v/Inn) and

6%. is a consistent estimator of o3.

(i)
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where Q1 = y'(I — Hi(Tp))y/o5, Q2 = y'(I — Hi(%:))y/o3, Zin = (Q1 —
E-1Q1])/V2n, and Zy,, = (Q2— FEj+[Q2])/v/2n. Matrix algebra shows that (Ej-[Q1]—
Ei-1Q2))/(24/1i/00) = hip +O0(VInn), where h;,, < Yinr/Ti/ (200) for 7;, such that
0 < limyyoo(l — y50) < 1. Since Zy,, — Zo,, = Op(1) and (/n/n; = O(vInn),
¥ Bsy/(200v/m) = Op(VInn) + hi.

Combining (i), (ii) and (iii), we obtain that V;,, = O,(vVInn) + h; .



