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Supplementary Material

This note contains proofs for Theorems 3.2.1 and 3.2.2.

Appendix A: Proof of Theorem 3.2.1

Lemma A.1. Suppose that conditions (A1) and (A2) in Assumption 3.2.1 are satisfied
and that k* < M for a positive fixed constant M. Then 0 < ¢ = ¢,(4,7; ) = O(1/y/n)
when j —i = O(1).

Lemma A.2. Suppose that the assumptions in Lemma A.1 are satisfied. Then, for

i < k*, P(A; jsa|k = k*) converges to zero as n — oo.

Lemma A.3. Suppose that the assumptions in Lemma A.1 are satisfied. Then, for

J > k*, P(Rij.o|k = k) converges to zero as n — oo.

Proof of Theorem 3.2.1. First, note from (2) that
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where g1 (k*, M) is a positive function of k* and M. Lemma A.2 then provides the result
that the under-fitting probability converges to zero n — oo..

Now, based on (3), we see that
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where go(k*, M) is a positive function of £* and M. Lemma A.3 then provides the result

that the over-fitting probability also converges to zero as n — oo.
Proof of Lemma A.1. Note that in testing Hy : kK = ¢ against H, : k = j for i < j,

a = P(RSS(i)> (1+c¢)RSS(j) |k =1)
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Since 67 — Y1, €/n = O, ((Inn)?/n) for j > i from Lemma 5.4 of Liu et al., Ry,

O, ((Inn)?/y/n)) . Since the 7’s are consistent under the null model of £ = i by Proposition
5.1 of Liu et al. and 7 converges to o in probability, we see that (Z1,,+Z2n+Rn)/ (07 /03)
converges in distribution to a normal distribution with mean zero and finite variance. Thus

for « fixed and ¢ and j fixed, ¢ = O(1/y/n).

Proof of Lemma A.2. Note that for 62 = RSS(i)/(n—2—2i) and 0 < b, = (1+c¢)(n—
2—2k*)/(n—2—2i) —1=0(1/y/n),
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= Pu(67>02+C, 62<(1+b,) 67.)+ Pe(62 <02 +C, 62<(1+b,) 61)

= P1+P27

where C' is a positive constant in Lemma 5.4 of Liu et al. (1997) for which P (57 >
o2+ C) — 1asn — oo. Since 63. — 02 = 0,(1), b, = O(1/y/n) and C > 0, we get for

Kk = k*,
Pl =Pn(62>02+C, 62<(1+b,) 62) < Pu(6l — 02 > C — byo2.)
which converges to zero. Also, for 1 < k*,
Py=Pn (67 <o0p+C, 67 <(1+b,) 63.) < P(62 <03 + C),
and thus P, converges to zero by Lemma 5.4 of Liu et al.
Proof of Lemma A.3. Note that for b, as in the proof of Lemma A.2,
P(Rpw gl = k) = P62 > (14 b) %k = k) = P (62 — 52 > by 62).

From Lemma 5.4 of Liu et al. (1997), for j > k*, 0 < 3. — 67 = Op((Inn)?/n) and
52 = 02 4 0,(1). Since 0 < b, = O(1/y/n),

J

Py (07 — 05 > b, 05) =0 as n—0.

Appendix B: Proof of Theorem 3.2.2

Lemma B.1. Suppose that conditions (C1), (C2) and (C3) in Assumption 3.2.2 are
satisfied. Then the n; = pu** (I — H;(7))p* satisfy the followings:

(i) n; is a decreasing function of .

(i) 1/mp—1 = O(Inn/n).



Lemma B.2. Suppose that the assumptions in Lemma B.1 are satisfied. Then ¢ = ¢, can
be determined such that ¢ = o(1), v/nc, = O(VInn) and ag/M,, = 1—P(y/n ¢)+o(1/M,),

where @ is the standard normal distribution function.

Lemma B.3. Suppose that the assumptions in Lemma B.1 are satisfied. For ¢ < k¥,

Hy(Tp+) — Hi(Ty+) is idempotent.

Lemma B.4. Suppose that the assumptions in Lemma B.1 are satisfied. For i < k¥,
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for e =y — E(y|z, k = k*).

Lemma B.5. Suppose that the assumptions in Lemma B.1 are satisfied. For ¢ < k*,

Vin =y (B1+ By + B3)y/(200y/1;) = Op(Inn) — d; ,, where d;,, is a positive constant.

Lemma B.6. For j > k*,
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where d;, is a positive constant.

Proof of Theorem 3.2.2.
We first show that P(k < k*|k = k*) — 0 as n — oo. Note that for V;,, = y*(B; +

By + By)y/(200\/m) (i < k%),
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where Z; = Z;/Inn, f/m = (Vin+din)/Inn, and /7; = V/1i/ Inn, and the last inequality
is obtained by Markov’s inequality. Then,
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where g(k*) is a positive function of k*. Since Z; converges to a standard normal distri-

bution and V;,, = O,(1), and lf/i = o(1), the upper bound will converge to zero under
a mild condition on M such as the one described in Assumption 3.2.2 (C3).
Then, using Lemma B.6, we can show that the over-fitting probability also converges

to zero as n — 0.

Proof of Lemma B.1. Let X;,(t) = (X;(¢) ©;11(t)), where ;1 (t) = ((x1—t01) ", ..., (xy—
tiv1)T)T. Note that n; = pu*7 (I — Hy(T4+))pu* is a decreasing function of i, which can be
proved by showing that
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Thus, for Xp«—1 = Xpr_1(Th+), Tpr = Tps (T ), p* = p(7p+) and H; = H;(7p+),
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where (27,41, ..., %,) are the observations in |74+, 1] and I — Hy+_1 = (byy,;) . If we assume
that there are at least n/Inn many observations in each segment of [1;, 7;41) for i =
0,...,k* which was motivated by Corollary 3.22 of Feder (1975), then we see that n* >

Din/Inn, for some positive constant Dy > 1.

Proof of Lemma B.2. Recall that the test proposed in Kim et al. (2000) rejects
Hy : k = i in favor of H; : k = k* at level « if T = RSS(i)/RSS(k*) > (1 + ¢)
for some ¢ = ¢, (i, k*; (i, k*)) > 0, where RSS(i) = y' (I — H;(7;))y and RSS(k*) =
y (I — Hy«(71+))y. Also, recall that A; ., is the event that Hy : k = i is not rejected at
level . Following the argument in the proof of Lemma A.1 and that 62. — o2 = O,(1/y/n)
in Feder (1975), we see that

;21 = P(RSS(i) > (1+ 0)RSS(K")|s = i) = P (Z + 0,(1) > V/nc)

for a stable distribution Z. If \/n ¢ = Dyv/Inn for some positive constant Dy, 0 < Dy < 1,
we obtain that L5 is proportional to —1/(n**P3/2y/Inn). If we let n* = Dy (n/Inn) for
some constant Dy > 1, then we see that %# is proportional to —vInn/(ny/n). This
implies that such a choice of ¢ satisfies the condition of M = M,, such that M/\/n* — 0

as 1 — OQ.



The proof of Lemma B.3, which is based on lengthy and straightforward matrix alge-

bra, is omitted.
Proof of Lemma B.4.
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Noting that y = p* + € when k£ = k* and (I — Hyp(Tg+))p* = 0, the right hand side is
equivalent to
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Since €’ (Hy+(7Ty+) — Hi(T)+))€ > 0 by Lemma A.3,
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Proof of Lemma B.5.
(i) y"Biy/(200y/1i) = y* (Hi+ (The) — Hye (F1+))y / (2004/1) = Op(vInn). This can be
obtained by using 63. — 0§ = Op(1/+/n) and 1//n; < 1/y/n* = O(y/Inn/n).
(i) y* Bay/(200y/mi) = ¢ y' (I — Hyp(74))y/(200y/1) = O,(Inn) for a choice of ¢ in
Lemma B.2. This can be shown because cy/n = O(VInn), +/n/n; = O(v/Inn), and
0% is a consistent estimator of 3.
(i)
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where @ = YT(I - Hi("'k*)))’/“8> Q2 = yT(I - Hi(ﬁ)))’/@%» Zin = (Q1 —
Ep[Q1])/V2n, and Zy,, = (Q2— Ex+[Q2]) /v 2n. Matrix algebra shows that (Ejg«[Q2]—
B [@Q1])/(2/ni/00) = din +O(y/Inn/n), where d; , > 0. Since each of Z, ,, and Z,,,

converges to a standard normal distribution and \/n/n; = O(VInn), y" Bsy /(200,/7;) =
O,(VInn) —d; .

Combining (i), (ii) and (iii), we obtain that V;,, = O,(lnn) — d, ,,, where d;,, > 0.

Similar arguments used in the proofs of Lemma B.4 and Lemma B.5 would lead to

Lemma B.6.



