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S1 Overview

The on-line supplement contains analysis of the severe acute respiratory syndrome
(SARS) data, supplementary simulation reports and asymptotic analysis of the pro-
posed methods. In the main text, two models are compared. The proposed model is
given by

F1(t ∧ τ |Z) = Pr(T ≤ τ, B̃ = 1|Z)Pr(T ≤ t|T ≤ τ, B̃ = 1,Z)

= π(ZT β(τ))(1−Q1,Z(t|τ)). (S1.1)

The competitor of our model proposed by Fine and Gray (1999) and Fine (2001) can be
written as

g(F1(t|z)) = h(t) + zT θ. (S1.2)

We will use the SARS example to compare the practical usefulness of the two models.
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S2 Analysis of SARS data

S2.1 Data description

The Taiwan nationwide laboratory-confirmed SARS database was kindly provided by
Dr. Mei-Shiang Ho and her colleagues in the institute of Biomedical Sciences, Academia
Sinica. Patients with SARS had to be isolated in the hospital until recovery or death.
The process can be described by the framework of competing risks. Here we define
B̃ = 1 to indicate that a patient was cured from disease (being discharged from the
hospital and alive) and B̃ = 2 to indicate that a patient was not cured (died during the
isolation period). Because this infectious disease has been eventually under control in
Taiwan, the database contains complete information about the two outcomes and the
corresponding failure time. There are 258 infected patients in which 58 subjects were
dead during the isolation period and 200 subjects were discharged from the hospital and
alive.

Possible covariates include age, gender, disease, PCR, viral load, where age denotes
a patient’s age by years; disease is a binary variable indicating whether a patient had
suffered from other diseases before getting infected of SARS (1: yes, 0: no); PCR is
an indicator of whether the Polymerase Chain Reaction (PCR) test detected the SARS
virus (1: yes, 0: no) and viral load measures the viral load detected by the PCR test.
Note that if PCR equals 0, the individual had a negative virus titer, meaning that the
patient has anti-body but zero viral load, and then the viral load is set as zero.

S2.2 Analysis of the original complete data

The function F1(t) = Pr(B̃ = 1, T ≤ t) measures the probability of being discharged
from the hospital (cured) by time t. We first present nonparametric analysis for each
covariate group. Then we perform simple regression analysis for each covariate group
using the LOGISTIC procedure in SAS.

Figures S.1-S.5 depict the empirical estimators of F1(t) based on the covariate groups.
The continuous variable age was first divided into three groups, age < 30, 30 ≤ age ≤ 50
and age > 50. Figure S.1 shows that the two younger groups (age < 30 and 30 ≤ age
≤ 50) have similar patterns, while the older group (age > 50) has much lower chance
of recovery at every t. At the end, the cure proportions of three age groups (from the
youngest to the oldest) are 0.925, 0.879 and 0.443, respectively. The patterns of F1(t)
for the gender groups and disease groups are similar such that the curves associated
with different covariate values have no crossings. At the end, the female group (cure
proportion = 0.842) had better recovery than the male group (cure proportion = 0.656).
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Individuals without previous diseases (cure proportion = 0.845) also revealed better
recovery than those in presence of other disease (cure proportion = 0.444).

The curves based on different groups of PCR and viral load behave differently from
the former covariates. Note that viral load, originally measured continuously, was strat-
ified into four groups: no viral load detected, ≤ 103, ∈ (103, 105], and > 105. The first
group includes those with PCR = 0 (cure proportion = 0.946) and the last three groups
are those with PCR = 1 (cure proportions equal 0.763, 0.648 and 0.526, respectively).
At the end, the larger the level of viral load, the lower chance of recovery. However the
four empirical curves have intersections in some middle time points.

We conducted several simple regression analyses based on the model

logit {F1(τj)} = β0,j + β1,j z, (S2.1)

where z is a selected covariate and βk,j are simplifications of βk(τj) (k = 0, 1) for j =
1, . . . , 5. In the analysis, age was divided into two groups (≤ 50 and > 50) and viral
load was transformed into the scale of log10 to stabilize the effect caused by extreme
large values. We set τ1 = 14, τ2 = 21, τ3 = 28, τ4 = 35 and τ5 to be the maximum
length of hospitalization for the cure satisfying F1(τ5) = Pr(B̃ = 1). The results are
summarized in Table S.1. Here we discuss the effect of age for illustration. Treating
the younger group (age ≤ 50) as the baseline, the odds ratios along the time eβ̂1,j ’s are
0.466, 0.221, 0.158, 0.146 and 0.090. This implies that the effect of age on the odds of
F1(τj) tends to be more influential as τj gets larger. Notice that age has substantial
effect on F1(τ5), the final chance of recovery. For comparison, we analyze the data

under model (S1.2) which assumes β1,1 = . . . = β1,5 = θ. The overall odds ratio eθ̂

is 0.147 which seems very different from the separate odds ratios reported above. To
formally examine whether the effect of age is time independent, a score test for assessing
the difference between the reduced and the full model (with four degree of freedom) was
performed. The resulting p-value is 0.006 which implies that model (S1.2) is not suitable
for measuring the influence of age on F1(t). Table S.1 also shows that each covariate has
a significant effect on F1(τj) for larger τj. In general, younger females, who did not have
other diseases and had lower viral load, had the best chance of recovery from SARS.
Note that the effect of gender remained the same along the time. In fact, Figure S.2
shows that the curves for the male and the female do not intersect. However the two
curves with different disease status have no crossing but the test of time homogeneity is
rejected.

Although our paper does not study whether a covariate affects the latency distribu-
tion Q1(t|τ), here we illustrate how to conduct further analysis if this is also of some
interest. Let us use age again for illustration. We fit Q1(t|τ5) by the accelerated failure
time model with a Weibull distribution, the estimated regression parameter for age is
0.276 (p-value = 0.004). The result implies that, for older patients (age > 50) who were
eventually cured, they also needed longer time to get recovery (Figure S.6).
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S2.3 Analysis of censored SARS data

As mentioned in the main paper, interim analysis based on incomplete data provides
timely information for decision making. Although the original SARS dataset contains
complete information about the value of (T, B̃), it is worthy to investigate how the pro-
posed methods behave if this dataset is subject to further censoring. Here we generated
a censoring variable which has a uniform distribution taking values from 0 to 70 making
the censoring proportion to be around 30%.

Based on a censored version of the SARS data, we applied the proposed methods
to fit a simple logistic regression for each covariate group and found that each covariate
was statistically significant since time τ2. Then we included all the covariates in the
multiple logistic regression model which showed that the covariates gender and PCR
became insignificant at all values of τ . The final fitted model is

logit(F1(τ)) = β0(τ) + β1(τ) age + β2(τ) disease + β3(τ) log10(viral load).

Table S.2 lists the detail results of the above analysis based on a single run using the
artificial censoring scheme. Note that in the table we also report the previous results
obtained from solving Ũ(β) = 0, the score function based on the original complete data.
With the additional censoring, the proposed methods yield similar point estimates but
larger standard deviations, as expected. Table S.3 list the average results by repeat-
ing the censoring scheme 300 times. The patterns are similar to that in a single run.
Note that the proposed estimators also produce more precise results compared with the
estimator of Fine (1999).

S3 Supplementary simulation results

S3.1 Data generation

Here we state the details of the data generation scheme. The covariate Z was generated
from three distributions. For the discrete case, we set Z ∼ Bernoulli(0.5). For the
continuous case, Z ∼ Normal(0, 1) or Z ∼ Unif(−3, 3). Let ∆j = I(T ≤ τ, B̃ = j) for
j = 1, 2. Given Z, we set ∆1 ∼Bernoulli(π(β0 + β1Z)) with

π(β0 + β1Z) =
exp(β0 + β1Z)

1 + exp(β0 + β1Z)
.

If ∆1 = 1, we set ∆2 = 0; and if ∆1 = 0, we generated ∆2 from a Bernoulli(p2), where
p2 may depend on Z but its form is not of interest. Given (∆1, ∆2), the failure time T
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was generated from a distribution with the density function fT which can be expressed
as

fT (t) =





f1(t|τ, Z) if (∆1, ∆2) = (1, 0)
f2(t|τ, Z) if (∆1, ∆2) = (0, 1)
f3(t|τ, Z) if (∆1, ∆2) = (0, 0),

where fj(t|τ, Z) (j = 1, 2) are density functions with supports no greater than τ and
f3(t|τ, Z) is a density function whose value exceeds τ . In the simulations, we set

fj(t|τ, Z) =
fYj

(t|Z)

1− SYj
(τ |Z)

I(t ≤ τ) (j = 1, 2) and f3(t|τ, Z) =
fY3(t|Z)

SY3(τ |Z)
I(t > τ),

where fYj
(t|Z) and SYj

(t|Z) are the density and survival functions of Yj which follows
the accelerated failure-time model of the form,

ln Yj = γ0,j + γ1,jZ + σj ·Wj, (S3.1)

where γ0,j, γ1,j and σj are (nuisance) parameters and Wj is the error distribution.

The censoring variable was generated from Unif(c0, c0 + c1), where (c0, c1) are pre-
specified constants making the censoring proportion to achieve the target value (i.e.
30% or 40%). Denoted {(∆1i, ∆2i, Ti, Zi, Ci) (i = 1, . . . , n)} as a random sample of
(∆1, ∆2, T, Z, C). Note that

I(Xi ≤ τ, Bi = j) = ∆ji · I(Ti ≤ Ci) (j = 1, 2),

where Xi = Ti ∧ Ci. The proposed methods can be implemented based on

{Xi, I(Ti ≤ Ci), I(Xi ≤ τ, Bi = 1), I(Xi ≤ τ, Bi = 2)}
for i = 1, . . . , n. The value of τ is set to be 2.5. The sample size n was set to be 100 or
300.

S3.2 Analysis based on continuous covariates

In Tables S.4 and S.5, we report the simulation results when Z has the standard normal
distribution and a uniform distribution respectively. Notice that, in Table S.4, β̂F

still has large bias even when n = 300. We found that the IPCW technique, which
utilizes I(Xi ≤ τ, Bi = 1)/Ĝ(Xi−) as a proxy of I(Ti ≤ τ, B̃i = 1), would make an
observation with larger Xi to be more influential in the estimation. Our proposal by
setting V1i = π(ZT

i β)(MG−π(ZT
i β)) somewhat offset the influence of these observations.

In contrast, Fine (1999) did not adjust the effect of censoring in his proposal of V1i and
hence β̂F was less stable.
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Now we briefly describe the bootstrap procedure for variance estimation. Specifically
1000 sub-samples were drawn with replacement from the original sample, and for kth

sub-sample, we obtained β̂
(k)

Ij by solving UIj(β) = 0 for (j = 1, 2). Then the standard

deviation of β̂Ij can be estimated by calculating the sample standard deviation of sub-

estimates {β̂(k)

Ij : k = 1, . . . , 1000} for j = 1, 2.

In Table S.6, we investigated whether the proposed methods remain robust when C
actually depends on Z. We set ln C = γ0,c + γ1,cZ + σcWc, where Z may be binary or
follow the standard normal distribution. In computation of the proposed estimators, we
evaluated two estimators of G(t) = Pr(C > t). One is the Kaplan-Meier estimator and
the other is a kernel-type smoothing estimator. Note that the former is based on the
wrong assumption that C does not depend on Z. It turns out that the results based
on the Kaplan-Meier estimator of G(t) are biased while the kernel approach yields less
biased estimators. All the proposed estimators are relatively more robust than β̂F under
such a model mis-specification.

S4 Asymptotic analysis of the proposed methods

S4.1 Asymptotic properties of Uw∗(β)

Assume that the true value β0 is located in the interior of the parameter space, which
is a bounded convex region and πφ(·) is bounded. The estimating function Uw∗(β) in
Section 2.2 of the main text can be written as

Uw∗(β) =
n∑

i=1

[(V2i − V3i)H1i − (V1i − V3i)H2i]
πφ(Z

T
i β)

V1iV2i − V 2
3i

Zi + B2n(β),

where

B2n(β) =
n∑

i=1

{[
I(Xi ≤ τ, Bi = 1)

G(Xi−)

V2i − V3i

V1iV2i − V 2
3i

πφ(Z
T
i β)Zi

]
G(Xi−)− Ĝ(Xi−)

Ĝ(Xi−)

−
[
I(Xi ≤ τ, Bi = 2)

G(Xi−)

V1i − V3i

V1iV2i − V 2
3i

πφ(Z
T
i β)Zi

]
G(Xi−)− Ĝ(Xi−)

Ĝ(Xi−)

−
[
I(Xi > τ)

G(τ)

V1i − V3i

V1iV2i − V 2
3i

πφ(ZT
i β)Zi

]
G(τ)− Ĝ(τ)

Ĝ(τ)

}
.

6



To derive the asymptotic distribution of n−1/2Uw∗(β0), we first express the Kaplan-Meier
estimator Ĝ(t) as the following integral form,

G(t)− Ĝ(t)

G(t)
=

n∑
i=1

∫ t

0

Ĝ(u−)

G(u)

dMC,i(u)

Ȳ (u)
,

where

MC,i(u) = I(Xi ≤ u,Bi = 0)−
∫ u

0

I(Xi ≥ s)dΛC(s),

Ȳ (u) =
∑n

i=1 I(Xi ≥ u) and ΛC(s) is the cumulative hazard function of C. By the
uniform convergence of the Kaplan-Meier estimator, we can write n−1/2B2n(β0) as

1√
n

n∑
i=1

∫ ∞

0

[q1(t; β0)− q2(t; β0)− q3(t; β0)]

(
Ȳ (t)

n

)−1

dMC,i(t) + op(1),

where

q1(t; β0) =
1

n

n∑

k=1

I(Xk ≥ t)

[
I(Xk ≤ τ, Bk = 1)

G(Xk−)

]
v2k − v3k

v1kv2k − v2
3k

πφ(Z
T
k β0)Zk, (S4.1)

q2(t; β0) =
1

n

n∑

k=1

I(Xk ≥ t)

[
I(Xk ≤ τ, Bk = 2)

G(Xk−)

]
v1k − v3k

v1kv2k − v2
3k

πφ(Z
T
k β0)Zk, (S4.2)

q3(t; β0) =
1

n

n∑

k=1

I(τ ≥ t)

[
I(Xk > τ)

G(τ)

]
v1k − v3k

v1kv2k − v2
3k

πφ(Z
T
k β0)Zk, (S4.3)

v1k = π(ZT
k β0)(M̃ − π(ZT

k β0)), v2k = π̄(ZT
k β0)(M̃ − π̄(ZT

k β0)), v3k = π̄(ZT
k β0)π(ZT

k β0)
and M̃ is the median of the random variable 1/G(X−).

Therefore n−1/2Uw∗(β0) can be expressed as n−1/2
∑n

i=1 ξi + op(1), where

ξi =

{[
I(Xi ≤ τ, Bi = 1)

G(Xi−)
− π(ZT

i β0)

]
(v2i − v3i)

−
[
I(Xi > τ)

G(τ)
+

I(Xi ≤ τ, Bi = 2)

G(Xi−)
− π̄(ZT

i β0)

]
(v1i − v3i)

}
πφ(Z

T
i β0)

v1iv2i − v2
3i

Zi

+

∫ ∞

0

q(t; β0)

y(t)
dMC,i(t),

y(t) = limn→∞ Ȳ (t)/n and q(t; β0) = limn→∞[q1(t; β0) − q2(t; β0) − q3(t; β0)]. Since
{ξi (i = 1, ..., n)} are zero-mean independent random variables, by the multivariate
central limit theorem, n−1/2Uw∗(β0) has an asymptotic normal distribution with mean
0 and covariance matrix Γw∗ = limn→∞ n−1

∑n
i=1 ξiξ

T
i .
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S4.2 Asymptotic properties of β̂w∗

Recall that β̂w∗ is the solution to Uw∗(β) = 0. Since Uw∗(β) is differentiable with respect
to β and has a bounded derivative, consistency of β̂w∗ follows. By a Taylor expansion
of n−1/2Uw∗(β) with respect to β0, we can write

0 = n−1/2Uw∗(β̂w∗) = n−1/2Uw∗(β0)− Aw∗(β0) n1/2(β̂w∗ − β0) + op(1),

where

Aw∗(β0) = − lim
n→∞

1

n

∂Uw∗(β)

∂βT

∣∣∣∣
β=β0

.

It follows that

n1/2(β̂w∗ − β0) = [Aw∗(β0)]
−1 n−1/2Uw∗(β0) + op(1). (S4.4)

Hence n1/2(β̂w∗ − β0) has an asymptotically normal distribution with mean 0 and co-
variance matrix Vw∗ = [Aw∗(β0)]

−1 Γw∗ [Aw∗(β0)]
−1.

Replacing β0, G, y(t) and dΛC(t) by the corresponding estimates, β̂w∗ , Ĝ, Ȳ (t)/n
and dNC(t)/Ȳ (t), where NC(t) =

∑
k I(Xk ≤ t, Bk = 0), respectively, ξ̂i equals

{[
I(Xi ≤ τ, Bi = 1)

Ĝ(Xi−)
− π(ZT

i β̂w∗)

]
(v̂2i − v̂3i)

−
[

I(Xi > τ)

Ĝ(τ)
+

I(Xi ≤ τ, Bi = 2)

Ĝ(Xi−)
− π̄(ZT

i β̂w∗)

]
(v̂1i − v̂3i)

}
πφ(Z

T
i β̂w∗)

v̂1iv̂2i − v̂2
3i

Zi

+
nI(Bi = 0)q̂(Xi; β̂w∗)∑n

k=1 I(Xk ≥ Xi)
−

n∑
j=1

nI(Bj = 0, Xi ≥ Xj)q̂(Xj; β̂w∗)

(
∑n

k=1 I(Xk ≥ Xj))
2 ,

where v̂1i = π(ZT
i β̂w∗)(MG − π(ZT

i β̂w∗)), v̂2i = π̄(ZT
i β̂w∗)(MG − π̄(ZT

i β̂w∗)),

v̂3i = π̄(ZT
i β̂w∗)π(ZT

i β̂w∗), q̂(t; β̂w∗) = q̂1(t; β̂w∗)− q̂2(t; β̂w∗)− q̂3(t; β̂w∗),

and q̂j(t; β̂w∗) (j = 1, 2, 3) are obtained by using β̂w∗ , Ĝ and (v̂1k, v̂2k, v̂3k) instead of β0,
G and (v1k, v2k, v3k) in (S4.1)−(S4.3). It follows that the covariance matrix Γw∗ can be

estimated by Γ̂w∗ = n−1
∑n

i=1 ξ̂iξ̂i

T
and then

V̂w∗ =
[
Âw∗(β̂w∗)

]−1

Γ̂w∗

[
Âw∗(β̂w∗)

]−1

where

Âw∗(β̂w∗) =
n∑

i=1

1

n

[
v̂1i + v̂2i − 2v̂3i

v̂1iv̂2i − v̂2
3i

π2
φ(Z

T
i β̂w∗)ZiZ

T
i

]
.
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S4.3 Previous nonparametric results of Wang (2003)

Modifying the idea of Wang (2003), we can estimate pj(x) = Pr(T ≤ τ, B̃ = j|T > x)
by

p̂j(x) =
1

nŜ(x)

n∑
i=1

I(x < Xi ≤ τ, Bi = j)

Ĝ(Xi−)
,

where Ŝ(x) is the Kaplan-Meier estimator of S(x) which, according to Satten and Datta
(2001), can be re-expressed as an average of inverse probability of censoring given by

1

n

n∑
i=1

[
I(Xi > x,Bi 6= 0)

Ĝ(Xi−)
+

I(Xi > X(m))

Ĝ(X(m))

]
,

where X(m) denotes the largest observed failure time. Based on Wang’s idea, Qj(t|τ)
can be estimated by

∏
u≤t

{
1−

∑n
i=1 I(u = Xi ≤ τ, Bi = j)∑n

i=1 [I(u ≤ Xi ≤ τ, Bi = j) + I(u ≤ Xi ≤ τ, Bi = 0)p̂j(Xi)]

}
.

S4.4 Asymptotic properties of UI1(β)

Suppose that Z takes K distinct values, z1, . . . , zK . Original data are partitioned into K
mutually exclusive subsets,

{(
∆j

1k, X
j
k, B

j
k

)
(k = 1, . . . , nj)

}
, which corresponds to the

set of {i : (∆1i, Xi, Bi,Zi = zj) (i = 1, . . . , n)} and nj =
∑n

i=1 I(Zi = zj). We have
pzj

(Xj
k) = E(∆j

1k

∣∣ Xj
k, B

j
k = 0,Z = zj), which can be estimated by

p̂zj
(Xj

k) =
1

njŜzj
(Xj

k)

nj∑

h=1

I(Xj
k < Xj

h ≤ τ, Bj
h = 1)

Ĝzj
(Xj

h−)
,

where Ŝzj
(t) and Ĝzj

(t) are Kaplan-Meier estimators of Szj
(t) = Pr(T > t|Z = zj) and

Gzj
(t) = Pr(C > t|Z = zj). The estimating equation UI1(β) can be re-expressed as

UI1(β) =
K∑

j=1

{
nj∑

k=1

[
∆̂j

1k − π(zT
j β)

] πφ(z
T
j β)

π(zT
j β)π̄(zT

j β)
zj

}
,

where ∆̂j
1k = I(Bj

k = 1, Xj
k ≤ τ) + I(Bj

k = 0, Xj
k ≤ τ)p̂zj

(Xj
k).

To derive asymptotic distribution of n−1/2UI1(β0), we first express it as sum of the

9



following two terms,

1√
n

UI1(β0) =
K∑

j=1

√
nj

n

{
1√
nj

nj∑

k=1

[
Ej

k − π(zT
j β0)

]
Ψzj

(β0)

}

+
K∑

j=1

√
nj

n

{
1√
nj

nj∑

k=1

I(Bj
k = 0)

[
p̂zj

(Xj
k)− pzj

(Xj
k)

]
Ψzj

(β0)

}
(S4.5)

where

Ej
k = E

(
∆j

1k

∣∣ Xj
k, B

j
k;Z = zj

)
= I(Bj

k = 1, Xj
k ≤ τ) + I(Bj

k = 0, Xj
k ≤ τ)pzj

(Xj
k)

and

Ψzj
(β0) =

πφ(z
T
j β0)

π(zT
j β0)π̄(zT

j β0)
zj.

Denote the last part of (S4.5) by C2(β0), by the strong consistency of Kaplan-Meier
estimators, we have

C2(β0) =
K∑

j=1

{√
nj

n
Ψzj

(β0)
[
Cj

2.1 + Cj
2.2

]}
+ op(1),

where

Cj
2.1 =

1√
nj

nj∑

k=1

[
I(Bj

k = 0)

njSzj
(Xj

k)

nj∑

h=1

I(Xj
k < Xj

h ≤ τ, Bj
h = 1)

(
1

Ĝzj
(Xj

h−)
− 1

Gzj
(Xj

h−)

)]
,

Cj
2.2 =

1√
nj

nj∑

k=1

[
I(Bj

k = 0)

(
1

Ŝzj
(Xj

k)
− 1

Szj
(Xj

k)

)
1

nj

nj∑

h=1

(
I(Xj

k < Xj
h ≤ τ, Bj

h = 1)

Gzj
(Xj

h−)

)]
.

Interchanging the summations in Cj
2.1, we get

Cj
2.1 =

1√
nj

nj∑

h=1

[
D(Xj

h)
I(Xj

h ≤ τ, Bj
h = 1)

Gzj
(Xj

h−)

Ĝzj
(Xj

h−)−Gzj
(Xj

h−)

Gzj
(Xj

h−)

]
+ op(1)

where

D(Xj
h) = lim

nj→∞
1

nj

nj∑

k=1

I(Bj
k = 0, Xj

k < Xj
h)

Szj
(Xj

k)
.

One can write
Ĝzj

(t)−Gzj
(t)

Gzj
(t)

=

nj∑

l=1

∫ t

0

Ĝzj
(u−)

Gzj
(u)

dM j
C,l(u)

Ȳ j(u)
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where

Ȳ j(u) =

nj∑
i=1

I(Xj
i ≥ u), M j

C,l(u) = I(Xj
l ≤ u, Bj

l = 0)−
∫ u

0

I(Xj
l ≥ s)dΛj

C(s),

and Λj
C(s) is the cumulative hazard function of C given Z = zj. It follows that

Cj
2.1 =

1√
nj

nj∑

l=1

∫ ∞

0

qj(u)

pj(u)
dM j

C,l(u) + op(1),

where

qj(u) = lim
nj→∞

1

nj

nj∑

h=1

D(Xj
h)

I(u ≤ Xj
h ≤ τ, Bj

h = 1)

Gzj
(Xj

h−)
and pj(u) = lim

nj→∞
Ȳ j(u)

nj

.

Similarly, one can write

Cj
2.2 =

1√
nj

nj∑

l=1

∫ ∞

0

rj(u)

pj(u)
dM j

T,l(u) + op(1),

where

rj(u) = lim
nj→∞

1

nj

nj∑

k=1

I(Bj
k = 0, Xj

k ≥ u)Pzj
(Xj

k)

Szj
(Xj

k)
,

Pzj
(Xj

k) = lim
nj→∞

1

nj

nj∑

h=1

I(Bj
h = 1, Xj

k < Xj
h ≤ τ)

Gzj
(Xj

h−)
,

and

M j
T,l(u) = I(Xj

l ≤ u,Bj
l 6= 0)−

∫ u

0

I(Xj
l ≥ s)dΛj

T (s),

Λj
T (s) is the cumulative hazard function of T given Z = zj.

In summary, we have

1√
n

UI1(β0) =
K∑

j=1

√
nj

n

(
1√
nj

nj∑

k=1

ζj
k

)
Ψzj

(β0) + op(1)

where

ζj
k = Ej

k − π(zT
j β0) +

∫ ∞

0

qj(u)

pj(u)
dM j

C,k(u) +

∫ ∞

0

rj(u)

pj(u)
dM j

T,k(u).

11



Notice that (ζj
1 , . . . , ζ

j
nj

) are zero-mean independent random variables for each j where

j = 1, . . . , K. By the multivariate central limit theorem, 1√
n
UI1(β0) has an asymptotical

normal distribution with mean 0 and covariance matrix

ΓI1 = lim
n→∞

n−1

K∑
j=1

nj∑

k=1

(ζj
k)

2 Ψzj
(β0)Ψ

T
zj

(β0).

Let β̂I1 be the solution of UI1(β) = 0. Asymptotic properties of β̂I1 can be obtained
as of β̂w∗ stated in section S4.2. According to (S4.4), n1/2(β̂I1−β0) has an asymptotically
normal distribution with mean 0 and covariance matrix VI1 = [AI1(β0)]

−1ΓI1[AI1(β0)]
−1

where

AI1(β0) = E

[
π2

φ(Z
T β0)

π(ZT β0)π̄(ZT β0)
ZZT

]
.

S4.5 Testing homogeneity of covariate effect over time

Now we illustrate how to use the results obtained for model (S1.1) to verify the assump-
tion of model (S1.2) or help choosing time-dependent covariates in that model. Let
β0(τ) be the true value of β(τ). The assumption of model (S1.2) can be verified by
testing H0 : β̃0(τ1) = β̃0(τ2) for any τ1 6= τ2, where β̃0(τ) is the last p components of
β0(τ). Specifically let

R =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




p×(p+1)

.

Applying (S4.4), we can approximate the distribution of
√

nR{β̂w∗(τ2)− β̂w∗(τ1)} under
H0 by

1√
n

R {A−1
w∗(Z

T β0(τ2)) · Uw∗(β0(τ2))− A−1
w∗(Z

T β0(τ1)) · Uw∗(β0(τ1))},

which converges to a mean-zero p-dimensional normal random variable. The correspond-
ing covariance matrix can be estimated as illustrated in section S4.2.
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Figure S.1: The cumulative incidence function of cure for three age groups:
age< 30 (−·−·−), 30 ≤age≤ 50 (——) and 50 <age (−−−).
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Figure S.2: The cumulative incidence function of cure for two groups of different gender:
female (−·−·−) and male (——).
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Figure S.3: The cumulative incidence function of cure for two groups with/without other
diseases: “without disease” (−·−·−) and “with disease” (——).
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Figure S.4: The cumulative incidence function of cure for two groups according to
whether the PCR test detected the SARS virus or not: “yes” (——) and “no” (−·−·−).
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Figure S.5: The cumulative incidence function of cure for groups with different level of
virus load (vl): vl = 0 (−···−), 0 < vl < 103 (−−−), 103 < vl < 105 (−·−·−) and
105 < vl (——).
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Figure S.6: The latency survival function of cure for two age groups: age ≤ 50 (−·−·−)
and age > 50 (——).
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p-value of
testing time

Covariate β̂1,1 β̂1,2 β̂1,3 β̂1,4 β̂1,5 θ̂ homogeneity

age
> 50 -0.763 -1.510a -1.843a -1.926a -2.409a -1.914a 0.006

(0.439) (0.340) (0.307) (0.308) (0.341) (0.276)

gender
male -0.313 -0.707a -0.811a -0.825a -1.031a -0.755a 0.476

(0.361) (0.273) (0.268) (0.276) (0.305) (0.234)

disease
with disease -0.312 -1.093a -1.494a -1.725a -1.920a -1.568a 0.007

(0.474) (0.384) (0.349) (0.350) (0.355) (0.312)

PCR
positive 0.172 -0.753a -1.328a -1.758a -2.260a -0.934a 0.000

(0.341) (0.258) (0.286) (0.330) (0.454) (0.229)

log10(viral load) -0.064 -0.207a -0.293a -0.370a -0.461a -0.264a 0.000
(0.075) (0.059) (0.061) (0.066) (0.078) (0.051)

Table S.1: Simple logistic regression analysis for assessing the effect of a covariate on
the cumulative probability of cure by time τj for j = 1, . . . , 5. The last column reports
the p-value for testing equivalence of β1,j (j = 1, . . . , 5). Items with p-values < 0.05 are
marked by a.
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Covariate τ2 τ3 τ4 τ5

Ũ
age > 50 -1.240 (0.370)a -1.478 (0.343)a -1.486 (0.355)a -2.066 (0.414)a

with disease -0.400 (0.435) -0.654 (0.417) -0.904 (0.427)a -0.854 (0.470)b

log10(viral load) -0.158 (0.061)a -0.251 (0.065)a -0.338 (0.072)a -0.464 (0.093)a

Uw∗

age > 50 -1.237 (0.462)a -1.647 (0.430)a -1.566 (0.435)a -1.885 (0.464)a

with disease -0.581 (0.521) -0.633 (0.485) -0.805 (0.460)b -0.837 (0.507)b

log10(viral load) -0.181 (0.068)a -0.286 (0.073)a -0.396 (0.082)a -0.473 (0.090)a

UI1

age > 50 -1.276 (0.435)a -1.646 (0.373)a -1.568 (0.414)a -1.925 (0.488)a

with disease -0.500 (0.567) -0.757 (0.462) -1.110 (0.509)a -1.113 (0.530)a

log10(viral load) -0.173 (0.078)a -0.251 (0.067)a -0.360 (0.090)a -0.398 (0.089)a

UI2

age > 50 -1.277 (0.435)a -1.655 (0.376)a -1.569 (0.410)a -1.947 (0.479)a

with disease -0.488 (0.556) -0.767 (0.468) -1.015 (0.502)a -1.050 (0.527)a

log10(viral load) -0.179 (0.077)a -0.259 (0.064)a -0.361 (0.087)a -0.408 (0.091)a

UF

age > 50 -1.222 (0.459)a -1.364 (0.449)a -1.291 (0.521)a -1.714 (0.639)a

with disease -0.399 (0.516) -0.505 (0.517) -0.869 (0.568) -0.910 (0.675)
log10(viral load) -0.215 (0.075)a -0.327 (0.092)a -0.443 (0.123)a -0.497 (0.181)a

Table S.2: Multiple logistic regression analysis for SARS data subject to a single run of
artificial censoring. In each cell, the estimated parameter and the estimated standard
error (in parenthesis) are given. Items with p-value < 0.05 are marked by a and with
p-value < 0.1 are marked by b.
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Covariate τ2 τ3 τ4 τ5

Ũ
age > 50 -1.240 (0.370) -1.478 (0.343) -1.486 (0.355) -2.066 (0.414)

with disease -0.400 (0.435) -0.654 (0.417) -0.904 (0.427) -0.854 (0.470)

log10(viral load) -0.158 (0.061) -0.251 (0.065) -0.338 (0.072) -0.464 (0.093)

Uw∗

age > 50 -1.279 (0.450) -1.507 (0.417) -1.530 (0.440) -2.116 (0.506)

with disease -0.393 (0.487) -0.672 (0.454) -0.941 (0.478) -1.170 (0.537)

log10(viral load) -0.158 (0.069) -0.250 (0.075) -0.339 (0.085) -0.500 (0.102)

UI1

age > 50 -1.269 (0.486) -1.502 (0.442) -1.538 (0.462) -2.115 (0.520)

with disease -0.402 (0.557) -0.699 (0.509) -0.993 (0.526) -1.174 (0.585)

log10(viral load) -0.156 (0.071) -0.247 (0.076) -0.331 (0.088) -0.442 (0.100)

UI2

age > 50 -1.270 (0.487) -1.500 (0.438) -1.540 (0.463) -2.114 (0.515)

with disease -0.404 (0.550) -0.685 (0.498) -0.989 (0.521) -1.173 (0.585)

log10(viral load) -0.157 (0.071) -0.241 (0.076) -0.333 (0.086) -0.433 (0.099)

UF

age > 50 -1.265 (0.469) -1.483 (0.480) -1.500 (0.553) -2.365 (1.099)

with disease -0.410 (0.535) -0.711 (0.550) -0.990 (0.602) -1.246 (0.955)

log10(viral load) -0.156 (0.075) -0.250 (0.098) -0.345 (0.126) -0.587 (0.346)

Table S.3: Multiple logistic regression analysis for SARS data by repeating artificial
censoring 300 times. In each cell, the average of the parameter estimates and the average
of the standard-error estimates are reported.
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Comparison criteria
Sample %

BS SD ASD CP (%) MSE RE
size censored Estimators

100 30

β̂w∗ 0.134 0.498 0.446 94.1 0.266 2.317

β̂I1 -0.070 0.455 0.474 94.0 0.212 2.909

β̂I2 -0.073 0.455 0.444 93.4 0.212 2.906

β̂F 0.134 0.774 0.841 93.4 0.617 1

100 40

β̂w∗ 0.138 0.541 0.479 94.3 0.312 3.742

β̂I1 -0.079 0.475 0.476 95.3 0.231 5.044

β̂I2 -0.077 0.474 0.481 95.7 0.231 5.062

β̂F 0.157 1.069 1.549 96.1 1.167 1

300 30

β̂w∗ 0.038 0.257 0.252 94.4 0.067 4.689

β̂I1 -0.025 0.249 0.247 95.7 0.063 5.035

β̂I2 -0.025 0.248 0.251 96.0 0.062 5.098

β̂F 0.097 0.553 0.566 93.8 0.316 1

300 40

β̂w∗ 0.048 0.280 0.270 95.1 0.081 6.940

β̂I1 -0.065 0.251 0.252 93.5 0.067 8.322

β̂I2 -0.064 0.253 0.258 94.0 0.068 8.212

β̂F 0.101 0.742 0.792 96.2 0.560 1

Table S.4: Finite-sample comparison for four estimators of β1 = 1.8 when the covariate
Z follows the standard normal distribution. The label BS denotes the average bias,
SD denotes the sample standard deviation, ASD denotes the average of the standard
deviation estimates, CP denotes the empirical coverage probabilities of nominal 95%
confidence intervals, MSE denotes the mean squared errors and RE denotes the relative
efficiency defined as the ratio of the MSE of β̂F to that of the others.
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Comparison criteria
Sample %

BS SD ASD CP (%) MSE RE
size censored Estimators

100 30

β̂w∗ 0.041 0.291 0.261 93.3 0.086 3.330

β̂I1 0.037 0.259 0.264 97.0 0.068 4.211

β̂I2 0.032 0.258 0.270 97.2 0.068 4.259

β̂F 0.090 0.529 0.607 93.2 0.288 1

100 40

β̂w∗ 0.073 0.347 0.308 93.5 0.126 3.568

β̂I1 0.049 0.311 0.317 96.4 0.099 4.521

β̂I2 0.044 0.308 0.313 96.0 0.097 4.626

β̂F 0.127 0.657 0.891 93.3 0.448 1

300 30

β̂w∗ 0.019 0.143 0.146 95.1 0.021 4.303

β̂I1 -0.028 0.124 0.140 96.5 0.016 5.543

β̂I2 -0.030 0.122 0.131 96.1 0.016 5.664

β̂F 0.059 0.293 0.292 94.2 0.089 1

300 40

β̂w∗ 0.028 0.172 0.163 94.2 0.030 6.892

β̂I1 0.015 0.167 0.168 95.6 0.028 7.443

β̂I2 0.015 0.163 0.170 95.5 0.027 7.777

β̂F 0.099 0.447 0.495 94.6 0.209 1

Table S.5: Finite-sample comparison for four estimators of β1 = 0.86 when the covariate
Z follows a uniform distribution. The label BS denotes the average bias, SD denotes the
sample standard deviation, ASD denotes the average of the standard deviation estimates,
CP denotes the empirical coverage probabilities of nominal 95% confidence intervals,
MSE denotes the mean squared errors and RE denotes the relative efficiency defined as
the ratio of the MSE of β̂F to that of the others.
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Sample size = 300, % censored = 30
Estimators of β1

type of covariate Ĝ Criteria β̂w∗ β̂I1 β̂I2 β̂F

Binary

Kernel-type
BS -0.029 -0.015 -0.001 -0.037

estimator
SD 0.319 0.316 0.315 0.323

MSE 0.103 0.100 0.099 0.105

Kaplan-Meier
BS 0.092 0.083 0.081 -0.989

estimator
SD 0.326 0.318 0.318 0.471

MSE 0.114 0.108 0.108 1.199

Standard

Kernel-type
BS -0.073 -0.066 -0.064 0.098

Normal

estimator
SD 0.254 0.245 0.244 0.260

MSE 0.070 0.064 0.064 0.077

Kaplan-Meier
BS -0.191 -0.106 -0.103 2.775

estimator
SD 0.258 0.248 0.246 1.058

MSE 0.103 0.073 0.071 8.823

Table S.6: Robustness analysis when the censoring variable depends on Z. The label BS
denotes the average bias, SD denotes the sample standard deviation and MSE denotes
the mean squared errors.
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