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Abstract: We consider estimation of multivariate densities with histograms which

are based on data-dependent partitions. We find data-dependent partitions by min-

imizing a complexity-penalized error criterion. The estimator may also be charac-

terized as a series estimator whose basis is chosen empirically. We show that the

estimator achieves minimax rates of convergence up to a logarithmic factor over

a scale of smoothness classes containing functions with anisotropic and spatially

varying smoothness. The method may also be viewed as based on the presmooth-

ing of data. We show how the optimal amount of presmoothing depends on the

spatial inhomogeneity of the density.
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1. Introduction

We consider density estimation based on i.i.d. multivariate random vectors
taking values in Rd. We estimate densities with histograms, which we define
to be rectangularwise constant estimates, and the value of the estimate in each
rectangle is taken to be the empirical probability divided by the volume of the
rectangle. The main problem is how to choose the partition defining the his-
togram in an optimal way.

Histograms with equispaced bins are not able to adapt to spatially varying
smoothness. This problem appears already in the one-dimensional case. Further-
more, in the multivariate case the density to be estimated may have anisotropic
smoothness: the density function may vary more in one direction than in the
other directions. We should choose bins to be thinner in the direction where the
density varies more.

When we choose the partition in a flexible way, then we are not so vulnerable
to the curse of dimensionality. Indeed, in high-dimensional cases accurate esti-
mation may be possible if the ”effective dimension” of the density is small. The
effective dimension could mean, for example, the number of variables with re-
spect which the density has variability. A density which is almost constant on its
support with respect to most variables would have a low effective dimension (this
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would be an extreme case of anisotropic smoothness). These types of densities
could be estimated well if we had a method of choosing the partition of the his-
togram economically: we should choose a partition which does not contain splits
in those directions where there is no variation (the partition would only delineate
the support with respect to those directions where there is no variation).

We define the histogram estimator as a minimizer of a complexity-penalized
error criterion. As the error criterion we take the empirical risk with the L2 con-
trast function, and the complexity of the histogram is defined to be the number
of sets in the partition. The set of candidate partitions is fixed, and defined by
the set of dyadic splitting sequences. Thus the estimator is similar to the dyadic
regressograms considered in Donoho (1997).

An important property of the estimator is that we can define it in two ways:
(1) as a histogram estimator, and (2) as a series estimator associated to a basis
of multivariate Haar functions. The characterization of the estimator as a series
estimator makes it possible to analyze asymptotic properties of the estimator
and the definition of the estimator as a histogram makes it possible to find a
fast algorithm for evaluating the estimates. In the histogram characterization
the partition is chosen empirically, and in the series estimator characterization
the basis is chosen empirically. Instead of thresholding the empirical coefficients
in a fixed basis, the method chooses empirically a basis where the thresholding
is performed.

We show that the estimator achieves minimax rates up to a logarithmic
factor over a scale of anisotropic smoothness classes, for the L2 loss. We consider
histograms with unequal binwidths in every direction and thus we nearly achieve
the minimax rates over smoothness classes containing functions with considerable
spatially varying smoothness. To apply the estimator we have to choose a bound
for the maximal fineness of the partitions we consider. We may increase the
flexibility of the estimator by choosing the maximal allowed resolution to be
fine. On the other hand this will increase the computational complexity of the
estimator. We shall show how the bound for the maximal fineness depends on
the spatial inhomogeneity of the density. We show also how the computational
complexity depends on this bound for the maximal fineness. The method we
propose may be seen as based on presmoothing the data since the estimator uses
only the frequencies on the partition defined by the finest resolution level.

We give some references to the previous literature on histograms with irregu-
lar data-dependent partitions, and on other spatially flexible estimation methods.

1. Multivariate regressograms. Breiman, Friedman, Olshen and Stone (1984) in-
troduced CART (Classification and Regression Trees) as a method for estimat-
ing classification and regression functions with piecewise constant estimates.
They constructed data-dependent partitions by a two-step procedure. First
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they found a set of candidate partitions by minimizing an empirical error crite-
rion in a myopic fashion, and then they chose the final partition by minimizing
an error-complexity criterion among the set of candidate partitions.
Donoho (1997) considered 2-dimensional Gaussian regression on a fixed and
regularly spaced design. He considers an estimator which is defined as a
minimizer of an error-complexity criterion. Unlike in CART, where the set
of candidate partitions is constructed empirically, he considered candidate
partitions which are obtained by sequential dyadic splitting of the rectangle
containing the support of the regression function.

2. Multivariate histograms. Density estimation with CART-type methods was
considered by Shang (1994), Sutton (1994), Ooi (2002). Hüsemann and Terrell
(1991) consider the problem of optimal fixed and variable cell dimensions in
bivariate histograms. Lugosi and Nobel (1996) present L1-consistency results
on density estimators based on data dependent partitions. Barron, Birgé and
Massart (1999) constructed a multivariate histogram which achieves asymp-
totic minimax rates over anisotropic Hölder classes for the L2 loss. Their his-
tograms had different numbers of bins in different directions, but in a single
direction bins were equispaced. A modified Akaike criterion for histogram es-
timation with irregular splits was studied in the multivariate case by Castellan
(2000) who gives oracle inequalities for Kullback-Leibler and Hellinger loss.

3. Other methods. Multivariate density estimation based on wavelet expansions
has been considered in Tribouley (1995). Neumann (2000) constructed an
estimator based on wavelet expansions which achieves minimax rates up to a
logarithmic factor over a large scale of anisotropic Besov classes in the Gaus-
sian white noise model. Kerkyacharian, Lepski and Picard (2001) consider a
kernel-based adaptation scheme to cope with anisotropic smoothness.

In Section 2 we define the estimator in two ways as a histogram, and as a
series estimator. We present an algorithm for the computation of an estimate. In
Section 3 we give the rates of convergence of the estimator. Section A. illustrates
the properties of the estimator with simulation examples. Some of the proofs are
in the Appendices.

2. Estimators

2.1. Dyadic histogram

Let X1, . . . , Xn ∈ Rd be i.i.d. random vectors whose density function we
want to estimate. A histogram with partition P is defined by

f̂(x,P) =
∑
R∈P

nR

n vol(R)
IR(x), x ∈ Rd, (2.1)
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where nR = #{Xi ∈ R} are the frequencies for the sets of the partition. We
define a collection of dyadic partition generating trees. The optimal partition
will be searched from the collection of partitions generated by these partition
generating trees.

Definition 1. A collection of dyadic partition generating trees T(R0, J), as-
sociated with a rectangle R0 ⊂ Rd, and with a bound for split numbers J =
(J1, . . . , Jd), Jl ∈ {0, 1, . . .}, consists of binary trees where each node is asso-
ciated with a rectangle, and each non-leaf node is associated with a splitting
direction in {1, . . . , d}.

1. The root node is associated with R0.

2. Let a non-leaf node be associated with rectangle R = Πd
m=1[cm, dm] and di-

rection l ∈ {1, . . . , d}. The split point is s = (dl − cl)/2. Write

R
(0)
l,s (R) = {x ∈ R : xl < s}, R

(1)
l,s (R) = {x ∈ R : xl ≥ s}.

The left child of the node is associated with R
(0)
l,s (R) and the right child is

associated with R
(1)
l,s (R).

3. In direction l at most Jl splits will be made, l = 1, . . . , d.

We make some remarks concerning the definition.

• In fact, a set of dyadic partition generating trees is completely determined by
the initial rectangle and by the splitting directions; since the splits are always
made at the midpoints of the sides of the rectangles, the association of the
nodes with rectangles is redundant.

• The simplest dyadic partition generating tree is the tree which consists only
of the root node, and this tree is the single member of T(R0, 0).

• The bound J for the split numbers implies a bound for the depth of the tree:
the depth is at most |J | =

∑d
i=1 Ji. (We define the depth of a tree to be equal

to the largest depth among the depths of its nodes, and we stipulate that the
depth of the root node is 0, the depth of the children of the root is 1, and so
on.)

• Note that a tree generating a dyadic partition may be an unbalanced tree:
some terminal nodes may have depth equal to |J | but the depth of some other
terminal nodes may be less than |J |.

Each tree in the set T(R0, J) generates a partition: the partition is the
collection of the rectangles associated with the leaf nodes of the tree. This is the
content of the definition below.
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Definition 2. (Collection of dyadic partitions.) The dyadic partition associated
to tree T ∈ T(R0, J), where T(R0, J) is defined in Definition 1, is

P(T ) = {R(t) : t ∈ Ter(T )}, (2.2)

where Ter(T ) is the set of terminal nodes of T , and R(t) is the rectangle as-
sociated to node t. The collection of dyadic partitions P = P(R0, J), with base
rectangle R0 and with depth bound J , is denoted by

P(R0, J) = {P(T ) : T ∈ T(R0, J)} . (2.3)

Complexity-penalized error criterion. Define the empirical risk of a density
estimator f̂ : Rd → R by

γn

(
f̂
)

=
1
n

n∑
i=1

γ
(
f̂ , Xi

)
, (2.4)

where γ(g, x) is the L2 contrast function,

γ(g, x) = −2g(x) + ‖g‖2
2, g : Rd → R, x ∈ Rd.

Minimization of ‖f̂ − f‖2
2 over estimators f̂ is equivalent to the minimization

of ‖f̂ − f‖2
2 − ‖f‖2

2, and minimization of γn(f̂) amounts to the minimization of
‖f̂ − f‖2

2 − ‖f‖2
2, up to the approximation

∫
Rd f̂f ≈ n−1

∑n
i=1 f̂(Xi). Indeed,

‖f̂ − f‖2
2 − ‖f‖2

2 = −2
∫
Rd

ff̂ + ‖f̂‖2
2

≈ −2n−1
n∑

i=1

f̂(Xi) + ‖f̂‖2
2

= γn

(
f̂
)

. (2.5)

A histogram f̂(·,P) is uniquely defined through its partition P, and we use the
notation

ERRn(P) = γn

(
f̂(·,P)

)
. (2.6)

We have that

ERRn(P) = −
∑
R∈P

n2
R

n2vol(R)
= −

∥∥∥f̂2(·,P)
∥∥∥2

2
. (2.7)

The complexity of a histogram is taken to be the number of sets in the partition
of the histogram. Let 0 ≤ α < ∞ and define the complexity-penalized error
criterion as

COPERRn(P, α) = ERRn(P) + α · #P. (2.8)
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The dyadic histogram is defined as a minimizer of the complexity-penalized
empirical risk, when we minimize the complexity-penalized empirical risk over
the set of dyadic partitions.

Definition 3. (Dyadic histogram.) Define the partition corresponding to pa-
rameter α as

P̂α = argminP∈P(R0,J)COPERRn(P, α), (2.9)

where P(R0, J) is defined in (2.3). The dyadic histogram is

f̂n,α = f̂( · , P̂α). (2.10)

where f̂( · ,P) is defined in (2.1).

Remark 1. The estimator depends, besides the smoothing parameter α, on the
maximal directionwise split numbers J , and on the initial rectangle R0. Theorem
1 gives conditions for the choice of these parameters. In particular, α and J will
depend on the sample size n. In Theorem 1 we take R0 = [0, 1]d, but in practice
one would estimate R0. A reasonable choice is to define R0 as the smallest
rectangle, containing the observations, whose sides are parallel to the coordinate
axis.

2.2. Series estimator

We define a series estimator by using a basis of Haar wavelets. We prove
that the series estimator is in fact identical with a dyadic histogram. A dyadic
histogram is a useful representation of the estimator when we want to find algo-
rithms for the calculation of the estimates. The representation of the estimator
as a series estimator is useful when we want to find its asymptotic properties.

Let
f̃(x,W,Θ,B) = I[0,1]d(x) +

∑
φ∈B

wφθφφ(x), x ∈ Rd, (2.11)

where B is an orthonormal system of functions in L2([0, 1]d), W = (wφ)φ∈B ∈
{0, 1}B, Θ = (θφ)φ∈B ∈ RB. Vector W chooses a subset of B and vector Θ gives
the coefficients of the expansion. We assume that

∫
[0,1]d φ = 0 for all φ ∈ B and,

since we estimate densities, we may include the indicator I[0,1]d in all expansions.

Multivariate Haar wavelets. The univariate Haar scaling function is η(0) =
I[0,1], and the univariate Haar wavelet is η(1) = I[1/2,1) − I[0,1/2). Let

η
(ι)
jm,km

(t) = 2
jm
2 η(ι)(2jmt − km), t ∈ [0, 1],

with ι ∈ {0, 1}, jm ∈ {0, 1, . . .}, and km ∈ {0, . . . , 2jm − 1}. Let

φ
(l)
j,k(x) = η

(1)
jl,kl

(xl)Πd
m=1,m6=lη

(0)
jm,km

(xm), x = (x1, . . . , xd) ∈ Rd, (2.12)
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where l ∈ {1, . . . , d}, j = (j1, . . . , jd) ∈ {0, 1, . . .}d, k = (k1, . . . , kd) ∈ Kj , and

Kj = {k = (k1, . . . , kd) : kl = 0, . . . , 2jl − 1, l = 1, . . . , d} (2.13)

is the set of translation coefficients corresponding to resolution index j. Function
Πd

m=1η
(0)
jm,km

(xm) is (a constant times) the indicator of a rectangle but we have

multiplied by Haar wavelet η
(1)
jl,kl

(xl) in (2.12).

Dyadic rectangles. Write the rectangle corresponding to the pair of multi-
indeces (j, k) ∈ {0, 1, . . .}d × Kj as

Rjk = Πd
l=1

[
kl

2jl
,

kl + 1
2jl

)
, (2.14)

where Kj is defined in (2.13). We have defined in Definition 1 a collection of
dyadic partition generating trees; when the root node is associated with rectangle
[0, 1)d, then every node of the tree is associated with a dyadic rectangle. We have
a bijective correspondence between dyadic rectangles and pairs of multi-indeces,
defined by (2.14). We denote by I(t) the pair of multi-indeces associated with a
node, that is, when a node is associated with rectangle Rjk, then I(t) = (j, k).

Collection of pre-bases.
Definition 4 of a collection of pre-bases is a counterpart of Definition 2. A

difference is that now we take the initial rectangle R0 = [0, 1)d.
In (2.2) we defined the partition associated with a partition generating tree,

we define analogously a pre-basis B(T ) associated with a partition generating
tree. Collection B(T ) is a finite orthonormal system and

∫
[0,1]d φ = 0 for each

φ ∈ B(T ). We call these collections “pre-bases”, since it is possible to extend
them to be bases of L2([0, 1]d).

Definition 4. (Collection of pre-bases.) When T ∈ T([0, 1]d, J) is a dyadic
partition generating tree, and t is a node of T , let s(t) ∈ {1, . . . , d} be the
direction associated with t and let I(t) be the pair of multi-indeces associated
with t. Denote by NT (T ) the set of non-terminal nodes of T . The pre-basis
associated to tree T is

B(T ) =
{

φ
(s(t))
I(t) : t ∈ NT (T )

}
, (2.15)

where φ
(l)
j,k is defined in (2.12). The collection of pre-bases L(J ), with depth

bound J = (J1, . . . , Jd), is

L(J) =
{
B(T ) : T ∈ T([0, 1]d, J)

}
. (2.16)
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Collection of tree weights.
We define a series estimator whose terms are a subset of a pre-basis B(T ).

The series estimator is defined with the help of 0-1-weights that fix a subset
of the pre-basis. In order for the series estimator to be equivalent to a dyadic
histogram we need a restriction on the weights of the series estimator. The pre-
basis B(T ) is associated with tree T and we require that the weights are such
that they correspond to a pruning of the associated tree. The collection of tree-
weights Wtree,J = Wtree,J(B), associated with B ∈ L(J), is the set of vectors
W = (wφ)φ∈B ∈ {0, 1}B, which satisfy the condition that a weight can be zero
only when all the “ancestor” weights are zero at the coarser resolution levels.
Define

Wtree,J =
{
(wφ)φ∈B ∈ {0, 1}B : if wφ = 0 then wφ′ = 0 for all φ′ ⊂ φ

}
. (2.17)

Here φ′ ⊂ φ means for φ = φ
(s(t))
I(t) , φ′ = φ

(s(t′))
I(t′) ∈ B, that RI(t′) ⊂ RI(t), where

Rjk is defined in (2.14).
When φ′ ⊂ φ, we say that φ′ is a child of φ. The tree condition says that

if wφ = 0, then wφ′ = 0 for all children φ′ of φ. Choosing a subset of B(T )
with the help of weights W ∈ Wtree,J(B(T )) is equivalent to the pruning of tree
T ∈ T([0, 1]d, J).

Definition of the series estimator.
Analogously to (2.8), consider a complexity-penalized error criterion

En(W,Θ,B, α) = γn

(
f̃(·,W,Θ,B)

)
+ α · D(W ), (2.18)

where γn is defined in (2.4), and the complexity penalization is taken to be the
number of terms in the expansion:

D(W ) = #{wφ : wφ = 1} + 1, (2.19)

where W = (wφ)φ∈B ∈ {0, 1}B. We have added 1 in the definition of D(W ) since
the function I[0,1]d is also in the expansion (2.11). The series estimator f∗

n,α is a
minimization estimator where we search a best pre-basis B∗

n,α and a best sub-set
of B∗

n,α so that the tree condition is satisfied. The coefficients of the expansion
are given by the empirical coefficients Θn(B):

Θn(B) =
(
θ̂φ

)
φ∈B

, θ̂φ =
1
n

n∑
i=1

φ(Xi). (2.20)

Definition 5. (Dyadic series estimator.) The empirical choice for the basis B
and for the coefficient vector W is given by(

B∗
n,α,W ∗

n,α

)
= argminB∈L(J),W∈Wtree,J (B)En(W,Θn(B),B, α). (2.21)
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The dyadic series estimator is

f∗
n,α(x) = f̃

(
x,W ∗

n,α, Θn(B∗
n,α),B∗

n,α

)
, x ∈ Rd, (2.22)

where f̃(·,W,Θ,B) is defined in (2.11).

2.3. Equivalence between estimators

We prove that the a dyadic histogram is equivalent to a series estimator.

Lemma 1. We have that f̂n,α = f∗
n,α, where f̂n,α is defined in (2.10) and f∗

n,α is
defined in (2.22), when the initial rectangle of the dyadic histogram is R0 = [0, 1)d.

A proof of Lemma 1 may be found in the technical report. See also Engel
(1994).

2.4. Algorithms and computational complexity

Let us discuss algorithms for solving the minimization problem (2.9). The
solution is the partition defining the estimator. One may solve the minimization
problem by first building a large multitree which contains all paths leading to
partitions, and then pruning the tree.

2.4.1. Growing the tree
First we construct a multitree with a single root node and at most 2d children

for every node. The root node will correspond to the initial rectangle R0. We
have d ways of choosing the splitting direction and each binary split gives two
bins. Thus 2d children will represent the rectangles resulting from the binary
splits in d directions. At most Jl splits will be made in direction l, thus the
depth of the tree will is |J |max = maxl=1,...,d |Jl|. We record the number of
observations nR in each bin R, and calculate −n2

R/(n2vol(R)), so that we are
able to calculate (2.7) for all partitions. When some bin is empty of observations
we do not split it further. The resulting tree has at most

|J |max∑
i=0

(2d)i = O
(
(2d)|J |nax

)
(2.23)

nodes. For the choice J = Jn as in (3.4), there are O
(
na log2(2d)

)
nodes in the

tree.

2.4.2. Pruning the tree
To prune the tree we start from the next to the highest level, and travel to

the root node one level at a time. For each node we find out whether the split
in some of the d directions helps (whether it results in a smaller complexity-
penalized error criterion). If the split does not help, we cut the tree below the
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node. This is a multivariate version of the Fast algorithm for Dyadic CART given
in Donoho (1997). The number of flops required by the algorithm is bounded by
the number of nodes of the tree given in (2.23).

We formulate a lemma which states that the minimization problem is solved
by this bottom-up algorithm.

Lemma 2. Let T be the tree grown in Section 2.4.1. Let t be some non-terminal
node of T and til, i = 1, 2, l = 1, . . . , d, be the children of t. Denote with Rt and
Ril, respectively, the rectangles associated with these nodes. Denote the partition
minimizing the complexity-penalized error criterion, when we localize to rectangle
R which is associated with a node of T , by

P̂n,α(R) = argminP∈P̃(R)COPERRn (P, α) ,

where P̃(R) is the set of partitions P(R, J ′) and J ′ = J−depth(R), where depth(R)
is the vector of the number of splits which has been made in each direction to reach
R. Let

M = min {COPERRn ({Rt}, α) ,

COPERRn

(
P̂n,α(R1l), α

)
+ COPERRn

(
P̂n,α(R2l), α

)
, l = 1, . . . d

}
.

Then,

P̂n,α(Rt) =


{Rt}, when M = COPERRn ({Rt}, α) ,

P̂α(R1l) ∪ P̂α(R2l), when

M = COPERRn

(
P̂n,α(R1l), α

)
+ COPERRn

(
P̂n,α(R2l), α

)
.

Proof. When Pil ∈ P̃(Ril), i = 1, 2, l = 1, . . . , d, then

COPERRn (P1l ∪ P2l, α) = COPERRn (P1l, α) + COPERRn (P2l, α) . (2.24)

Indeed, P1l and P2l are partitions of disjoint rectangles and thus (2.24) follows
from (2.7) and the fact that #(P1l ∪ P2l) = #P1l + #P2l. On the other hand

P̃(Rt) = {{Rt}} ∪
{
P1l ∪ P2l : Pil ∈ P̃(Ril), i = 1, 2, l = 1, . . . , d

}
.

We have proved the lemma.

Remark 2. In particular, when we choose t in Lemma 2 to be the root of tree
T , then Rt = R0 and P̂n,α(R0) = P̂n,α is the global solution defined in (2.9).

Remark 3. In higher-dimensional cases one could modify the definition of the
dyadic histogram in order to get an estimator with less computational complexity
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and less memory requirements. One possibility is to use CART type algorithms,
as in Breiman, Friedman, Olshen and Stone (1984). CART has been used in the
case of estimation of classification and regression functions, but the algorithm
can be applied also in the case of density estimation. The algorithm for the
calculation of regression trees would be modified by replacing the sum of the
squared prediction errors by the negative log-likelihood or by the L2 empirical
error, and regressograms would be replaced by histograms.

In CART one constructs empirically (using a greedy algorithm) a sequence of
nested partitions, and the final partition is found from this sequence by minimiz-
ing the complexity-penalized empirical error. In the case of dyadic histograms
one is minimizing the complexity-penalized empirical error over a much larger
collection of partitions. Thus one could try to speed up the algorithm by finding
various ways to reduce the size of the collection of partitions. The challenge would
be to try to reduce the size of the collection of partitions, but simultaneously not
to lose the good theoretical properties of dyadic histograms.

3. Rates of Convergence

We prove that the estimator achieves optimal rates of convergence up to a
logarithmic factor over anisotropic Besov classes Bsp(L). The parameter p =
(p1, . . . , pd) of the Besov ball may be such that pl < 2 for each l = 1, . . . , d. In
order to reach optimal rates of convergence over such function classes containing
functions with high spatial variability, it is essential that the bin widths have
variable length in any single direction. We denote the intersection of the Besov
ball with the set of bounded densities as

F = Fsp(L,B∞) = Bsp(L) ∩
{

f :
∫

[0,1]d
f = 1, 0 ≤ f ≤ B∞

}
, (3.1)

where 0 < B∞ < ∞. We define the anisotropic Besov ball Bsp(L), where s =
(s1, . . . , sd) ∈ (0, 1]d, p = (p1, . . . , pd) ∈ [1,∞]d, 0 < L < ∞, to be the set of
functions f : [0, 1]d → R satisfying, for l = 1, . . . , d,

‖Dl
hf‖Lpl

(Al
h) ≤ Lhsl .

Here 0 < h < 1, Dl
hf(x) = f(x + hel) − f(x), el ∈ Rd with the l:th coordinate

one and the other coordinates zero, and

Al
h = {(x1, . . . , xd) : 0 ≤ xm ≤ 1,m 6= l, 0 ≤ xl < 1 − h}. (3.2)

For more on anisotropic Besov spaces, see Nikol’skii (1975).
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The result. The exponent r of the optimal rate of convergence and the anisotropic
smoothness index σ are defined by

r =
σ

2σ + 1
, σ =

( d∑
l=1

s−1
l

)−1
. (3.3)

Besides the smoothing parameter α, the estimator depends on the vector of
maximal directionwise split numbers J and we take

Jn = (Jn,1, . . . , Jn,d), Jn,l =
⌈

σ

sl
a log2 n

⌉
, (3.4)

where a ≥ 0 is the fineness parameter. The initial rectangle of the dyadic his-
togram is R0 = [0, 1]d.

Theorem 1. Let X1, . . . , Xn be i.i.d. observations from the density f ∈ F .
When sl, pl, and the fineness parameter a in (3.4) are such that

σ − (
1
pl

− 1
2
)+ > 0, l = 1, . . . , d, (3.5)

σ

2σ + 1
1

σ − ( 1
pl
− 1

2)+
< a < 1, l = 1, . . . , d, (3.6)

then

lim sup
n→∞

(
n

loge n

)2r

sup
f∈F

Ef

∫
[0,1]d

(
f − f̂n,αn

)2
< ∞,

where f̂n,α is defined in (2.10),

αn = CB∞
loge n

n
, (3.7)

and C > 0 is a sufficiently large constant.

A proof of Theorem 1 is given in Section 3.1.

Remark 4. (Adaptiveness of the estimator.) The choice of penalization param-
eter α in Theorem 1 does not depend on the smoothness parameters s1, . . . , sd,
nor on p1, . . . , pd, or L. Vector J depends on s1, . . . , sd, and on the fineness pa-
rameter a. The lower bound for a depends on the parameters sl and pl, but we
may take a arbitrarily close to 1.

Remark 5. (The fineness parameter and restrictions on the smoothness.) Be-
cause si ≤ 1 we have σ ≤ 1/d. By (3.5), σ > (1/pl − 1/2)+. Thus, Theorem 1
holds only for σ satisfying

max
l=1,...,d

(
1
pl

− 1
2

)
+

< σ ≤ 1
d

.
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pl pl

d = 2 d = 4

Figure 1. The admissible range C of σ and pl for a) d = 2 and b) d = 4.

For large values of d, parameters pl cannot be much smaller than 2. When
minl=1,...,d pl ≥ 2, Theorem 1 holds for 0 < σ ≤ 1/d. Figure 1 shows the possible
values of (pl, σ) ∈ [1, 2]×[0, d−1] for a) d = 2 and (b) d = 4. Region A is the region
where condition (3.5) is violated, so that σ ≤ (1/pl − 1/2)+. Region B is the
region where condition (3.6) may not be satisfied because c′ = [σ/(2σ + 1)][σ −
(1/pl − 1/2)+]−1 > 1. Region C is the region where condition (3.5) is satisfied
and c′ ≤ 1.

3.1. Proof of Theorem 1

Since dyadic histograms are equivalent to dyadic series estimators, as proved
in Lemma 1, it is enough prove the theorem for the series estimator. We go
through the steps of the proof and after that we give details for the proofs of
Step 2 and Step 4. Details for Step 1 are given in Appendix B and Step 3 is
proved in the technical report.

Step 1. (Application of an oracle inequality.) The first step is to bound the
MISE of the estimator by a minimal complexity-penalized approximation error.
We have for the series estimator f∗

n,αn
, for continuous densities f : [0, 1]d → R,

that
Ef

∥∥f∗
n,αn

− f
∥∥2

2
≤ C1 min

(W,Θ,B)∈K0

K(f,W,Θ,B, αn) + C2n
−1, (3.8)

where C1 and C2 are positive constants,

K(f,W,Θ,B, α) =
∥∥∥f̃( · ,W,Θ,B) − f

∥∥∥2

2
+ α · D(W ), (3.9)
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and

K0 =
{

(W,Θ,B) ∈ W(B) × RB × L : ‖f̃(·,W,Θ,B)‖∞ ≤ 2B∞

}
, (3.10)

where W(B) = Wtree,Jn(B), L = L(Jn), and B∞ > ‖f‖∞ is a positive constant.
Eq. (3.8) is proved in Appendix B.
Step 2. (Choosing a basis.) We bound the approximation error by finding a
pre-basis B∗

αn
∈ L(Jn), which is in a sense the best pre-basis for f ∈ Bsp(L).

After fixing the pre-basis to be B∗
αn

, we choose the vector of coefficients to be the
coefficients of f in the pre-basis B∗

αn
; Θ = Θf (B∗

αn
), where

Θf (B) =
(∫

Rd

fφ

)
φ∈B

. (3.11)

We have the upper bound

min
(W,Θ,B)∈K0

K(f,W, Θ,B, αn) ≤ min
W∈W(B∗

αn
)
K(f,W,Θf (B∗

αn
),B∗

αn
, αn),

where W(B∗
αn

) = Wtree,Jn(B∗
αn

).

Step 3.
The minimization is restricted to the tree weights. One may show that

this restriction does not greatly increase the complexity-penalized approximation
error: we do not get much better approximation by minimizing the weights over
a larger collection of weights. When (3.5) holds,

sup
f∈Bsp(L)

min
W∈Wtree,Jn (B∗

αn
)
K(f,W, Θf (B∗

αn
),B∗

αn
, αn)

≤ C sup
f∈Bsp(L)

min
W∈{0,1}B

∗
αn

K(f,W, Θf (B∗
αn

),B∗
αn

, αn) (3.12)

for a positive constant C, depending on s, p, L, d. A proof of (3.12) may be found
in the technical report. See also Donoho (1997).
Step 4. The last step is to bound the complexity-penalized approximation error
in (3.12). We have that

sup
f∈Bsp(L)

min
W∈{0,1}B

∗
αn

K(f,W,Θf (B∗
αn

),B∗
αn

, αn) ≤ Cα2r
n . (3.13)

This proves the theorem by the choice of αn in (3.7).

3.1.1. Step 2
We define a best basis for the approximation of functions in Bsp(L). Let

h : {1, 2, . . .} → {1, . . . , d}. We apply h as a direction selection rule, for choosing
trees and multi-indeces:
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• Every tree in T([0, 1]d, J) is uniquely determined by the splitting directions.
Let Th,M be the partition generating tree determined by the following rules.
1. Split the root node in direction h(1).
2. The 2m nodes at depth m are splitted in direction m+1, for m ∈ {0, . . . ,M−

1}.
• For any direction selection rule h, we denote the corresponding sequence of

multi-indeces J = Jh : {0, 1, . . .} → {0, 1, . . .}d, by J = (j1, . . . , jd), where
jl(m) is the number of times direction l was chosen by h up to step m: jl(0) = 0
and

jl(m) = #{m′ ≤ m : h(m′) = l}, m = 1, 2, . . . , (3.14)

l = 1, . . . , d.

(Definition of h∗.) We focuse on a direction selection rule h∗ that depends on
the vector of smoothness indeces s = (s1, . . . , sd) of the anisotropic Besov space
Bsp(L). Define the sequence Z(m) = Zs(m) = (z1(m), . . . , zd(m)) ∈ [0,∞)d,
m = 0, 1, . . ., satisfying Z(0) = (0, . . . , 0), and{

z1(m)s1 = · · · = zd(m)sd

z1(m) + · · · + zd(m) = m.
(3.15)

That is, Z(1) ∈ {x ∈ [0,∞)d : x1s1 = · · · = xdsd} is such that
∑d

l=1 zl(1) = 1,
and Z(m) = mZ(1) for m ≥ 1 integer. We take h∗ so that J ∗ = Jh∗ is an
approximation to Zs, taking values on a grid. The direction selection rule h∗ is
defined by the following rules.

1. Choose h∗(1) = argmaxl∈{1,...,d}zl(1), that is, h∗(1) = argminl∈{1,...,d}sl.

2. Write J ∗(m) = (j∗1(m), . . . , j∗d(m)). Define for m = 1, 2, . . .,

h∗(m + 1) = argmaxl∈{1,...,d}zl(m) − j∗l (m).

That is, we choose the direction where J ∗(m) is furthest below from Z(m).

Then zl(m)sl = mσ, for l = 1, . . . , d, and

j∗l (m)sl ∼ mσ (3.16)

as m → ∞, where σ is defined in (3.3). This means that the proportion in which
direction l was chosen, j∗l (m)/m, is approximately equal to σ/sl.

(Definition of the pre-basis.) We choose

M∗
αn

=
[
a log α−1

n

]
.
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We have, see (3.16),

j∗l (M∗
αn

) ≤ Jn,l, l = 1, . . . , d, (3.17)

Th∗,M∗
αn

∈ T([0, 1]d, Jn). (3.18)

With
B∗

αn
= B(Th∗,M∗

αn
), (3.19)

(3.18) implies that B∗
αn

∈ L(Jn). Take

B∗ =
{

I[0,1]d

}
∪ B (Th∗,∞) (3.20)

as a spatially homogeneous anisotropic basis. A proof that B∗ is a basis of
L2([0, 1]d) may be found in the technical report.

3.1.2. Step 4
Largeness of the wavelet coefficients in basis B∗.

We need a bound on the coefficients
∫
[0,1]d fφ, φ ∈ B∗. To give the bound it

is convenient to write the basis in terms of Haar-basis functions. We have that

B∗ =
∞⋃

m=0

{
φ

(h∗(m+1))
J ∗(m),k : k ∈ KJ ∗(m)

}
,

where the φ
(l)
j,k are defined in (2.12) and the Kj in (2.13). We denote the coeffi-

cients of f by

τmk =
∫

[0,1]d
fφ

(h∗(m+1))
J ∗(m),k , (3.21)

where m = 0, 1, . . . and k ∈ KJ ∗(m).

Lemma 3. Let f ∈ Bsp(L), s = (s1, . . . , sd) ∈ (0, 1]d, p = (p1, . . . , pd) ∈ [1,∞]d.
Then we have, for m = 0, 1, . . ., that ∑

k∈KJ∗(m)

|τmk|p̃l∗m

 1
p̃l∗m

≤ 2
d
2 L2

−m(σ+ 1
2
− 1

p̃l∗m
)
, (3.22)

where we use the notation l∗m = h∗(m + 1) and

p̃l = min{pl, 2}, l = 1, . . . , d. (3.23)

A proof of Lemma 3 may be found in the technical report.
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Lemma 4. Let (3.5) be satisfied, and let ã satisfy

ã >
σ

2σ + 1
1

σ − (1
p l

− 1
2)+

, l = 1, . . . , d. (3.24)

Let M = Mα be an integer satisfying

Mα ≥ ã log2 α−1 (3.25)

and let B∗
α = B(Th∗,Mα). Then

sup
f∈Bsp(L)

min
W∈{0,1}B∗

α

K (f,W, Θf (B∗
α),B∗

α, α) ≤ Cα2r (3.26)

for a positive constant C, depending on s, p, L, d, when 0 < α < 1 is sufficiently
small, where r = σ/(2σ + 1) is defined in (3.3).

Lemma 4 is proved in Appendix C; and (3.13) follows from it.
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