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Abstract: Calibration estimation, which can be roughly described as a method of

adjusting the original design weights to incorporate the known population totals

of the auxiliary variables, has become very popular in sample surveys. The cali-

bration weights are chosen to minimize a given distance measure while satisfying

a set of constraints related to the auxiliary variable information. Under simple

random sampling, Chen and Qin (1993) suggested that the calibration estimator

maximizing the constrained empirical likelihood can make efficient use of the aux-

iliary variables. We extend the result to unequal probability sampling and propose

an algorithm to implement the proposed procedure. Asymptotic properties of the

proposed calibration estimator are discussed. The proposed method is extended to

the stratified sampling. Results from a limited simulation study are presented.
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1. Introduction

In samples selected from a finite population, auxiliary variables with known
population totals are often observed. The known population totals usually come
from external sources such as administrative data or a census. Calibration es-
timation, which can be roughly described as a method of adjusting the origi-
nal design weights to incorporate the known population totals of the auxiliary
variables, has become very popular in sample surveys. Generally speaking, the
calibration procedure chooses the adjusted weights that minimize a distance be-
tween the original weights and the adjusted weights, while satisfying a set of
constraints related to the auxiliary variable information. Fuller (2002) provides
a comprehensive overview of the calibration procedure in sample surveys.

From a purely mathematical point of view, the calibration estimation prob-
lem is a standard optimization problem with constraints and, given the con-
straints, the choice of the objective function determines the properties of the re-
sulting estimator. The classical regression estimator described in Cochran (1977)
uses a Euclidian distance function. Deville and Särndal (1992) gave conditions for
the distance functions to produce calibration estimators that are asymptotically
equivalent to the regression estimator.
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In addition to the above interpretation of minimizing a distance function,
the calibration estimator can sometimes be viewed as a maximum likelihood
estimator. Anderson (1957) derived the regression estimator as a maximum
likelihood estimator under the bivariate normal distribution assumption. Hartley
and Rao (1968) used a multinomial distribution for distinct sample values and
proposed a scale-load estimator that can be obtained as a constrained maximum
likelihood estimator. The empirical likelihood, so named by Owen (1988), is
essentially the likelihood of the multinomial distribution used in Hartley and
Rao (1968), where the parameters are the point masses assigned to the distinct
sample values. Under simple random sampling, Chen and Qin (1993) proposed
a calibration estimator that maximizes the empirical likelihood with constraints.
Chen and Sitter (1999) extended the method to unequal probability designs using
a pseudo empirical likelihood function. In this paper, we propose a new type of
empirical likelihood calibration estimator that preserves the maximum likelihood
interpretation under Poisson sampling. The hope is that the resulting estimator
is still efficient under other unequal probability sampling. The objective function
we consider is different from that of Chen and Sitter (1999) and thus the two
estimators have different asymptotic properties.

In Section 2, the basic setup is introduced and the proposed method is de-
scribed. In Section 3, asymptotic properties of the proposed estimator are dis-
cussed. The proposed method is extended to the stratified sampling in Section
4. In Section 5, results from a simulation study are presented.

2. Empirical Likelihood Calibration Equation

We begin by introducing the notion of empirical likelihood in a simple setup.
Let y1, . . . , yn be the outcomes of independently and identically distributed (IID)
random variables from a continuous distribution function F0 ∈ F . We consider a
class F1 ⊂ F of distribution functions that have support on {y1, . . . , yn}. Thus,
the elements in F1 can be written as

Fw (x) =
n∑

i=1

wiI (yi ≤ x) (2.1)

with
∑n

i=1 wi = 1 and wi ≥ 0, where I (yi ≤ x) takes the value one if yi ≤ x

and takes the value zero otherwise. The parameter wi is the amount of point
mass that unit yi represents in the population. That is, wi = F0 (yi) − F0 (yi−),
where F0 is the true distribution function. Note that Fw (y) is a distribution
function, not an estimator, indexed by the set of parameters w1, . . . , wn. For any
parameter of the form θ = θ (F0), the estimator F̂ of F0 can be used to estimate
θ by θ̂ = θ(F̂ ). For a parameter θ linear in y in the population, the estimator θ̂
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using the class of distributions (2.1) leads to a linear estimator that is linear in
y in the sample. Linear estimation is very popular in sample surveys because it
provides internal consistency between estimators for several items.

The empirical distribution function, defined for wi = n−1 in (2.1), given no
ties, is the nonparametric maximum likelihood estimator (NPMLE) of F0, since
it maximizes

L (w) =
n∏

i=1

wi (2.2)

over all wi’s satisfying
∑n

i=1 wi = 1 and wi ≥ 0. Note that if the wi are known
functions of a fixed number of unknown constants then (2.2) is the usual para-
metric likelihood function. For any parameter of the form θ = θ (F ), the NPMLE
F̂ of F0 can be used to compute the NPMLE of θ by θ̂ = θ(F̂ ).

If we observe the auxiliary variable xi in the sample and the population
mean of xi is known, denoted by µx, the additional information of µx can be
used to construct a constrained NPMLE of F0. Chen and Qin (1993) proposed
computing the constrained NPMLE of F0 by solving

maximize
n∑

i=1

log (wi) (2.3)

subject to
n∑

i=1

wi (1, xi) = (1, µx) and wi ≥ 0,∀i. (2.4)

The constrained NPMLE for θ = θ (F0) can be computed from the NPMLE of
θ by θ̂ = θ

(
F̂ ∗

)
, where F̂ ∗ is the cumulative distribution function using the

solution w∗
i in (2.3) and (2.4).

We now consider an extension of the constrained NPMLE to samples se-
lected from a finite population with unequal selection probabilities. Since direct
computation of the empirical likelihood function involves higher order inclusion
probabilities, we consider an approximation by Poisson sampling. Let Y1, . . . , YN

be the vector of realized values of the finite population with the cumulative dis-
tribution function F0 = N−1

∑N
i=1 I (Yi ≤ x). Since we have assumed F0 ∈ F1,

we can write

F0 (x) =
n∑

i=1

wiI (yi ≤ x) (2.5)

for some wi’s. Assume that the sample is a result of N independent Bernoulli
trials where πi = π (Yi) is the probability of selecting unit i. If we use y to
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denote the sample value and use Y to denote the population value, the sample
distribution function under Poisson sampling can be written

Pr (y ≤ x) = Pr [Y ≤ x | U ≤ π (Y )]

=
Pr [Y ≤ x,U ≤ π (Y )]

Pr [U ≤ π (Y )]

=

∫ x
−∞

∫ π(Y )
0 dudF0∫ ∞

−∞
∫ π(Y )
0 dudF0

,

where U is a random variable whose distribution is U(0, 1). By (2.5), the above
probability can be written

Pr (y ≤ x) =

∑
{i; yi≤x} πiwi∑n

j=1 πjwj
.

Thus, the empirical likelihood under Poisson sampling can be written

L (w) =
n∏

i=1

(
πiwi∑n

j=1 πjwj

)
, (2.6)

with
∑n

i=1 wi = 1, wi ≥ 0, and, without loss of generality, the first n elements are
selected. The maximum likelihood estimator of wi using the empirical likelihood
(2.6) is

w∗
i =

π−1
i∑n

j=1 π−1
j

, (2.7)

which reduces to the Hájek estimator of the population mean. The empirical
likelihood function in (2.6) can be found in length-biased sampling, where πi ∝ Yi.
See, for example, Vardi (1985), Qin (1993) and Kong et al. (2003). When the
unequal probability sampling design is well approximated by a Poisson sampling,
the empirical likelihood function (2.6) can be a good approximation to the actual
likelihood function.

Using the likelihood function (2.6), the empirical likelihood calibration esti-
mator can be derived as a constrained NPMLE for the distribution function of
the finite population. The constrained maximization problem can be formulated
as maximizing (2.6) subject to the constraints in (2.4). The objective function
to be minimized is, by the Lagrange multiplier method,

Q(w) =
n∑

i=1

log(πiwi)−n log
( n∑

i=1

πiwi

)
− λ1

( n∑
i=1

wi−1
)
−nλ2

( n∑
i=1

wixi−µx

)
.
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Setting the partial derivative of Q with respect to wi equal to zero and using∑n
i=1 wi (∂Q/∂wi) = 0, the solution satisfies

w∗
i =

1

n
(

πi
P

j w∗
j πj

)
+ nλ2 (xi − µx)

. (2.8)

Therefore, the constrained NPMLE of wi can be written

w∗
i =

1
n
× 1

λ̂1π̃i + λ̂2 (xi − µx)
, (2.9)

where π̃i = (N̂/n)πi with N̂ =
∑n

i=1 π−1
i , and the λi (i = 1, 2) are the solutions

to
n∑

i=1

w∗
i (1, xi) = (1, µx) (2.10)

with w∗
i > 0 for all i = 1, . . . , n. Note that w∗

i defined at (2.9) with (2.10) satisfy
(2.8). A modified Newton-Raphson method can be used to solve the nonlinear
equations (2.10). See, for example, Chen, Sitter and Wu (2002).

Chen and Sitter (1999) also considered unequal probability sampling and
proposed the pseudo empirical likelihood estimator. Instead of maximizing (2.6),
they proposed maximizing

L (w) =
n∑

i=1

1
πi

log (wi) , (2.11)

subject to the same constraints (2.4). The resulting pseudo empirical maximum
likelihood estimator (PEMLE) for the mean of y is ȳPEMLE =

∑n
i=1 w∗

i yi where

w∗
i =

1

πi

(
λ̂1 + λ̂2xi

) (2.12)

and the λ̂k (k = 1, 2) satisfy (2.4). When the sampling mechanism is well ap-
proximated by a Poisson sampling, we expect that our method is more efficient
in large samples. Efficiency will be investigated further in the next section.

3. Asymptotic Properties

We now study the asymptotic properties of the calibration NPMLE estimator
of the population mean. To discuss the asymptotic properties of the empirical
likelihood estimator, assume a sequence of finite populations with finite fourth
moments as defined in Isaki and Fuller (1982).
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Assume the sampling mechanism satisfies

K1 < max
i

{
n−1Nπi

}
< K2 (3.1)

for some positive constants K1 and K2. Define ui = xi − µx and assume that

max
i

|ui| = op

(
n

1
2

)
, (3.2)

∑n
i=1 π−1

i ui∑n
i=1 π−1

i u2
i

= Op

(
n− 1

2

)
. (3.3)

Under the assumptions (3.1)-(3.3), Chen and Sitter (1999) proved that their
pseudo empirical likelihood estimator is asymptotically equivalent to the gener-
alized regression (GREG) estimator

ȳGREG = ȳπ + (µx − x̄π) B̂, (3.4)

where

(x̄π, ȳπ) =

(
n∑

i=1

π−1
i

)−1 n∑
i=1

π−1
i (xi, yi) ,

B̂ =
∑n

i=1 π−1
i (xi − x̄π) (yi − ȳπ)∑n

i=1 π−1
i (xi − x̄π)2

.

The following theorem states some asymptotic properties of the calibration
NPMLE using the weights in (2.9) with (2.10).

Theorem 1. Under the assumptions (3.1)−(3.3), the NPMLE of the mean of y

is asymptotically equivalent to

ȳopt = ȳπ + (µx − x̄π) B̂∗, (3.5)

where B̂∗ =
∑n

i=1 π−2
i (xi − x̄π) (yi − ȳπ) /

∑n
i=1 π−2

i (xi − x̄π)2 , and (x̄π, ȳπ) is
defined after (3.4).

The proof of the Theorem is given in Appendix A.
Note that the NPMLE is motivated by Poisson sampling, but the result in

Theorem 1 does not require it. Since B̂∗ = Op (1), consistency of the NPMLE
follows directly. Under Poisson sampling,

Ĉ (x̄π, ȳπ) = N̂−2
n∑

i=1

(
π−2

i − π−1
i

)
(xi − x̄π) (yi − ȳπ) ,

V̂ (x̄π) = N̂−2
n∑

i=1

(
π−2

i − π−1
i

)
(xi − x̄π)2 ,
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with N̂ =
∑n

i=1 π−1
i , are consistent estimators of Cov (x̄π, ȳπ) and V ar (x̄π),

respectively. Thus, if the Poisson sampling design is such that

max
i

πi = o (1) , (3.6)

the B̂∗ in (3.5) estimates [V ar (x̄π)]−1 Cov (x̄π, ȳπ). Thus, under the Poisson
sampling with (3.6), the proposed NPMLE is close to the optimal estimator
discussed by Rao (1994). The optimal estimator minimizes the asymptotic design
variance among the class of asymptotically unbiased estimators that are linear in
(x̄π, ȳπ). The idea of using π−2

i to compute the regression coefficient also appears
in Isaki and Fuller (1982)

4. Extension to Stratified Sampling

The proposed NPMLE method can be extended to stratified sampling with
unequal probability of selection in each stratum. Let the finite population of
N units be partitioned into H strata with known stratum sizes N1, . . . , NH . In
stratum h, we observe yhi with the probability of selection πhi, for i = 1, . . . , nh.
Here, we assume that the first nh elements are sampled in each stratum. In
addition to yhi we also observe xhi, and only the population mean µx of xhi is
known.

Let whi be the proportion that unit yhi represents in the population in stra-
tum h. Thus, the NPMLE can be formulated as maximizing

L (w) =
H∏

h=1

nh∏
i=1

(
πhiwhi∑nh

j=1 πhjwhj

)
, (4.1)

subject to

nh∑
i=1

whi = 1, h = 1, . . . ,H, (4.2)

H∑
h=1

Wh

nh∑
i=1

whixhi = µx, (4.3)

and whi ≥ 0, where Wh = Nh/N . Using the Lagrange multiplier method again,
the solution w∗

hi can be expressed as

w∗
hi =

1
nh

× 1
λ̂hπ̃hi + λ̂H+1mh (xhi − x̃h)

, (4.4)

where π̃hi = (N̂h/nh)πhi, N̂h =
∑nh

i=1 π−1
hi , mh = Wh(n/nh), x̃h =

∑nh
i=1 w∗

hixhi

and λ̂h (h = 1, . . . ,H,H + 1) are the solution to (4.2) and (4.3). To compute



152 JAE KWANG KIM

λ̂h’s, as in Chen and Sitter (1999), we first express (4.3) as a single function of
λH+1 and obtain λ̂H+1 first by the bisection method. The λ̂h (h = 1, . . . ,H) are
computed directly by (4.2). The following theorem provides some asymptotic
properties of the NPMLE of the mean of y in stratified sampling.

Theorem 2. For the sequence of stratified populations and samples described
in Chen and Sitter (1999) with H fixed, the NPMLE of the mean of y in stratified
sampling is asymptotically equivalent to

ȳopt = ȳπ + (µx − x̄π) B̂∗
st, (4.5)

where (x̄π, ȳπ) =
∑H

h=1 Wh (x̄h, ȳh), (x̄h, ȳh) =
∑nh

i=1 dhi (xhi, yhi), dhi = π−1
hi

/
∑nh

j=1 π−1
hj , and

B̂∗
st =

∑H
h=1 W 2

h

∑nh
i=1 d2

hi (xhi − x̄h) (yhi − ȳh)∑H
h=1 W 2

h

∑nh
i=1 d2

hi (xhi − x̄h) (xhi − x̄h)
.

The proof of the Theorem is given in Appendix B.

If stratified random sampling is used, dhi = n−1
h and

B̂∗
st =

∑H
h=1 W 2

hn−2
h

∑nh
i=1 (xhi − x̄h) (yhi − ȳh)∑H

h=1 W 2
hn−2

h

∑nh
i=1 (xhi − x̄h) (xhi − x̄h)

,

which is asymptotically equivalent to the estimator of Zhong and Rao (2000),
and thus is asymptotically equivalent to the optimal estimator in stratified ran-
dom sampling. A more comprehensive treatment of the NPMLE under stratified
sampling is a topic of future research.

5. Simulation Studies

To study the properties of the proposed calibration estimator, we performed a
limited simulation study. In the simulation study, four artificial finite populations
of size N = 10, 000 were generated:

(A) zi ∼ χ2 (2), xi = ai + 0.5zi + 2, yi = 1 +
√

0.5 (xi − 3) + ei;

(B) (xi, zi) are the same as in population [A] and yi = (xi − 3)2 + ei;

(C) zi ∼ χ2 (2) + 2, xi = ai + 0.5zi + 1, yi = 1 +
√

0.5 (xi − 3) + ei;

(D) (xi, zi) are the same as in population [C] and yi = (xi − 3)2 + ei.

In the four populations ai ∼ N (0, 1), independent of zi, and ei ∼ N (0, 1),
independent of (ui, ai, zi). Thus, the population values of (xi, yi) in populations
A and B are essentially the same as those in populations C and D, respectively.
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From each of the finite populations generated above, M = 5, 000 Monte
Carlo samples of size n were generated by probability proportional to size (PPS)
sampling with replacement. The finite populations were fixed in the Monte Carlo
sampling. In the PPS sampling, we allowed for duplication of the population
elements in the sample and the probability of selecting a single element pi was
proportional to zi; two sample sizes, n = 200 and n = 500, were used. Thus, the
sampling weights, wi = N−1n−1p−1

i where pi = zi/
(∑N

i=1 zi

)
, in populations A

and B are more extreme than those in populations C and D because the values
of zi in populations A and B are generally smaller than those in populations C
and D. We assumed that the population mean of xi was known and was used
for the calibration. From each sample, four estimators of the population mean
of y were computed. The estimators are the Hansen-Hurwitz (HH) estimator for
the PPS sampling, the GREG estimator defined in (3.4), the pseudo empirical
likelihood estimator (PEMLE) of Chen and Sitter (1999) defined in (2.12), and
the proposed NPMLE defined in (2.9).

Monte Carlo biases and Monte Carlo mean squared errors were computed
for the four point estimators. Table 1 reports the simulation results of the four
point estimators. From the results in Table 1, we have the following conclusions.

1. There are modest biases in the point estimators. The magnitude of the biases
is much smaller than the standard error, and the bias is smaller for n = 500
than for n = 200. Because the bias is of order O

(
n−1

)
, the bias can be safely

ignored in the asymptotic sense.
2. The HH estimators in population A and B have bigger variances than those in

population C and D. Since the reciprocal of the z-variable is highly variable in
population A and B, the resulting design weights for the HH estimator are also
highly variable. Since the design weights are independent of the y-variable,
the extreme weights increase the variances of the resulting HH estimators.

3. In population C, the three calibration estimators show similar performances
because the weights are relatively homogeneous. The ratio of the variance
of the calibration estimator to the variance of the HH estimator is about 0.5,
which is consistent with the theory because the population correlation between
x and y is

√
0.5.

4. In populations A and B, the NPMLE shows better performance than the other
calibration estimators. Note that the two empirical likelihood estimators can
be written

θ̂PEMLE =
n∑

i=1

diyi

λ1 + λ2 (xi − µx)
,

θ̂NPMLE =
n∑

i=1

diyi

λ1 + λ2di (xi − µx)
.
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Table 1. Monte Carlo Biases and Monte Carlo Mean squared errors of the
point estimators, based on 5,000 Monte Carlo samples.

n Pop’n Estimator Bias MSE

HH 0.00 0.0522
A GREG 0.00 0.0183

PEMLE 0.00 0.0188
NPMLE 0.00 0.0179

HH 0.01 0.2877
B GREG -0.08 0.1872

PEMLE 0.05 0.3860
NPMLE -0.01 0.0972

200 HH 0.00 0.00926
C GREG 0.00 0.00612

PEMLE 0.00 0.00612
NPMLE 0.00 0.00615

HH 0.00 0.0414
D GREG -0.02 0.0537

PEMLE 0.01 0.0546
NPMLE 0.00 0.0459

HH 0.00 0.01905
A GREG 0.00 0.00840

PEMLE 0.00 0.00850
NPMLE 0.00 0.00804

HH 0.00 0.4911
B GREG -0.04 0.0873

PEMLE 0.03 0.1718
NPMLE -0.01 0.0427

500 HH 0.00 0.00359
C GREG 0.00 0.00236

PEMLE 0.00 0.00236
NPMLE 0.00 0.00236

HH 0.00 0.0161
D GREG -0.01 0.0211

PEMLE 0.01 0.0212
NPMLE 0.00 0.0179

Thus, the PEMLE will be efficient if diyi ∝ xi − µx, while the NPMLE will
be efficient if diyi ∝ di (xi − µx), or yi ∝ xi. If the design weights di are
highly variable, the PEMLE can be inefficient. Therefore, the NPMLE is less
sensitive to extreme design weights.

5. In population D, where design weights are relatively homogeneous and the
linear relationship between y and x does not hold, the calibration estimators
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do not improve the efficiency of the HH estimator. In population B, the
NPMLE is more efficient than the HH estimator because the efficiency of the
HH estimator is mitigated by extreme weights.
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Appendix

A. Proof of Theorem 1

Let λ = (λ1, λ2)
′ and define

U (λ) = [U1 (λ) , U2 (λ)]′

=
1
n

n∑
i=1

1
λ1π̃i + λ2 (xi − µx)

(1, xi)
′ − (1, µx)′ ,

where π̃i = (N̂/n)πi. Then λ̂ =
(
λ̂1, λ̂2

)′
is the solution to U (λ) = 0. Using the

argument of Owen (1990, pp.100-101), it can be shown that λ̂ = λ0+Op

(
n−1/2

)
,

where λ0 = (1, 0)′ is the solution to E [U (λ)] = 0. If

ȳ (λ) =
1
n

n∑
i=1

yi

λ1π̃i + λ2 (xi − µx)
,

then ȳNPMLE = ȳ(λ̂). Taking a Taylor expansion of ȳ(λ̂) around λ0 leads to

ȳNPMLE = ȳ(λ̂) = ȳ(λ0) +
(

∂ȳ

∂λ
(λ0)

)′ (
λ̂ − λ0

)
+ Op

(
n−1

)
. (A.1)

Taking a Taylor expansion of U
(
λ̂

)
around λ0 leads to

0 = U(λ̂) = U (λ0) +
(

∂U
∂λ

(λ0)
)(

λ̂ − λ0

)
+ Op

(
n−1

)
. (A.2)

Inserting (A.2) into (A.1), we have

ȳNPMLE = ȳ (λ0) −
[

∂ȳ

∂λ
(λ0)

]′ [∂U
∂λ

(λ0)
]−1

U (λ0) + Op

(
n−1

)
. (A.3)
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Using ȳ (λ0) = N̂−1
∑n

i=1 π−1
i yi = ȳπ,

∂ȳ

∂λ
(λ0) = − 1

n

[
n∑

i=1

yi

π̃i
,

n∑
i=1

(xi − µx) yi

π̃2
i

]′

,

∂U
∂λ

(λ0) = − 1
n

[∑n
i=1 π̃−1

i

∑n
i=1 π̃−2

i (xi − µx)∑n
i=1 π̃−1

i xi
∑n

i=1 π̃−2
i xi (xi − µx)

]
,

and

U (λ0) =
1
n

n∑
i=1

1
π̃i

(1, xi)
′ − (1, µx)′ = (0, x̄π − µx)′ ,

(A.3) reduces to

ȳNPMLE = ȳπ +
∑n

i=1 π−2
i (xi − µx) (yi − ȳπ)∑n

i=1 π−2
i (xi − µx) (xi − x̄π)

(µx − x̄π) + Op

(
n−1

)
. (A.4)

Since x̄π − µx = op (1), the right side of (A.4) is asymptotically equivalent to
(3.5).

B. Assumptions and Proof of Theorem 2

Let λ = (λ1, . . . , λH , λH+1)
′ and U (λ) = [U1 (λ) , . . . , UH (λ) , UH+1 (λ)]′,

where

Uh (λ) =
1
nh

nh∑
i=1

1
λhπ̃hi + λH+1mh (xhi − x̃h)

− 1, h = 1, . . . ,H,

UH+1 (λ) =
H∑

h=1

Wh

nh

nh∑
i=1

xhi − µx

λhπ̃hi + λH+1mh (xhi − x̃h)
.

Then, λ̂ be the solution to U (λ) = 0. Under the regularity conditions,

λ̂ = λ0 + Op

(
n− 1

2

)
,

where λ0 = (1, 1, . . . , 1, 0)′ is the solution to E [U (λ)] = 0. If

ȳ (λ) =
H∑

h=1

Wh

nh

nh∑
i=1

yhi

λhπ̃hi + λH+1mh (xhi − x̃h)
,

then ȳNPMLE = ȳ(λ̂). Using (A.3), (4.5) follows from some matrix algebra.
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