
Statistica Sinica 19 (2009), 125-143

EMPIRICAL BAYES METHODS FOR ESTIMATION

AND CONFIDENCE INTERVALS

IN HIGH-DIMENSIONAL PROBLEMS

Debashis Ghosh

Penn State University

Abstract: There is much recent interest in statistical methods regarding the false

discovery rate (FDR). The literature on this topic has two themes. In the first,

authors propose sequential testing procedures that control the false discovery rate.

In the second, authors study the procedures involving FDR in a univariate mixture

model setting. While this work is useful for the selection of hypotheses, there is

interest in estimation as well. We take an Empirical Bayes approach and propose

estimators and associated confidence intervals in the multiple testing setting. Our

framework is general; the proposed methodology is applied to data from a genome

scan in Alzheimer’s disease.
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1. Introduction

Because of technological developments in scientific fields (e.g., neuroimaging
and high-throughput genomics), experiments are now performed in which thou-
sands of hypotheses are tested simultaneously. In problems dealing with multiple
testing, the usual quantity that has been controlled is the familywise error rate
(FWER). One simple method for adjustment is Bonferroni’s correction; many
other methods are described by Westfall and Young (1993).

Many authors have argued that control of the FWER is too stringent. An
alternative to it is the false discovery rate (FDR), first proposed by Benjamini
and Hochberg (1995).

The literature on false discovery rate procedures can be divided into two
areas. The first is on procedures that control the FDR. A very simple proce-
dure based on ordering the p-values of test statistics was proposed by Benjamini
and Hochberg (1995); it was later shown in Benjamini and Yekutieli (2001) that
the original Benjamini-Hochberg procedure controls FDR under a certain de-
pendence structure. The Benjamini-Hochberg procedure is a step-down testing
procedure; related testing procedures have been studied by Benjamini and Liu
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(1999), Benjamini and Yekutieli (2001) and Sarkar (2002). In much of this liter-
ature, the focus is on constructing sequential procedures and demonstrating that
they control the false discovery rate.

The second class of false discovery rate procedures is based on direct esti-
mation of the false discovery rate. This is the approach adopted by Efron, Tib-
shirani, Storey and Tusher (2001), Storey (2002) and Genovese and Wasserman
(2002). These two classes of methods have been unified by Storey, Taylor and
Siegmund (2004) and Genovese and Wasserman (2004), who proposed threshold-
ing procedures based on the estimated distribution of the false discovery rate.

An attractive feature of the false discovery rate procedures mentioned is that
they provide the data analyst with a post-data assessment of the strength of evi-
dence available in the dataset. To be concrete, based on the number of hypotheses
the user rejects, the false discovery rate is interpretable as the expected number
of hypotheses that have been falsely rejected. Given the number of hypotheses
that are being tested in large-scale high-throughput scientific studies, it seems
natural that post-data assessments are of interest to investigators so that they
might determine which hypotheses should be followed up in further studies.

Most of the literature described above has focused on the issue of selection,
that is, determining which null hypotheses are false. While this is useful for many
high-dimensional problems, it is also clear that in many cases a null hypothesis
might not be clearly defined. Thus, interest might focus instead on constructing
estimators and associated confidence intervals. This topic has been explored less.
One quantity from the multiple testing literature that has an estimation quality is
the local false discovery rate (Efron et al. (2001)), but its main use so far has been
for selection of hypotheses. van der Laan, Dudoit and Pollard (2004a,b) propose
various error-controlling procedures and methods for simultaneous confidence
intervals for the multiple testing problem. A recent proposal by Benjamini and
Yekutieli (2005) developed a method of confidence interval construction that is
analogous to the idea of the false discovery rate. However, its use was criticized
by several authors in the discussion, among them Westfall (2005). He noted
the difficulty in interpreting the false coverage rate criterion of Benjamini and
Yekutieli. In addition, he pointed out the issue of bias of the estimates because of
the effect of selection. He suggests that shrinkage-based estimators and associated
confidence intervals might be more appropriate for this setting. The importance
of estimation in the multiple testing situation has also been advocated by Prentice
and Qi (2006): “specialized statistical techniques will be required for estimating
the magnitude of odds ratios or other parameters that characterize the strength
of such associations, in view of the selection process.”

In this paper, we consider the use of Empirical Bayes methods for con-
struction of estimators and confidence intervals. The structure of the paper is
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Table 1. Outcomes of m tests of hypotheses.

Accept Reject Total
True Null U V n0

True Alternative T S n1

W Q n

Table 2. Simulation results for location estimators.

True Misspecified
Effect π0 Efron DSE Efron DSE
Small 0.1 0.250 0.001 0.258 0.011

0.5 0.256 0.002 0.257 0.015
0.8 0.254 0.001 0.254 0.018

Medium 0.1 0.253 0.002 0.274 0.062
0.5 0.260 0.002 0.260 0.142
0.8 0.253 0.001 0.256 0.164

Large 0.1 0.304 0.000 0.250 0.200
0.5 0.274 0.003 0.253 0.195
0.8 0.260 0.006 0.252 0.197

Note: All table entries are mean-squared error estimates.

as follows. Multiple testing concepts and false discovery rate procedures are
reviewed in Section 2. A mixture model is introduced there; we use it, and
decision-theoretic ideas, to motivate shrinkage estimation procedures in Section
3. In Section 4, we propose estimation procedures for double shrinkage estima-
tors and their associated confidence intervals. Some discussion of optimality for
the population version of these estimators is given there as well. We illustrate
this methodology using real and simulated data in Section 5. We conclude with
some discussion in Section 6.

2. Background and Preliminaries

Suppose we have test statistics T1, . . . , Tn for testing hypotheses H0i, i =
1, . . . , n. We give a brief review of simultaneous hypothesis testing and the false
discovery rate.

2.1. Multiple testing procedures

We wish to test a set of n hypotheses; of these n hypotheses, the number of
true null hypotheses is n0. Suppose we cross-classify hypotheses based on whether
or not it is a true null and whether or not it is rejected using a statistical test.
This is conceptualized in Table 1.

Based on Table 1, the FWER is defined as P (V ≥ 1). Further discussion
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for FWER-controlling procedures can be found in Ge, Dudoit and Speed (2003),
Dudoit, van der Laan and Pollard (2004) and van der Laan, Dudoit and Pollard
(2004a,b).

The definition of false discovery rate (FDR), as put forward by Benjamini
and Hochberg (1995), is

FDR ≡ E
[V

Q

∣∣∣Q > 0
]
P (Q > 0).

The conditioning on the event [Q > 0] is needed because the fraction V/Q is not
well-defined when Q = 0. Methods for controlling the false discovery rate have
been proposed by several authors (Benjamini and Hochberg (1995), Benjamini
and Liu (1999), Benjamini and Yekutieli (2001) and Sarkar (2002)).

2.2. Mixture model motivation of FDR

An alternative approach has been to estimate the false discovery rate di-
rectly. Define indicator variables H1, . . . ,Hn corresponding to T1, . . . , Tn, where
Hi = 0 if the null hypothesis is true and Hi = 1 if the alternative hypothesis
is true. Assume that H1, . . . ,Hn are a random sample from a Bernoulli distri-
bution, where P (Hi = 0) = π0, i = 1, . . . , n. We define the densities f0 and f1

corresponding to Ti|Hi = 0 and Ti|Hi = 1, i = 1, . . . , n. The marginal density of
the test statistics T1, . . . , Tn is

f(t) ≡ π0f0(t) + (1 − π0)f1(t). (2.1)

The mixture model framework represented in (2.1) has been used by several
authors to study the false discovery rate (Efron et al. (2001), Storey (2002),
Genovese and Wasserman (2004), Storey et al. (2004) and Cox and Wong (2004)).

While we assume here that the test statistics are independent, authors such
as Storey et al. (2004) and Genovese and Wasserman (2004) have shown that the
estimation procedure for the false discovery rate will be asymptotically unbiased
under various forms of dependence. Intuitively, this makes sense because the the
false discovery rate is a probability and hence a mean of an indicator function.
Using probability tools such as ergodicity theory, estimates of means are fairly
robust to various forms of dependence. Our aim is to use the mixture model (2.1)
to motivate new estimation procedures that take into account the multiplicity of
parameters being tested.

3. Decision Theory and Mixture Models

Decision theory is an area with a long history in statistics (Raiffa and
Schlaifer (1961) and Ferguson (1967)). Much work has been focused on de-
veloping estimation procedures, or more generally decision procedures, that have
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desirable risk properties. It is crucial to think of estimators as estimating a pop-
ulation parameter; what decision theory allows for is evaluation of risk properties
of such estimators. Generically, we let θ to be the population parameter to be
estimated, d an estimator and L(θ, d) the loss function. The risk function is
R(θ, d) = E{L(θ, d)}, where the expectation is taken with respect to the distri-
bution of the data. We use the terms parameter and target interchangeably here,
and in the sequel.

Consider the following two-stage model:

Ti|µi
ind∼ N(µi, 1)

µ1, . . . , µn
i.i.d.∼ F, (3.1)

where µi is the mean of Ti, and F is some distribution function. Model (3.1)
specifies a two-stage model for the joint distribution of (T1, . . . , Tn). Note that
we view Ti as an estimator of µi, i = 1, . . . , n.

Now take F in (3.1) to be F = π0Fµ0 + (1 − π0)Fµ1 , where Fµ0 and Fµ1 are
the cumulative distribution functions for the degenerate point mass distributions
at µ0 and µ1. Plugging into (3.1), this implies that

Ti
i.i.d.∼ π0N(µ0, 1) + (1 − π0)N(µ1, 1). (3.2)

We have a special case of the mixture model for false discovery rate where f0 and
f1 are densities for N(µ0, 1) and N(µ1, 1) random variables, respectively. This
model was studied in some detail by Cox and Wong (2004), but those authors
were only concerned with selection.

In the multiple testing literature, (3.2) would arise in a situation where we
wished to test n hypotheses of the form H0 : µ = µ0 versus H1 : µ = µ1, where
the distribution of the test statistic is normal with mean µ and variance one. This
type of structure might also arise in testing one-sided null hypotheses versus one-
sided alternatives and simple null hypotheses versus one-sided alternatives in the
situation where the distribution of the Ti exhibits the monotone likelihood ratio
property Lehmann (1986, p.78). Note that we take Ti to be the absolute value
of the test statistic. Otherwise, we would have to consider a three-component
mixture model instead of (3.2) for determining differential expression.

We can generalize (3.2) to allow for unequal variances:

Ti
i.i.d.∼ π0N(µ0, σ

2
0) + (1 − π0)N(µ1, σ

2
1). (3.3)

To extend the decision theoretic viewpoint here, what the mixture distribution
for F , as manifested in (3.2) and (3.3), does is to provide two targets (parameters)
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for shrinkage estimators: µ0 and µ1. Such a model has been studied by George
(1986) in a fully parametric setting.

4. Proposed Theory and Methods

4.1. Double shrinkage estimation: theory

An alternative to the FDR procedures that would address the multiple test-
ing issue in (3.3) is to construct shrinkage estimators that shrink toward the two
distributions. We now demonstrate how to do this using (3.3); note that we
are considering Ti (i = 1, . . . , n) to be estimators of the location parameter µ.
Assume initially that µ0 and µ1 are known and that the variances are known.
No gains in borrowing strength across estimators are possible in (3.2) because of
the equal variances for the two component distribution of the mixture model.

Take a ∧ b to be the minimum of a and b. To construct a shrinkage “esti-
mator” of µ in model (3.3), we calculate a James-Stein estimator (James and
Stein (1961)) relative to each of the component of the mixture distribution and
then mix the estimators with appropriate weights. With respect to the first
component, the James-Stein estimator is given by

T JS
0i = Ti −

[
1 ∧ n − 2∑n

i=1(Ti − µ0)2

]
(Ti − µ0), (4.1)

while for the second component, it is given by

T JS
1i = Ti −

[
1 ∧ n − 2∑n

i=1(Ti − µ1)2

]
(Ti − µ1), (4.2)

i = 1, . . . , n. A shrinkage “estimator” combining (4.1) and (4.2) is then given by
T JS

i = π0(Ti)T JS
0i + π1(Ti)T JS

1i , i = 1, . . . , n, where

πk(Ti) =
πkfk(Ti)

π0f0(Ti) + π1f1(Ti)
. (4.3)

and f0 and f1 refer to the marginal densities of the distribution of the test
statistics under the null and alternative hypotheses. We refer to this as a double
shrinkage estimator, since Ti is shrunk toward both µ0 and µ1 by construction.
We have used quotes for estimator since it is not calculable without further
estimation; this is deferred to Section 4.2. Consider (4.3) further with k = 0 so
(4.3) equals the local false discovery rate (Efron et al. (2001)). There is thus
an intimate connection between the double shrinkage estimators and the false
discovery rate; in particular, the shrinkage weights are based on the local false
discovery rate. This interpretation does not exist when f0 and f1 are not density
functions corresponding to the distribution of the test statistics under the null
and alternative hypotheses.
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Efron et al. (2001) considered the following test statistic in the microarray
setting:

T̃i =
T̂num

i

T̂ den
i + a0

, i = 1, . . . , n, (4.4)

where Tnum
i and T den

i represent the numerator and denominator of the ith statis-
tic, and a0 is a percentile of the empirical distribution of T den

1 , . . . , T den
n . Typically

a0 is chosen to minimize the coefficient of variation (Tusher, Tibshirani and Chu
(2001)). We can view T̃1, . . . , T̃n as estimators of µ1, . . . , µn. The adjustment
in the denominator in the test statistics T̃1, . . . , T̃n achieves shrinkage for the
multiple testing situation; however, the “fudge factor” in (4.4) is not based on a
formal probabilistic model. By contrast, the statistical framework described for
the construction of T JS

1 , . . . , T JS
n leads to shrinkage in a more principled manner:

there is adaptive shrinkage based on data-dependent weights in what we propose.

4.2. Double shrinkage estimation: Empirical Bayes estimators and
confidence intervals

We now construct the double shrinkage estimators under (3.1), where F =
π0F0 + (1 − π0)F1. To do this, we utilize a density estimation method proposed
by Efron (2004). Note from (2.1) that we have π1f1(t) = f(t) − π0f0(t). We
can estimate f(t) by applying density estimation methods to T1, . . . , Tn. For
estimation of π0f0(t), the theoretical null assumption in Efron (2004) is utilized.
What this means is that most test statistics with a value near zero comes from
the null distribution component. We use a normal-based moments matching
technique, as described in Efron (2004), to obtain an estimate of π0 and f0(t).
Given the estimate of f(t) and π0f0(t), we then obtain an estimate of π1 and
f1(t) by simple subtraction.

Based on the estimates of f0(t), f1(t) and π0, we can estimate T JS
1 , . . . , T JS

n

by
T̂ JS

i = π̂0(Ti)T̂ JS
0i + {1 − π̂0(Ti)}T̂ JS

0i , (4.5)

where

T̂ JS
0i = Ti −

[
1 ∧ n − 2∑n

i=1(Ti − µ̂0)2

]
(Ti − µ̂0),

T̂ JS
1i = Ti −

[
1 ∧ n − 2∑n

i=1(Ti − µ̂1)2

]
(Ti − µ̂1),

π̂k(t) =
π̂kf̂k(t)

π̂0f̂0(t) + (1 − π̂0)f̂1(t)
,

µ̂0 =
∫

tdF̂0(t), and µ̂1 =
∫

tdF̂1(t). Thus, we have a method for practical im-
plementation of double shrinkage estimators for test statistics. The parameter
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estimators are obtained by multiplying by the standard error or other appro-
priate backtransformation. Note that the adjustment for multiple comparisons
occurs here in the construction of the multiplier for the statistic minus the es-
timate mean. In the p-value setting, Ghosh (2006) shows that such shrinkage
appropriately controls the false discovery rate.

Along with estimators of the parameters that adjust for multiple testing,
it is useful to have confidence intervals that account for the multiple testing
phenomenon. While intervals have been proposed for the simple normal/normal
model (Morris (1983), Laird and Louis (1987) and Carlin and Gelfand (1990)),
the mixing distribution in (3.1) is more general. In addition, we only have one
statistic per model in the first stage of (3.1). We focus on the situation where
the test statistic for each hypothesis is estimating a parameter of interest, such
as a difference in means or an odds ratio. Our confidence intervals will be for the
same type of situations as those of Benjamini and Yekutieli (2005). The main
advantages of our procedure are that the confidence intervals have the usual
interpretation, they adjust for multiple testing, and they account for selection.

To calculate the confidence intervals, we use the fact that marginally, T1, . . .,
Tn are i.i.d. with a normal distribution with mean π0

∫
uf0(u)dt+(1−π0)

∫
uf1(u)

and variance 1 + σ2
µ, where σ2

mu = π2
0V ar0(µ) + (1 − π0)2V ar1(µ). This leads to

the following algorithm.

1. Estimate π0, f0 and f1 using the algorithm above.
2. Construct the double shrinkage estimators of µ1, . . . , µn, T̂ JS

1 , . . . , T̂ JS
n .

3. Sample with replacement n observations µ∗
1, . . . , µ

∗
n from the estimated density

π̂0f̂0(t)+(1−π̂0)f̂1(t) and generate data T ∗
1,1, . . . , T

∗
n,1, where T ∗

i,1 ∼ N(T̂ JS
i , 1+

σ̂2
∗), and σ̂2

∗ is the empirical variance of the µ∗’s.
4. Repeat Step 3 B times. Use the empirical distribution of T ∗

i,1, . . . , T
∗
i,B to

calculate confidence intervals for µi, i = 1, . . . , n.

Based on the empirical distributions derived in Step 3, we can construct confi-
dence intervals for each of the components of µ ≡ (µ1, . . . , µn). For the last step
of the algorithm, we can either get an estimate of the standard error using the
empirical distribution, or take the α/2 and (1− α/2) percentiles of the distribu-
tion to get confidence limits. This can be viewed as an approximate posterior
predictive distribution for µ, so arguments such as those in Morris (1983) would
suggest that the proposed intervals would have reasonable coverage properties.
We explore the finite-sample properties of the methodology in Section 5.1.

The confidence intervals that are proposed here adjust for the multiple test-
ing by using shrinkage principles advocated by Westfall (2005) rather than those
advocated by Benjamini and Yekutieli (2005). However, the estimators and in-
tervals found here should be conservative because the shrinkage does not take
into account the selection process.
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We have assumed that the distribution of the test statistic is known exactly
under the null hypothesis when we constructed shrinkage estimators and associ-
ated confidence intervals in the previous section. As Efron (2004) has recently
written, this is making the assumption of a theoretical null distribution, which
might be incorrect. He instead argues for the use of an empirical null distribution.

The idea behind the empirical null distribution is to allow for the fact that,
under the null hypothesis, the test statistic might not have a known distribution.
However, if we utilize the zero-matching assumption of Efron (2004), then it is
possible to estimate the mean and variance for the empirical null distribution. We
can then still calculate shrinkage estimators and associated confidence intervals
using the method of the previous section. What is different is that the mean and
variance of the test statistic under the null hypothesis might not be zero and one,
respectively. The mean and variance are estimated using the method of Efron
(2004), and this can be done using either a symmetric empirical null distribution
or an asymmetric empirical null distribution.

4.3. Double shrinkage estimation: Optimality

One optimality property that can be used to evaluate estimators is minimax-
ity. As described in (Lehmann and Casella (2002, Sec. 5.1, p.309)), an estimator
δM of a function of a parameter µ, g(µ), that satisfies

inf
δ

sup
µ

R{g(µ), δ} = sup
µ

R{g(µ), δM}

is said to be minimax. We focus on the situation where g is the identity function
and the loss function is quadratic, and seek to characterize the class of minimax
estimators. To do this, we need some background. Let m be a function from
Rn to R, and take the differential operator ∇m ≡ (∇1m, . . . ,∇nm) to be the
function from Rn to R such that, for all z ∈ Rn,

m(t + z) − m(t) =
∫ 1

0
t′∇m(t + yz)dy.

A function is superharmonic if ∇2m(t) =
∑n

i=1 ∇2
i m(t) ≤ 0, where ∇2m is

defined as ∇(∇m).
We consider estimators of the form:

T̂ki = Ti + ∇ log mk(Ti), i = 1, . . . , n; k = 0, 1, (4.6)

where m0 and m1 are functions that are twice differentiable. As shown in Brown
(1971), estimators of the form (4.6) generate a wide class of rules. A generalized
double shrinkage estimator is given by

T̂i =
1∑

k=0

ck(Ti)T̂ki (4.7)
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where
ck(Ti) =

πkmk(Ti)
π0m0(Ti) + π1m1(Ti)

, (4.8)

for i = 1, . . . , n and k = 0, 1.
The next step is to characterize the class of minimax double shrinkage esti-

mators. We have the following theorem from George (1986).

Theorem 1. Define T̂ki as in (4.6). If mk and ∇mk are differentiable, mk is
superharmonic and satisfies the conditions

E

∣∣∣∣∇2
i

mk(T)
m(T)

∣∣∣∣ < ∞, i = 1, . . . , n, (i)

E‖∇ log mk(T)‖2 < ∞, (ii)

then for a fixed k, T̂ki (i = 1, . . . , n) is minimax.

Theorem 1 provides sufficiency conditions for the minimaxity of Tki (i =
1, . . . , n) for a given k. The conditions that mk (k = 0, 1) must satisfy in The-
orem 1 are similar to the regularity conditions that densities must satisfy for
the usual asymptotic results for maximum likelihood estimation procedures (i.e.,
consistency, asymptotic normality and efficiency). Recall, however, that the mix-
ture model for the false discovery rate consists of two components and that we
want to perform shrinkage in two directions, corresponding to each component
of the mixture. The following lemma is immediate from Theorem 1.

Lemma 1. If T̂ki satisfy the conditions of Theorem 1, and m0 and m1 are
superharmonic, then T̂i, defined in (4.7) is minimax.

Proof. Note that if m0 and m1 are superharmonic, then
∑1

k=0 πkmk is also
superharmonic. By Theorem 1, (4.7) is minimax.

Based on the results of Theorem 1 and Lemma 1, the population version
of the proposed double shrinkage estimators from Sections 4.1 and 4.2 are mini-
max. This provides some robustness to the estimation procedure, as well as some
theoretical justification for their construction.

5. Numerical Examples

5.1. Simulation studies

To study the potential gains of shrinkage, we performed a simulation study.
We considered estimation of the location parameter. The two-group problem
was studied in which measurements on m ≡ 10 individuals for each group was
generated from a normal distribution; the distribution for group i was normal
with mean ηi and variance 2i+1, i = 0, 1. The number of hypotheses tested was
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n = 10, 000. Note that the target estimand in this setting is µ ≡ η1 − η0. In this
setting, we took π0 = 0.1, 0.5 and 0.8. We considered three situations.

• Small: µ was 0.25 with probability 0.75 and 0.5 with probability 0.25.
• Medium: µ was 0.25 with probability 0.5 and 0.5 with probability 0.5.
• Large: µ was 0.5 with probability one.

The proposed method of Efron et al. (2001) was used, along with the double
shrinkage estimators. However, the true value of π0 was used for the weights,
i.e., π0(t) = π0 instead of (4.3). Thus, we are not incorporating the data-adaptive
nature of the weights at this stage; this is considered further in Section 5. With
regard to the target in the double shrinkage estimators, we considered two situ-
ations: where the true target is used, and where the target is misspecified. The
misspecified target is taken to be one. The mean-squared error results are shown
in Table 2. Based on the true target results, there is a major increase in risk
in using the Efron et al. (2001) statistics. Even when the target is misspecified,
the double shrinkage estimator leads to a risk reduction relative to the Efron
et al. statistic. Note that the risk reduction occurs even when using non-data-
adaptive weights. This suggests that data-dependent shrinkage toward the two
targets has better risk properties relative to shrinkage toward one in this multiple
testing framework.

Next, we explored the properties of the proposed double shrinkage estima-
tors and confidence intervals through a small simulation study. Other goals of
the study were to assess the sensitivity of the procedure to normality and de-
pendence. Our comparison with estimators was with unadjusted estimators, and
we compared our proposed confidence interval procedure with that of Benjamini
and Yekutieli (2005). Their procedure works as follows.

1. Sort the univariate p-values, p(1) ≤ · · · ≤ p(n) in increasing order.
2. Calculate R = max{i : p(i) ≤ iq/n}.
3. Select the R parameters for which pi ≤ Rq/n, corresponding to the rejected

hypotheses.
4. Construct a (1 − Rq/n) CI for each parameter selected.

Note that step (2) is the Benjamini and Hochberg (1995) procedure based on p-
values. By contrast, our procedure provides simultaneous confidence intervals for
all parameters. To compare the proposed confidence interval methodology to that
of Benjamini and Yekutieli, we consider confidence intervals of selected hypothe-
ses. In particular, we use α as an error control parameter, find the hypotheses
that are rejected given a certain level of α, and then report the confidence inter-
val coverages for the selected parameters using both methodologies. Notice that
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Table 3. Simulation results for proposed methods.

Independent Gaussian α MSE(U) MSE(S) Cov(EB) COV(BY)
Yes Yes 0.1 -0.03 0.003 0.97 0.96

0.05 -0.031 0.002 0.98 0.97
0.01 -0.029 0.001 0.98 0.96
0.005 -0.028 0.003 0.97 0.95

Yes No 0.1 -0.031 0.002 0.97 0.96
0.05 -0.032 0.001 0.98 0.97
0.01 -0.033 0.002 0.98 0.95
0.005 -0.034 0.001 0.97 0.95

No Yes 0.1 -0.036 0.002 0.97 0.96
0.05 -0.032 0.002 0.98 0.97
0.01 -0.033 0.001 0.98 0.96
0.005 -0.031 0.001 0.97 0.96

No No 0.1 -0.031 0.002 0.97 0.97
0.05 -0.032 0.003 0.98 0.96
0.01 -0.033 0.002 0.98 0.97
0.005 -0.031 0.003 0.97 0.96

by definition, the coverage probability for a confidence interval in the Benjamini-
Yekutieli framework does not exist, while our procedure calculates confidence
intervals for all parameters.

In terms of the simulation model, we fit a mixture model, much as in the
previous simulation study. We again used n = 10, 000 and two groups with 10
samples each. 1,000 simulation samples were generated for each scenario; 500
resamplings were used for the bootstrap method. In what we report here, we
take π0 = 0.8. For differentially expressed genes, the diference in means was
assumed to be 0.5. The variance for all genes was 1 and 2 for the two groups.
We considered four scenarios for the differentially expressed genes based on inde-
pendence between differentially expressed genes (independent or dependent) and
their distribution (Gaussian or t). For dependence, we assumed that the genes
were equicorrelated with correlation 0.3. For the t-distribution, we took 3 degrees
of freedom. The results are given in Table 3. We find that use of the shrunken
estimator outperforms that of the unshrunken estimator. This result seems to
be insensitive to dependence and normality for the situations in the simulation
study. In addition, the coverage for the confidence intervals from the proposed
methodology tends to be fairly conservative across all scenarios considered. The
Benjamini-Yekutieli procedure tends to have good coverage properties as well.
Again, note that the coverage is for selected parameters. Given the finding that
the q-value enjoys a shrinkage property (Ghosh (2006)), the same might hold for
the false coverage rate criterion of Benjamini and Yekutieli (2005).
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Figure 1. Plot of q-values for Alzheimer’s disease genome scan data from
Maraganore et al. (2005), using the method of Storey (2002).

5.2. Parkinson’s disease genome scan

We apply the proposed methodology to genomic data from a study of Parkin-
son’s Disease conducted by Maraganore, de Andrade, Lesnick, Strain, Farrer,
Rocca, Pant, Frazer, Cox and Ballinger (2005). They performed a two-tiered,
whole-genome association study of Parkinson disease (PD). For Tier 1, 198,345
uniformly spaced and informative single-nucleotide polymorphisms (SNPs) were
genotyped in 443 sibling pairs discordant for PD. The second tier of the study
involved collecting information on 1,793 PD-associated SNPs and 300 genomic
control SNPs in 332 matched case-unrelated control pairs. For the purposes of
illustrating the proposed methodology, we focus on the Tier 1 data. In addition,
we excluded noninformative SNPs (SNPs that showed no variation across the
samples). This resulted in a total of m = 197, 222 SNPs for analysis. Note that
Maraganore et al. (2005) considered a slightly different subset of SNPs using
external biological knowledge.

We first applied the q-value method of Storey (2002) to identify candidate
alleles that might be associated with disease. The results from the q-value anal-
ysis are given in Figure 1. Key features to note are the following. First, the
estimated proportion of alleles not associated with disease is 97.6%, although
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Figure 2. Plot of estimated false discovery rates using the method of Efron
(2004). The upper plot assumes a theoretical null distribution of N(0, 1), the
middle plot assumes an empirical null distribution symmetric about the point
6.241; the bottom plot assumes an asymmetric empirical null distribution.
Further details on the symmetric versus asymmetric null distribution can be
found in Efron (2004).

one also observes nonmonotonic behavior in the q-values themselves. Second, all
the genes are nonsignificant for most levels of desired false discovery rate control.
One would need to use a level close to 0.85 to find significant genes. Next, the
local false discovery rate method of Efron (2004) was used to estimate the null
and alternative distributions. There are three choices of a null distribution to use
here: the theoretical null distribution, the symmetric empirical null distribution,
and the asymmetric empirical null distribution. Plots from the three distributions
are given in Figure 2. The algorithm failed to converge if we wished to fit the
theoretical null distribution here, while it did converge for the empirical null
distributions. We find that the estimate of π0 decreases or increases, relative
to the q-value analysis, based on the choice of empirical null distribution used.
The implication for the double shrinkage estimators is that there will be a priori
higher shrinkage toward the null distribution component for these data.
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Figure 3. Plot of Wald statistic based on odds ratio (horizontal axis) versus
double shrinkage estimator (vertical axis).

We next calculated double shrinkage estimators for the odds ratio using the
proposed methodology in Section 5, using the symmetric empirical null hypoth-
esis. A plot comparing the Wald statistic based on the odds ratio to the double
shrinkage test statistic is given in Figure 3. Based on the plot, we find evidence
of some shrinkage; the slope of a linear regression to the line is about 0.9. Based
on the multiple testing procedures discussed previously, we perform the following
multiple testing/selection/estimation procedure.
1. Reject all hypotheses with q-value less than 0.8.
2. Report adjusted odds ratios and confidence intervals for those SNPs selected

in Step 1.

The results are listed in Table 4. Note that because the selection process is
not modelled in the above algorithm, the estimators and odds ratios have some
bias associated with them. In addition, the confidence intervals will be on the
conservative side. Note that there appears to be a reversal in the direction of
associations of several SNPs after applying the shrinkage estimation procedure.
This could be due either to the overshrinkage phenomenon of the James-Stein
estimator or to the fact that the empirical null distribution is being used here. In
theory, one could check if the latter is the cause simply by redoing the analysis
based on the theoretical null distribution. As mentioned above, the analysis using
the theoretical null distribution failed to converge. This issue is currently being
explored further.
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Table 4. Results for SNPs - shrunken odds ratios and associated 95% CIs.

SNP ID OR sOR 95% CI

24235124 0.45 0.19 (0.07, 0.55)

46538934 0.46 0.19 (0.07, 0.52)

23204984 0.49 0.19 (0.07, 0.51)

23869311 0.48 0.2 (0.08, 0.52)

23166462 2.1 0.2 (0.08, 0.53)

23864204 1.8 0.19 (0.09, 0.42)

24620648 0.56 0.29 (0.13, 0.63)

24395156 0.55 0.17 (0.08, 0.4)

46542193 0.17 0.32 (0.02, 5.32)

23361109 0.17 0.32 (0.02, 5.33)

23265602 0.32 0.79 (0.15, 4)

23657057 1.96 0.37 (0.15, 0.9)

23457423 0.42 0.2 (0.06, 0.62)

23772641 0.47 0.45 (0.16, 1.27)

24422280 0.53 0.21 (0.09, 0.48)

24105865 1.96 0.39 (0.16, 0.97)

24650291 2.04 0.31 (0.13, 0.76)

46551827 0.56 0.23 (0.11, 0.51)

24443744 0.54 0.25 (0.11, 0.54)

24548027 0.56 0.19 (0.09, 0.42)

24690480 1.8 0.19 (0.09, 0.42)

24690643 1.85 0.22 (0.11, 0.48)

23824090 15.75 0.5 (0.11, 3.97)

24561474 0.55 0.21 (0.09, 0.47)

24098016 0.5 0.41 (0.16, 1.06)

23958252 1.71 0.19 (0.09, 0.41)

24650302 1.83 0.29 (0.12, 0.66)

Note: SNP ID refers to SS ID from Table 2 of the supplementary information by Maraganore et al.

(2005); OR is the unadjusted odds ratio; sOR is the adjusted odds ratio using shrunken estimator

from the methods proposed in Section 5; 95% CI is the confidence interval using standard error from

resampling distribution based on 1000 resamplings discussed in Section 5.

While the q-value analysis suggests that we have a high level of false dis-
coveries, the analysis is properly calibrated so that investigators have a ranked
set of SNPs to follow up on for further validation or confirmatory studies. In
Maraganore et al. (2005), they had another collection of SNPs that were consid-
ered from those found to have significant unadjusted association in Tier 1, as well
as from known biological pathways in the literature; this is their Tier 2 study. In
analysis of the combined Tier 1 and Tier 2b data, they found that the two SNPs
with the lowest unadjusted P values (P = 9.07 × 10−6; P = 2.96 × 10−5) tagged
the PARK10 late-onset PD susceptibility locus.

While the two-stage design is important, attempting to model that, or to
account for it in the analysis, is beyond the scope of the paper but an important
topic for future research.
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6. Discussion

In this article, we have provided an Empirical Bayes-oriented approach to
testing and estimation in the multiple testing issue. While this type of method-
ology has been extensively explored for the problem of testing in this area, the
issue of estimation and confidence intervals using such methods is relatively in
its infancy. The paper by Benjamini and Yekutieli (2005) focused on estimation
of the confidence intervals, while Efron (2004) discusses estimation of the density
for the alternative hypothesis.

Central to the proposed development in the paper is a reinterpretation of
the multiple testing problem in terms of estimation targets that allows for con-
sideration of a decision-theoretic framework. This framework also motivates the
proposed double shrinkage methods proposed. It is shown that shrinkage toward
the two targets that comprise the mixture distribution potentially leads to better
risk behavior than existing procedures. While shrinkage toward multiple targets
was studied from a risk point of view by George (1986), we extend that view to
actual computation using observed data.

With the explosion of high-dimensional hypothesis testing problems, we find
that there is a great opportunity for pooling information across hypotheses using
the mixture model framework described here. The shrinkage estimation provides
a natural method for adjusting for the multiple testing problem. In particular,
we find that there is a reduction in strength of evidence after one accounts for
the multiplicity of hypotheses being tested. The methodology is fairly flexible
and could work with any Wald-type statistic.

We also find in our examination that there is a natural connection between
the false discovery rate and weight functions for the shrinkage estimators. This
gives a natural intuition as to why shrinkage of estimators work for the multiple
testing problem considered here.

There are several possible extensions of the proposed approach that we shall
be pursuing in later work. First, we want to develop procedures in which we
account for the selection process, as referred to by Prentice and Qi (2006).

Second, we have assumed the nuisance parameters to have known values.
However, one could give distributions to these parameters and perform shrinkage
estimation with these quantities as well. Third, we have assumed in our develop-
ment that the test statistics are a random sample. In reality, one could assume
dependence due to linkage disequilibrium or coregulation and coexpression of
genes in genetic pathways. While the theoretical development of properties of
Empirical Bayes methods in this setting might be difficult, it may be possible
to find double shrinkage estimators. Finally, it might be useful to combine the
selection and estimation procedures in the following two-step approach.
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1. Select genes whose shrunken p-value (Ghosh (2006)) is below some threshold.
2. For those genes selected in Step 1, report the associated parameter estimates

and confidence intervals using the procedures in this paper.

These are areas of current investigation.
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