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Abstract: Weighting is a widely used concept in many fields of statistics and has

frequently caused controversies on its justification and benefit. In this paper, we

analyze design-weighted versions of the well-known local polynomial regression esti-

mators, derive their asymptotic bias and variance, and observe that the asymptoti-

cally optimal weights are in conflict with (practically motivated) weighting schemes

previously proposed in the literature. We investigate this conflict using theory and

simulation, and find that the problem has a surprising counterpart in sampling

theory, leading us back to the discussion on the Horvitz-Thompson estimator and

Basu’s (1971) elephants. In this light one might consider our results as an asymp-

totic and nonparametric version of the Horvitz-Thompson theorem. The crucial

point is that bias-minimizing weights can make estimators extremely vulnerable to

outliers in the design space and have therefore to be used with particular care.
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1. Introduction

This paper studies design-weighted local fitting procedures and identifies a
counterpart in sampling theory. First, let us note that with “design-weighted
local fitting” we do not mean locally weighted fitting in the sense of ordinary
kernel weighting. To make this difference clear, assume we are given a random
sample (x1, y1), . . . , (xn, yn) drawn from a bivariate population (X,Y ) ∈ R2 with
mean function m(x) = E(Y |X = x) and variance σ2(x) = Var(Y |X = x). Let
K(·) be a kernel function and h > 0 denote the bandwidth. A local polynomial
estimator (Ruppert and Wand (1994)) of degree p for m at point x is generally
given by m̂(x) = β̂0(x), where β̂0(x) is obtained by solving the minimization
problem

min
β

n∑
i=1

K
(xi − x

h

)(
yi −

p∑
j=0

βj(x)(xi − x)j

)2

(1.1)

w.r.t. β = (β0(x), . . . , βp(x)). In particular, setting p = 0 leads to the Nadaraya-
Watson estimator (Nadaraya (1964)), and p = 1 yields a local linear estimator
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(Fan (1992)). The kernel function K(·) is usually assumed to be a bounded prob-
ability density function, e.g., the Gaussian density or the Epanechnikov kernel,
K(u) = (3/4)(1 − u2) · I[−1,1](u). The use of a kernel function is motivated by a
simple and obvious fact: data pairs (xi, yi) with xi lying near the target value x

contain more relevant information about m(x) than data points located far away
from x. This kind of weighting might be described as fair weighting: With x

moving through the data, every data point (xi, yi) has once the chance to achieve
the maximum weight K(0), namely when x = xi. In other words, the weighting
scheme only depends on the distance between xi and x, but not on the position
of xi itself. An unfair weighting scheme is obtained by introducing an additional
weight function, say α(·), in (1.1), yielding

min
β

n∑
i=1

K
(xi − x

h

)
α(xi)

(
yi −

p∑
j=0

βj(x)(xi − x)j

)2

, (1.2)

where some data points (xi, yi) are associated a priori with higher weights than
others. When we refer to design-weighted local fitting in this paper, the term
design-weighted refers to the function α(·).

Several choices of α(·) have been proposed for special situations. In the
case of parametric regression, i.e., h −→ ∞, ‘it is natural to favor observations
with small variances by weighting the sum of squares’ (Huet, Bouvier, Gruet and
Jolivet (1996)), and the resulting weight function

α(xi) =
1

σ2(xi)
(1.3)

can be shown to be optimal in a variance-minimizing sense (see Carroll and Rup-
pert (1988), for a profound treatment of this kind of weighting). For nonpara-
metric regression, however, this does not hold, and some authors have suggested

α(xi) = fk(xi), (1.4)

where f is the density of the design variable X and k some constant. An early
approach in this direction was pursued by Fan and Gijbels (1992), who addi-
tionally replaced (for p = 1) the fixed bandwidth h with the variable bandwidth
h/α(xi). The resulting weighted local estimator corresponds, in the case k = 1/4,
to a smoothing spline (Silverman (1984)) and, in the case k = 1, to a nearest-
neighbor estimator (Jennen-Steinmetz and Gasser (1988)).

Here we concentrate on the case of a constant bandwidth h as in Einbeck,
André and Singer (2004), who proposed to set k equal to some small positive
integer, e.g., k = 1 or 2. This choice of k aims to achieve robustness against
outliers in the design space. Figure 1 shows a simple example taken from the
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Figure 1. Einbeck, André and Singer (2004) Respiratory deaths versus SO2

concentration, local linear fit (dotted) and fit with robustness to horizontal
outliers (solid).

latter article. A local linear smoother (dotted line) and a design-weighted local
linear smoother (solid; with k = 2) are fitted to the number of respiratory deaths
of children under five as a function of SO2 concentration, recorded in the city
of São Paulo from 1994 to 1997. One observes that the unweighted curve is
misleading, suggesting that the risk of respiratory death decreases for very high
concentrations of SO2.

The problem of horizontal outliers has received much less attention in the
statistical literature than that of vertical outliers. One possible reason may be
that the former type of outliers was frequently denied to be an outlier at all; e.g.,
Barnett and Lewis (1994, p.318) argued that ‘an extreme (‘outlying’) value in
the design space of an experiment lacks the fortuitous (probabilistic) stimulus for
its extremeness which we have adopted as a characteristic of outlying behavior’.
This is certainly true for fixed design, but might not be the adequate point
of view if the ‘xi are observational, unlike “designed” situations with fixed xi’
(Rousseeuw and van Zomeren (1990)), as in the example given above.

Accepting this, it is still debatable what characterizes an outlying design
point, a question which is certainly of relevance for vertical outliers, too. Un-
fortunately, ‘there is no generally accepted definition of what constitutes an out-
lier.’ (Gather and Becker (1997)). Traditionally, outliers are seen as data points
generated from some ‘contaminating’ distribution, which differs from the target
distribution (see e.g., Barnett and Lewis (1994)). A different viewpoint, brought
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up by Davies and Gather (1993), is to consider data points as outliers if they
are far enough away from the center of the distribution of the data cloud, re-
gardless of the distribution from which they are generated. For instance, for any
sequence 0 < γn < 1, the γn outlier region of the N(µ, σ2) distribution is defined
by out(γn, µ, σ2) = {x : |x−µ| > z1−γn/2σ}, where γn = 1− (1−γ)1/n is selected
such that the probability that no observation falls into the outlying region is
equal to 1 − γ. It is this notion of outlyingness that we adopt in this paper.

The paper is organized as follows. In Section 2, we investigate in detail the
properties of design-weighted local estimators obtained by minimizing (1.2). In
particular, the asymptotic behavior is studied and an asymptotically optimal
weight function is derived, which turns out to be of the form (1.4) with k = −1.
In Section 3, this weight function is compared to the weights based on k = 1,
and a small simulation study is provided to illustrate the behavior of differently
weighted estimators. As similar weighting concepts are well-known from sampling
theory (see e.g., Kish (1990)), we compare the findings in Section 4 with related
theoretical results from this field and find surprising analogies, helping us to
understand the problem better. We conclude with some discussion in Section 5.

2. Properties of the Design-Weighted Local Smoother

We analyze the properties of the estimators

m̂(j)(x, α) = j!β̂j(x) (2.1)

for the j−th derivative (0 ≤ j ≤ p) of m at x, which are obtained from the
minimizers β̂j(x) of (1.2) according to Taylor’s theorem. It is convenient to
introduce matrix notation. Let

X =

1 x1 − x · · · (x1 − x)p

...
...

...
1 xn − x · · · (xn − x)p

 , y =

 y1
...

yn

 ,

W = diag(Kh(xi − x))1≤i≤n, A = diag(α(xi))1≤i≤n, with Kh(·) = (1/h)K(·/h).
Then (1.2) can be written in the form minβ(y −Xβ)T AW (y −Xβ), and the so-
lution β̂ = (XT AWX)−1XT AWy is similar to local polynomial fitting (Ruppert
and Wand (1994)). Hence, m̂(j)(x, α) = j!eT

j+1β̂, where ej+1 = (0, . . . , 0, 1, 0, . . .,
0)T , with 1 at (j + 1)th position, serves as an estimator for m(j)(·) at point x.
For instance, for p = 0 one obtains the weighted local constant estimator

m̂(x, α) =
∑n

i=1 α(xi)Kh(xi − x)yi∑n
i=1 α(xi)Kh(xi − x)

. (2.2)

Furthermore it is easily verified that

Bias(β̂|X) = (XT AWX)−1XT AWr, (2.3)
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where r = (m(x1), . . . ,m(xn))T − Xβ is the vector of the residuals of the local
approximation, and X denotes the vector (x1, . . . , xn). The conditional covariance
matrix is given by

Var(β̂|X) = (XT AWX)−1(XT A2ΣX)(XT AWX)−1, (2.4)

where Σ = diag(K2
h(xi − x)σ2(xi)).

2.1. Asymptotical properties

We denote the kernel moments by µj =
∫ ∞
−∞ ujK(u)du and νj =

∫ ∞
−∞ uj

K2(u)du, and define the matrices of kernel moments

S = (µj+l)0≤j,l≤p S∗ = (νj+l)0≤j,l≤p

S̃ = (µj+l+1)0≤j,l≤p S̃∗ = (νj+l+1)0≤j,l≤p

cp = (µp+1, . . . , µ2p+1)T c̃p = (µp+2, . . . , µ2p+2)T .

With oP (1) denoting a sequence of random variables which tends to zero in
probability, we have the following proposition.

Proposition 1. Let h −→ 0. Under assumptions (i) to (v) (see Appendix
A) one gets

Bias(β̂|X) = hp+1H−1
[
βp+1S

−1cp + hb∗α(x) + on

]
, (2.5)

Var(β̂|X) =
σ2(x)

f(x)nh
H−1

[
S−1S∗S−1 + hV ∗

α (x) + on

]
H−1 (2.6)

where H = diag(1, h, . . . , hp), on = oP (h) + OP (1/
√

nh),

b∗α(x) =
(

α′(x)
α(x)

+
f ′(x)
f(x)

)
βp+1

(
S−1c̃p − S−1S̃S−1cp

)
+ βp+2S

−1c̃p, (2.7)

V ∗
α (x) =

(
2
σ′(x)
σ(x)

+ 2
α′(x)
α(x)

+
f ′(x)
f(x)

)
S−1S̃∗S−1

−
(

α′(x)
α(x)

+
f ′(x)
f(x)

)
·
(
S−1S̃S−1S∗S−1 + S−1S∗S−1S̃S−1

)
. (2.8)

A sketch of the proof is provided in the appendix. The formulas given in this
proposition reduce to the expressions provided by Fan, Gijbels, Hu and Huang
(1996) in the special case α(·) ≡ 1. Note that the leading bias and variance terms
are independent of α(·). This can also be seen in the following proposition, which
is obtained from Proposition 1 using (2.1).

Proposition 2. Let h −→ 0 and nh −→ ∞. Under assumptions (i) to (v)
one gets

Var(m̂(j)(x, α)|X)=eT
j+1S

−1S∗S−1ej+1
(j!)2σ2(x)
f(x)nh1+2j

+ op

( 1
nh1+2j

)
, (2.9)
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Bias(m̂(j)(x, α)|X)=eT
j+1S

−1cp
j!

(p+1)!
m(p+1)(x)hp+1−j+oP (hp+1−j). (2.10)

Both formulas are the same as those for local polynomial fitting (Fan and
Gijbels (1996, Thm. 3.1)). Note that for symmetric kernels the odd kernel
moments and hence some kernel moment matrix products vanish. In partic-
ular, for the variance formulas, the expressions eT

j+1S
−1S̃S−1S∗S−1ej+1,

eT
j+1S

−1S∗S−1S̃S−1ej+1, and eT
j+1S

−1S̃∗S−1ej+1 are trivially zero for any choice
of p and j, while the expression eT

j+1S
−1S∗S−1ej+1 is never trivially zero.

The situation is more complicated for the bias, where eT
j+1S

−1cp is zero
for p − j even, while eT

j+1S
−1c̃p and eT

j+1S
−1S̃S−1cp are zero for odd values of

p − j. It is then useful to formulate the bias for symmetric kernels in a separate
proposition, taking the deeper expansion of the bias (2.7) into account.

Proposition 3. Let h −→ 0 and nh3 −→ ∞. Under assumptions (i) to (vi)
we get, for p − j odd,

Bias(m̂(j)(x, α)|X) = eT
j+1S

−1cp
j!

(p + 1)!
m(p+1)(x)hp+1−j + oP (hp+2−j), (2.11)

and for p − j even,

Bias(m̂(j)(x, α)|X)=
eT
j+1j!

(p+1)!

[(α′(x)
α(x)

+
f ′(x)
f(x)

)(
S−1c̃p − S−1S̃S−1cp

)
m(p+1)(x)

+S−1c̃p
m(p+2)(x)

p + 2

]
hp+2−j + oP (hp+2−j). (2.12)

The second formula provided in Proposition 3 is remarkable, because it shows
that in this special case the leading term is not independent of α(·). This raises
the possibility of reducing the bias. Note that the first term in the square bracket
in (2.12) vanishes for

α′(x)
α(x)

+
f ′(x)
f(x)

= 0,

and that this differential equation yields

αopt(x) ∝ 1
f(x)

. (2.13)

This result is in various aspects surprising: Fan (1992) and Fan and Gijbels
(1996) argued that the order p of the polynomial should be chosen such that
p − j is odd, since in this case the estimators are design-adaptive, meaning that
the asymptotic bias does not depend on the design density and its derivatives.
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Estimators based on even values of p− j are not design-adaptive and should con-
sequently be avoided. Regarding (2.12) and (2.13), we see that the disturbance
term depending on the density can be completely eliminated if f(·) is known and
the weighting α(·) = 1/[f(·)] is applied. Thus, the role of the function α(·) is in
fact to manipulate the influence of the design density. In practice, f(·) is usually
unknown, but it may be replaced by a suitable density estimate f̂(·).

2.2. Leverage values

The second point about the asymptotically optimal weights (2.13), which
suggest taking k = −1 in (1.4), is that this is in contrast to the proposal k = 1
mentioned in the introduction. Does there exist some foundation for the latter
setting as well? There is at least a heuristic one. Recall that the hat matrix L

of a smoother m̂ is (
m̂(x1), . . . , m̂(xn)

)T
= Ly. (2.14)

The leverage (or influence) values infl(xi) are the diagonal elements li(xi) of L,
and measure the sensitivity of the fitted curve m̂(xi) to the individual data points
(Loader (1999)). As illustrated by Loader in Figure 2.6, the leverage values of a
local fit rise strongly near the boundary, implying that the boundary values, in
particular horizontal outliers, have a huge impact on the fitted curve. Hence, a
promising way to robustify against outlying predictors would be to control the
leverage values in these regions. This would also implicitly control the variance,
as the influence function infl(x) serves as an upper bound for the variance function
Var(m̂(x)) (Loader (1999, Thm. 2.3)).

Let us consider for simplicity the manipulated Nadaraya-Watson estimator
(2.2). The leverage values of this estimator are given by

infl(xi) =
Kh(0)α(xi)∑n

j=1 Kh(xj − xi)α(xj)
=

K(0)
h

α(xi)
f̂α(xi)

, (2.15)

where f̂α(x) =
∑n

j=1 Kh(xj − x)α(xj) may be seen as a weighted kernel density
estimator at point x, which corresponds to a usual kernel density estimator if
α(xj) ≡ 1/n. From (2.15) we see that the leverage values are constant iff

α(·) ∝ f̂α(·). (2.16)

Though this formula is recursive and the weight function α(·) appears again in
the density estimate, it shows that the weight function α(·) plays a stabilizing role
for the leverage values if it is chosen proportional to the design density. This gives
some motivation for the setting k = 1 in (1.4). We illustrate this in Figure 2 by
means of a simulated data set of size n = 50, with Beta(0.5, 2)-distributed design
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Figure 2. Leverage (influence) values for Beta-distributed design (n = 50)
for different polynomial degrees and weighting schemes.

and normally distributed errors (σ = 0.3) added to the function y =
√

x. As can
be see from the plot on the left, the leverage values for an unweighted Nadaraya-
Watson estimator rise strongly near the right boundary. Setting the weights
proportional to the inverse estimated density, i.e., k = −1, this effect is even
stronger, whereas the leverages are more stable for k = 1. For a local polynomial
fit of second order these differences are not as pronounced, but the tendency is
still observable (Figure 2, right). The differences between the weighting schemes
vanish for larger samples: asymptotically, the influence function does not depend
on α(·), for instance, one has infl(x) = K(0)/(nhf(x)) + o((nh)−1) for the local
constant estimator (2.2).

It should be noted that leverages values have attracted some attention pre-
viously in the theory of parametric regression; see e.g., the classical work by
Hampel, Ronchetti, Rousseeuw and Stahel (1986), pp. 307 ff, for an overview
on this research. An important parametric regression estimator based on down-
weighting high leverage points is the Mallows-estimator (Mallows (1983)). In the
literature on parametric robust regression, leverage values as defined in (2.14) are
often used as an indicator for leverage points, i.e., outliers in the design space.
However, as pointed out by Rousseeuw and van Zomeren (1990), leverage values
may be very weak in detecting leverage points as they suffer from the masking
effect. In order to avoid this semantic ambiguity, we do not use the term leverage
points at all in this paper, but speak instead of outliers in the design space, or,
equivalently, horizontal outliers, or outlying predictors.

2.3. Behavior at the boundary

We have at this point two weighting schemes, that are in some (but different!)
sense optimal, or at least plausible. In order to gain some insight, we first observe
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from Figure 2 that points associated with high leverage values also share another
property: they are situated near the right boundary. However, the asymptotic
results presented above concern interior points, i.e., fixed points in the interior
of f . Let us therefore investigate the asymptotic properties of boundary points.
We assume that the design density f has a bounded support (say, w.l.o.g, [0, 1])
and that f is right continuous at 0 for a left boundary point and left continuous
at 1 for a right boundary point. We write a left boundary point as x = ch

(c ≥ 0), and accordingly a right boundary point as x = 1 − ch. Calculation of
the asymptotic bias and variance is straightforward as in Proposition 1 and 2;
the only difference is that the kernel moments µj and νj have to be replaced by

µj,c =
∫ ∞

−c
ujK(u)du and νj,c =

∫ ∞

−c
ujK2(u)du

in case of a left boundary point and, analogously, in case of a right boundary
point. These kernel moments never vanish, irrespective of whether the kernel is
symmetric or not. We formulate the result in Proposition 4 for the case of a left
boundary point, and omit details of the proof.

Proposition 4. For h −→ 0 and nh −→ ∞ one gets at a left boundary point
x = ch,

Var(m̂(j)(x, α)|X) = eT
j+1S

−1
c S∗

c S−1
c ej+1

(j!)2σ2(0+)
f(0+)nh1+2j

+ oP

( 1
nh1+2j

)
,

Bias(m̂(j)(x, α)|X) = eT
j+1S

−1
c cp,c

j!
(p + 1)!

m(p+1)(0+)hp+1−j + oP (hp+1−j),

where cp,c = (µp+1,c, . . . , µ2p+1,c)T and Sc = (µj+l,c)0≤j,l≤p.

In this situation, the kernel moment matrix eT
j+1S

−1
c cp,c is never trivially

zero. Thus, the first order approximation of the bias does not depend on α(·),
and hence the considerations leading to (2.13) are no longer valid for a boundary
point. Practically, this observation is not yet very useful. Every data set consists
of interior and boundary points, but our weights α(xi) do not depend on the
location x. Hence, one has to choose one weight function that serves them all.

3. Discussion of Different Weighting Schemes

When looking for a practical weight selection rule, there is one apparent
and tempting idea. The weighting scheme α ∼ f was originally introduced to
robustify against outlying predictors. This is, one might argue, rather a finite
sample problem, suggesting the simple rule: use α ∼ f for small sample sizes,
and the asymptotically optimal weights α ∼ 1/f for large sample sizes.
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3.1. A tutorial on the effect of outlying predictors

To investigate the proposal, we generate data from the underlying function
m1(x) =

√
x and Beta-distributed design as in Section 2.2, for sample sizes

n = 50 (Figure 3 a, b) and n = 1, 000 (c, d). In (a) and (c) we have situations
where either no relevant outlying predictors are present or, if they are, their
associated responses are distributed roughly symmetrically around m1. In this
case, the fits using k = 1, 0,−1 are very similar, except that the ‘robust’ weighting
scheme k = 1 may give too much weight to the previous observations compared
to the next ones, resulting in a slight oversteering. The matter is different to
the right (b, d), where we observe that the asymptotic weighting scheme can
produce a heavy bias in sparse data regions, whereas the robust version stays
comparatively near to the underlying function. Further, we observe that the
problems with outlying predictors do not necessarily wane for increasing sample
size n. Though the beginning of the γn outlier region (vertical lines in Figure
3) moves to the right for increasing n, there is a constant probability γ (here:
γ = 0.2) of observing values beyond it, and these data points may have the same
disturbing influence on the fit as for smaller sample sizes. Hence, horizontal
outliers cannot be considered as just a finite sample problem.

For comparison, we consider a second data set with a sparse interior design
(though one would not speak of outlying predictors in this case), generated from
m2(x) = x + 2 exp(−x2), with the design being an equal mixture of a Beta(2, 9)
and a Beta(9, 2) distribution (n = 50, Figure 3 e, f). Here, as anticipated by
the theory, the asymptotic weights are superior. Concretely, if there is a single
sparse design point, as in (f), they are strongly better, while all fits are similar
if the sparse design points are roughly symmetrically distributed around m2, as
in (e). We omit the plot for n = 1, 000 as it lends no new insights.

We see that there is no guarantee that either weight function improves the
fit generally. From our first impression, the asymptotic weight will make better
sense for interior than for boundary sparse design, in accordance with the theory.
In the latter case, however, a statement seems to be impossible at this point, as
the behavior of the fit depends on the position and number of outlying design
points, and these may occur for any sample size and (bounded or unbounded)
design. A simulation study is evidently called for, and we turn to that.

3.2. Simulation study

For data sets of size n = 50 and n = 1, 000, each of 1,000 replicates were
generated as above, for both m1 and m2. The choice of the error criterion needs
some care in this case. Taking average squared error as e.g., in Hart and Yi
(1998), ASE = (1/n)

∑n
i=1(m̂(xi) − m(xi))2, might overrepresent regions with

dense design. Alternative choices are the integrated squared error (ISE), as used



DESIGN-WEIGHTED LOCAL FITTING 113

Figure 3. Selected examples: Design-weighted estimates for sample sizes
n = 50 (a, b, e, f) and n = 1, 000 (c, d), underlying functions m1(x) =

√
x

(a, b, c, d) and m2(x) = x + 2 exp(−x2) (e, f), each estimated using weights
α = f̂ , α ≡ 1 and α = 1/f̂ , and polynomial order p = 0 (a, b, c, d) or
p = 2 (e, f), respectively. The predictors follow a Beta(0.5, 2) distribution in
(a, b, c, d), and a mixture of a Beta(2, 9) and Beta(9, 2) distribution in (e,
f). True functions are indicated by solid lines; vertical lines in (a, b, c, d)
indicate the beginning of the γn outlier region (γ = 0.2) at 0.893 and 0.976,
respectively. Abscissa: x; ordinate: y.

in Fan (1992), or its robust version, the integrated absolute error (IAE (Gentle
(2002, p.146))), defined by

∫
`(m̂(x)−m(x))dx, with loss function `(z) = z2 and

`(z)= |z|, respectively, where integration is performed numerically over the whole
density domain, hence giving equal weight to high density and sparse regions.
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m1(x) =
√

x m2(x) = x + 2 exp(−x2)
Estimated density True density Estimated density

n = 50 n = 1, 000 n = 50 n = 1, 000 n = 50 n = 1, 000

Figure 4. Design-weighted local regression: Boxplots of log(IAE) (top),
log(ISE) (middle), and log(ASE) (bottom) over 1,000 simulated data sets,
each with weight functions α = f , α = 1, and α = 1/f (from left to right).
Note that the figures have differing locations on the logarithmic scale, as not
the absolute values are of interest, but rather the relative differences between
weighting schemes.

A variety of other criteria exist; see for instance Fahrmeir and Tutz (2001), p.190,
for an overview. We work representatively with the three choices outlined above,
ensuring that the results are not a particular feature of a certain error criterion.
The results of the simulation study are shown in Figure 4.

We start with the case that turned out to have the simpler interpretation,
the function m2. In columns 5 and 6 of Figure 4, the logarithms of the three error
criteria are given for samples of size n = 50 and n = 1, 000, respectively. We
apply the weighting schemes α = f̂ , α ≡ 1 and α = 1/f̂ (i.e., k = 1, 0,−1; from
left to right within the boxplots), where f was estimated using the kernel density
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estimator f̂(x) = (1/ng)
∑n

i=1 K[(xi − x)/g]. The bandwidth g was selected for
each simulated data set anew using Silverman’s (1986, p.48) bandwidth selector,
as also proposed in Einbeck, André and Singer (2004). The asymptotic weights
(the third boxplot each) turned out to be superior for both sample sizes and all
three error criteria. This superiority was larger for n = 1, 000 than for n = 50,
which was to be expected for an asymptotically derived rule. We note that the
superiority of the asymptotic weights decreases when the Gaussian noise (σ =
0.2) is increased (not shown), but the situation does not change substantially.

We turn our attention now to m1, contaminated with Gaussian noise (σ =
0.3), and carry out the same study as above. From the first column in Figure
4 we see that, for all error criteria, there seem to be some signs that the robust
weights α = f̂ are superior. For a larger sample size, the asymptotic weights
produce even worse results, and the robust weights stay superior. This confirms
our concerns uttered in Section 3.1 that the problem of outlying predictors does
not disappear with increasing sample size. This is even more remarkable as we did
not assume that the outlying predictors are in some sense ill-behaved compared
to the rest of the data – all data points are simulated from the same model, and
the y-values associated with the outlying predictors are not necessarily outlying
in the y-direction. We note at this occasion that the data set to which we referred
in the introduction is actually of size n = 1, 067, giving another example that the
usefulness of robust weighting is not restricted to small sample sizes.

It is conceivable that the performance of the asymptotic weights depends on
the accuracy of the density estimate. Therefore, we repeated the analysis using
the true density and, indeed, the asymptotic weights perform much better for
either sample size (Figure 4, columns 3 and 4), though they never succeed as the
‘winning’ weight. We return to this observation in the next section after our look
at sampling theory.

We have to stress that the picture might be different in other situations. We
did simulations with different underlying functions, sample sizes, error variances,
and design densities, and observed that sometimes the winning weights tended
to be more on the robust, and sometimes on the asymptotic side. (We note that
these differences are not attributable to insufficient Monte Carlo precision of the
simulation study; for a specific underlying function, the results are repeatable,
and the differences between weighting schemes are usually sizeable.) The gen-
eral pattern concerning our initial hypothesis, however, was mostly the same: the
asymptotic weights may perform very well compared to their competitors, partic-
ularly for sparse interior design, and if they perform well, then their performance
improves with the sample size. However, they remain hazardous, and might still
give poor results for large sample sizes, as their success depends dramatically on
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the existence and position of outlying predictors, and also on the accuracy of the
density estimate.

We do not seem to have reached the bottom of the barrel yet. Hoping
to understand things better, we next take a deeper look at sampling theory,
where similar theoretical results and similar practical problems, and the confusion
arising from them, have already been discussed for a long time, without having
much impact on other areas of statistics.

4. Relation to Sampling Theory

Weighting is a widely used concept in sampling theory. There exist a large
variety of reasons for this, and of methods for weighting a sample, see Kish
(1990) and Gabler, Hoffmeyer-Zlotnik and Krebs (1994) for overviews. One of
the most important reasons for weighting is stratification, where the population
is divided a priori into several groups, called strata, that are assumed to be more
or less ‘homogeneous within and heterogeneous between’. The main reasons for
stratification are variance reduction or to ‘produce larger samples for separate
domains, usually for smaller domains’ (Kish (1990)). If the proportions assigned
to the strata do not match the proportions in the population, keeping the bias
small requires weighting the strata accordingly.

4.1. Design-weighted local smoothing and the Horvitz-Thompson es-
timator

Considerable effort in the sampling literature has gone into the search for
some theoretical grounding or justification for weighting a sample. One of the
most influential results in this connection was established by Horvitz and Thomp-
son (1952). From a population Y1, . . . , YN , we draw without replacement a sam-
ple of size n. Suppose the population total Y =

∑N
i=1 Yi is to be estimated. We

define the random variable δi by δi = 1 if unit i is found in the sample, and 0
otherwise. Horvitz and Thompson (hereafter: HT) showed that among all linear
estimators of the form Ŷ =

∑N
i=1 αiδiYi the estimator

ŶHT =
N∑

i=1

δi
Yi

πi
, (4.1)

is the only unbiased estimator for Y , where πi is the probability that the i-th
element is drawn in any of the n draws. In words, the estimation is best w.r.t. the
bias when the observations are weighted with the inverse selection probability.
In the special case of stratification, the selection probability for an element from
the `-th stratum is

π` =
np`

NP`
, (4.2)
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Table 1. The analogy between the Horvitz-Thompson estimator and the
design-weighted local polynomial estimator (for p − j even).

Estimator Bias minimized for Interpretation
Horvitz-Thompson αi = 1/πi πi = selection probability

of unit i

in particular, stratification α` = 1/π` ∼ P`/p` Adaptation from stratum
to population proportions

design-weighted local α(xi) ∼ 1/f(xi) f(xi) = design density at
point xi

where p` and P` are the proportions of the `−th stratum in the sample and in the
population, respectively (see e.g., Kish (1965, p.92)). DuMouchel and Duncan
(1983) linked this concept to parametric regression by applying weights inversely
proportional to (4.2) in a minimization problem of type (1.2) in the special case
h −→ ∞.

For the interpretation of these results, recall that (2.13) means that the bias
is minimized when the observations are weighted with the inverse density, while
HT showed that the bias is minimized when weighting with the inverse selection
probability. As the density of the independent variable in a regression problem
may be considered as its selection probability distribution (and is even identical
in case of a designed experiment!), this is essentially the same message. Hence,
one might consider (2.13) as an asymptotic and nonparametric version of HT’s
theorem. We illustrate this point more clearly in Table 1.

Another important remark has to be made here: often, one notices only after
the survey that the data consists of several groups. In this case, one can resort
to post-stratification, where one stratifies the sample a posteriori into several
groups, and then handles it as if it was selected a priori from different strata.
Given that one knows the true strata proportions in the population, weight-
ing can be applied straightforwardly, and is widely used in practice though its
methodological legitimacy is much less acknowledged (e.g., Alt and Bein (1994)).
The problem is that in this case the values p` and hence α` = P`/p` are not fixed,
but random, and HT’s theorem does not hold for random weights.

This brings us back to the problem discussed in the previous section. When
replacing the true design density f with an estimated one, f̂ , the asymptotic
results do not apply, and the asymptotic weights (2.13) are no longer optimal. In
this sense, using the estimated density as weight function for local smoothing is
the counterpart to applying HT-weights to a post-stratified sample. Thus, it is
not surprising that the simulation gave better results when the true density was
applied. In contrast, the motivation given for the leverage-stabilizing weights in
(2.16) was explicitly based on the estimated density. Hence, it is no contradiction
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that in this case the estimated density led to better results than the true density,
as observed at least for the example in Section 3.2.

4.2. Once more, Basu’s elephants

Hence, the theoretical results for weighted local smoothing and weighted
sampling indeed meet each other and have the same interpretation. As a con-
sequence, it is not surprising that a similar discussion as in Section 3 can be
given for the HT estimator. Indeed, in the last decades there has been some
confusion concerning the general applicability of the HT estimator. This confu-
sion was provoked by Basu (1971) in his famous elephant fable: a circus owner
plans to ship 50 adult elephants and therefore needs a rough estimate of their
total weight. As weighing elephants is not so easy, the owner intuitively plans
to weigh only one elephant and to multiply the result with 50. To decide which
elephant should be weighed, he consults the circus statistician, who assigns a
selection probability of 99/100 to a previously determined elephant (‘Samba’),
which from a previous census is known to have about the average weight of the
herd. All other elephants are assigned the selection probability 1/4, 900, includ-
ing the elephant ‘Jumbo’ who is biggest of all. If Samba were selected, its weight
would have to be multiplied by 100/99 according to Horvitz-Thompson; if Jumbo
were selected, his weight would have to be multiplied by 4, 900 to get the ‘best
linear unbiased estimator’ of the total weight. Certainly, after having given this
advice, the circus statistician is sacked.

Considerations of this type led some authors to formulate statements as
‘Basu’s counter-example destroys frequentist sample survey theory’ (Lindley
(1996)). What is the problem with Basu’s fable? Horvitz and Thompson (1952)
state that if

πi =
nYi

Y
, (4.3)

the estimator Ŷ has zero variance and mean square error and the sampling is
optimal. Obviously, the design used in the fable is far from optimal in the sense
of (4.3); it is rather ‘about as poor a design imaginable’ (Overton and Stehman
(1996)). Kish (1990) notes that ‘increased variances can result from weighting
. . . when the selection probabilities are not optimal at all’, and Rao (1999) warns
that the HT estimator ‘can lead to absurd results if the πi are unrelated to the
Yi’. Though HT’s theorem can reduce the bias of an estimate given the inclusion
probabilities, it may produce useless estimates if they are unfortunately chosen.
Nevertheless, Rao judged Lindley’s statement as being ‘far from the truth’, since
HT’s estimator proves to be most useful, e.g., in the context of ratio estimation,
when a second variable Xi is used to construct selection probabilities that are
correlated to the Yi. In Basu’s example, a way out for the unfortunate circus
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statistician would have been to take the known elephant weights Xi from the
previous census, and to set πi = nXi/X, where X was the total weight of the
herd measured at that time (Koop (1971) and Brewer (2002, p.63)).

4.3. A general dilemma?

Though the confusion over Basu’s fable has been resolved with Rao’s (1999)
article and its subsequent discussion, it is still interesting to take a look at the
rejoinder of Basu’s (1971) essay, in which he vehemently denied that the ‘unre-
alistic sampling plan’ was responsible for the failure of the Horvitz-Thompson
estimator. Basu defended the circus statistician’s sampling plan, as it ensures
a representative sample, which would not have been guaranteed using Koop’s
average of ratios estimator. Instead, he assigns the responsibility for the useless
result to the Horvitz-Thompson estimator itself, ‘being a method that contra-
dicts itself by alloting weights to the selected units that are inversely proportional
to their selection probabilities. The smaller the selection probability of a unit,
that is, the greater the desire to avoid selecting the unit, the larger the weight
that it carries when selected.’ Basu did not conform himself to the fact that one
has to choose the probabilities adequately, and in some sense, he is right. What
does one do, for instance, if no auxiliary variable Xi is available to construct a
ratio estimator, or if one gets a sample, selected with ‘wrong’ selection proba-
bilities, and now one has to work with it? Basu touches on exactly the problem
that we have in the smoothing context: the πi correspond to the f(xi), which
are in most cases inherent to the observed data or subjectively determined by
the experimenter, but are not designed to meet a certain optimality criterion.
(Applying the bias-minimizing weights (2.13), one easily verifies that the vari-
ance term (2.8) vanishes if f(x) ∝ σ2(x), which is then the analogous formula
to (4.3) and leads to weights proportional to (1.3). However, we do not want to
overvalue this result, as V ∗

α (x) is just a second-order term.) One can formulate
Basu’s dilemma somewhat more generally: Aiming to minimize the bias, statisti-
cal theory suggests that weights be chosen inversely proportional to the selection
probability (distribution). This however makes the estimator extremely sensitive
to ‘undesired’ or extreme observations (which correspond to the outlying predic-
tors in the terminology of Section 3, and to ‘Jumbo’ in Basu’s fable), if their
selection probability is small.

5. Conclusion

We have so far studied the properties of design-weighted local smoothers and
derived an asymptotically optimal and a heuristic weighting scheme. By means
of a simulation study, and by resorting to sampling theory, we attempted some
some practical guidelines for the choice of a weight function. The straightforward



120 JOCHEN EINBECK AND THOMAS AUGUSTIN

idea of relying on the sample size turned out to be rather misleading. The shape
of the design density seems to be more important, and it seems even to play some
role whether it is known or estimated. However, for our example function m1,
the asymptotic weights could not compete with the simple constant weights even
when using the true design density. Furthermore, it is beyond common sense to
base the choice of the weight function not on the design itself, but rather on the
degree of accuracy which one has for the distribution of the design points.

From our look at sampling theory we have learned that there seems to be a
general dilemma with weighting procedures. If one applies the theoretical bias-
minimizing weights, the estimates may be highly sensitive to outlying predictors,
extreme design points, or undesired observations, depending on context.

In conclusion, we have to admit that looking for an objective criterion for
automatic weight selection seems to be the wrong way to approach the problem.
As a consequence, a more subjective viewpoint is helpful. The asymptotical
result (2.13) confirms the statement by Hastie and Loader (1993), who called
an endpoint ‘the most informative observation’ when fitting at this endpoint.
Einbeck, André and Singer (2004) added that this holds only when this point can
be considered as ‘as reliable as in the interior’. Any kind of robust estimation
implies that one is not willing to trust a certain group of data points (in this case
the outlying predictors and its associated y−values), whereas the asymptotic
result is – as HT – certainly based on full reliance on the information content
of all data points, including outlying predictors. Hampel, Ronchetti, Rousseeuw
and Stahel (1986, p.308), went in a similar direction when considering, in the
parametric setting, ‘extreme design points (which might be wrong)’. The notion
of unreliability that we have in mind is somewhat more general: beyond the
extreme design points themselves, the responses associated with them might be
unreliable (regardless of being outlying or not); and even if both design points
and responses are assumed to be correct, unreliability may stem simply from the
fact that there are very few observations available in an outlying region of the
design space, as is the case in the example in Figure 1.

To formulate it again and clearly: if there is some reason to distrust some
group of outlying predictors, the robust weights (1.4), with k = 1, are a rea-
sonable choice and do their job. Otherwise, one should in doubt stay with the
usual constant weights (i.e., k = 0). Though the asymptotically optimal weights
(k = −1) have a clear potential to improve the fit in special situations, they are
disproportionately hazardous, and therefore cannot be generally recommended
for practical use. For asymmetric kernels or odd values of p − j, e.g., a local
linear estimator with p = 1 and j = 0, the effect of α(·) vanishes asymptotically
anyway.
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We finally would like to encourage the search for Basu’s elephants beyond
the scope of smoothing and sampling – there exist a variety of other statisti-
cal concepts where weighting is performed (e.g., missing data, boosting, neural
networks), and it is to be expected that similar theoretical results and related
practical pitfalls appear in those areas as well.

A. Assumptions

(i) The kernel K is a continuous density function with compact support;
(ii) f(x) > 0, f(·) is continuously differentiable in a neighborhood of x;
(iii) α(x) 6= 0, α(·) is continuously differentiable in a neighborhood of x;
(iv) σ2(x) > 0, σ2(·) is continuously differentiable in a neighborhood of x;
(v) m(·) is p + 2 times continuously differentiable in a neighborhood of x;
(vi) the kernel K is symmetric.

B. Proof of Proposition 1

The proof is kept short since it follows along the lines of the corresponding
proof for local polynomial fitting, see Fan, Gijbels, Hu and Huang (1996). Let
wi = Kh(xi − x) and

rn,j =
n∑

i=1

α(xi)wi(xi − x)j ; Rn = (rn,j+l)0≤j,l≤p;

r∗n,j =
n∑

i=1

α2(xi)σ2(xi)w2
i (xi − x)j ; R∗

n = (rn,j+l)0≤j,l≤p.

Then Rn = XT AWX and R∗
n = XT A2ΣX.

Bias: Using standard asymptotics reveals that

rn,j = nhj(fα(x)µj + hf ′
α(x)µj+1 + on), (B.1)

where fα(x) = α(x)f(x) and on = oP (h) + OP (1/
√

nh), and thus

Rn = nH[fα(x)S + hf ′
α(x)S̃ + on]H. (B.2)

Then, using Taylor’s expansion and (2.3), we get

Bias(β̂|X) = R−1
n

[
βp+1dn + βp+2d̃n + oP (d̃n)

]
, (B.3)

where dn = (rn,p+1, . . . , rn,2p+1)T and d̃n = (rn,p+2, . . . , rn,2p+2)T . We use the
fact that (B + hC)−1 = B−1 − hB−1CB−1 + O(h2) to calculate

R−1
n =

1
n

H−1

[
1

fα(x)
S−1 − h

f ′
α(x)

f2
α(x)

S−1S̃S−1 + on

]
H−1. (B.4)
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Plugging (B.4) into (B.3), and substituting (B.1) into the vectors dn and d̃n,
yields (2.5) via some simple matrix algebra, taking into account that f ′

α(x)/fα(x)
= α′(x)/α(x) + f ′(x)/f(x).

Variance: Similar to (B.2) we find that

R∗
n =

n

h
H[sα(x)S∗ + hs′α(x)S̃∗ + on]H, (B.5)

where sα(x) = σ2(x)α2(x)f(x). Substituting (B.5) and (B.4) in Var(β̂|X) =
R−1

n R∗
nR−1

n , we derive (2.6) using matrix algebra.
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