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Abstract: Inference on quantiles associated with dependent observation is a com-

mon task in risk management. This paper employs empirical likelihood to construct

confidence intervals for quantiles of the stationary distribution of a weakly depen-

dent process. To accommodate data dependence and avoid any secondary variance

estimation, empirical likelihood is formulated based on blocks of observations. To

reduce the length of the confidence intervals, the weighted empirical distribution is

smoothed by a kernel function. This shows that a rescaled version of the smoothed

block empirical likelihood ratio admits a limiting chi-square distribution with one

degree of freedom and facilitates likelihood ratio confidence intervals for quantiles.

The practical performance of these confidence intervals is evaluated in a simulation

study.
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1. Introduction

Let X1, . . . , XN be a sequence of weakly dependent stationary random vari-
ables, and F be their common marginal distribution. The interest of this paper
is in confidence intervals for θq =: F−1(q) = inf{x|F (x) ≥ q}, the qth quantile
of F for q ∈ (0, 1). In financial risk management, θq is called the Value-at-Risk
and specifies the level of excessive losses at a confidence level 1− q. As financial
returns are most likely dependent, the proposed confidence intervals for θq have
direct application.

We propose using empirical likelihood for the construction of confidence
intervals for θq. Empirical likelihood, introduced by Owen (1988, 1990), is a
nonparametric method of inference that enables a likelihood-type inference in a
nonparametric setting. Two striking properties of empirical likelihood are Wilks
Theorem and the Bartlett correction, mirroring those of a parametric likelihood.
Qin and Lawless (1994) established Wilks Theorem for estimating-equations-
based empirical likelihood, and Chen and Cui (2006, 2007) showed that this
empirical likelihood is Bartlett correctable with or without nuisance parameters.
Tsao (2004) studied the effect of the number of constraints on the coverage prob-
ability of the empirical likelihood confidence intervals for a mean parameter. Like
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its parametric counterpart, the empirical likelihood confidence intervals/regions
are constructed by contouring the empirical likelihood ratio. This brings two ben-
efits: shape and orientation are determined by data; confidence intervals/regions
are obtained without secondary estimation.

These features of the empirical likelihood confidence intervals are the major
motivations for our current proposal for quantiles. Indeed, when considering ex-
treme quantiles in risk analysis, the distribution of the sample quantile estimator
can be quite skewed. Therefore, it is more appealing to have confidence intervals
that are determined by the data rather than forced to be symmetric about a
point estimate, as is the case for intervals based on asymptotic normality of the
sample quantile estimator. The fact that the empirical likelihood intervals are
obtained by contouring the likelihood ratio without a secondary variance esti-
mation is particularly advantageous for dependent data, since data dependence
leads to a variance which involves covariances at all lags.

A key ingredient of our proposal is to smooth a weighted empirical distri-
bution function. The purpose of the kernel smoothing is to reduce the length
of the confidence intervals, as is clearly demonstrated in our simulation study.
Combining empirical likelihood and kernel smoothing for confidence intervals of
a quantile with independent and identically distribution was proposed in Chen
and Hall (1993). They showed that employing a kernel quantile estimator with
the empirical likelihood significantly reduces the coverage errors from O(N−1/2)
to O(N−1) before the Bartlett correction, and to O(N−7/4) after Bartlett correc-
tion. Further investigations have been carried out by Zhou and Jing (2003a,b)
Quantile estimation using empirical likelihood in the context of survey sampling
is considered in Chen and Wu (2002).

The paper is organized as follows. We introduce a kernel-smoothed empirical
likelihood for a quantile based on blocks of data in Section 2. Section 3 gives the
main results. Results from a simulation study are reported in Section 4. All the
technical details are relegated in the appendix.

2. Block Empirical Likelihood for Quantiles

let F l
k be the σ-algebra of events generated by {Xt, k ≤ t ≤ l} for l ≥ k. The

α-mixing coefficient introduced by Rosenblatt (1956) is

α(k) = sup
A∈F i

1,B∈F∞
i+k

|P (AB) − P (A)P (B)|.

The series is said to be α-mixing if limk→∞ α(k) = 0. The dependence described
by α-mixing is the weakest, as it is implied by other types of mixing; see Doukhan
(1994) for a comprehensive discussion on mixing.
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Let Fn(x) = n−1
∑n

i=1 I(Xi ≤ x) be the empirical distribution of the weakly
dependent data {Xi}N

i=1, where I(·) is the indicator function. We first smooth
the empirical distribution with a kernel K and a smoothing bandwidth h; then
invert it to obtain a kernel estimator for the quantile function which is smoother
than the conventional sample quantile estimator.

Let K be an rth order kernel that satisfies

∫
ujK(u)du =


1, if j = 0
0, if 1 ≤ j ≤ r − 1
κ, if j = r

(2.1)

for some integer r ≥ 2 and some κ 6= 0. Let Gh(x) =
∫ x/h
−∞ K(y)dy where h → 0

as N → ∞.
A kernel estimator of F (x) is F̂n,h(x) = n−1

∑n
i=1 Gh(x−Xi) and the kernel

quantile estimator θ̂q,h is the solution of

F̂n,h(x) = q.

Kernel estimators have been applied to estimation and testing for time series
data; see Robinson (1989), Hjellvik and Tjøstheim (1995), Hjellvik, Chen and
Tjøstheim (2004) and the book of Fan and Yao (2003)

Chen and Tang (2005) studied the statistical properties of θ̂q,h and its vari-
ance estimation. Unlike estimation of a regression or a probability density func-
tion for weakly dependent observations, the data dependence contributes to the
leading order variance of the kernel quantile estimator. In particular, for each
h > 0 let γh(k) = Cov{Gh(θq −X1), Gh(θq −Xk+1)}. The leading variance term
of θ̂q,h is

σ2
n,h = q(1 − q) + 2

n−1∑
k=1

(
1 − k

n

)
γh(k), (2.2)

which indicates clearly the first order effect of dependence. Chen and Tang (2005)
proposed estimating the variance via a kernel estimation of the spectral density
of a derived sequence. The variance estimator together with the asymptotic
normality of θ̂q,h can be used to obtain confidence intervals for θq. The simulation
study reported in Section 4 compares confidence interval of this type with the
proposed empirical likelihood intervals.

There are two limitations of confidence intervals based on asymptotic nor-
mality. One is that the intervals are always symmetric while, for the extreme
quantiles commonly used in risk analysis, the finite sample distribution of the
quantile estimator can be quite skewed; it is more appealing to have asymmetric
confidence intervals to reflect the skewness of the underlying distribution. An-
other limitation is that a secondary variance estimation is required for (2.2). In
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Chen and Tang (2005), the estimation is via estimation of the spectral density
function. For spectral density estimation, see Brockwell and Davies (1991).

The proposed empirical likelihood intervals for θq are not only asymmetric
but free of any secondary variance. The latter is due to empirical likelihood’s
ability to standardize internally via its built-in algorithm.

Let {pi}N
i=1 be probability weights adding to one. A weighted kernel estima-

tor for the distribution function F is

F̂p,h(x) =
N∑

i=1

piGh(x − Xi). (2.3)

If the observations were independent and identically distributed, we could for-
mulate the empirical likelihood for the quantile θq as

Lh(θq) = sup
N∏

i=1

pi

subject to F̂p,h(θq) = q and
∑N

i=1 pi = 1. This is the formulation of Chen and Hall
(1993). However, as pointed out by Kitamura (1997) in the context of estimating
equations, the above empirical likelihood ignores data dependency and can cause
the empirical likelihood ratio to lose its limiting chi-square distribution. The
latter has been a major attraction of the likelihood ratio statistics.

Here we introduce a smoothing bandwidth into the estimating equation for
the quantile that makes the estimating equation dependent on the sample size.
In order to capture data dependence, we employ the blocking technique first
applied to the bootstrap method (Carlstein (1986) and Künsch (1989)) and then
to empirical likelihood (Kitamura (1997)). The data blocking divides the entire
sample into a sequence of data blocks. The block length is taken to be sufficiently
large so that the data dependence can be captured. At the same time, the weakly
dependence allows us to treat the blocks as independent if the gap between
successive blocks becomes large, although this gap will be much smaller than the
block length.

Let M be a positive integer representing the block length, L be the gap
between the beginnings of two consecutive blocks, and Q be the total number of
blocks, so that Q = [(N −M)/L]+1. Assumptions on M and L will be specified
in Condition C4 in the next section.

For i = 1, . . . , Q, define gh(Xi, θq) = Gh(θq − Xi) − q and let Ti(θq) =
(1/M)

∑M
j=1 gh(X(i−1)L+j , θq) be the ith block average.

Let p1, . . . , pQ be empirical likelihood weights allocated to the Q blocks re-
spectively. The block empirical likelihood for θq is

Lh(θq) = sup
Q∏

i=1

pi, (2.4)
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subject to
∑Q

i=1 pi = 1 and
∑Q

i=1 piTi(θq) = 0. From the standard algorithm of
empirical likelihood, the pi that maximize the profile likelihood (2.4) are

pi =
1

Q[1 + λ(θq)Ti(θq)]
, (2.5)

i = 1, . . . , Q, where λ(θq) is a Lagrange multiplier satisfying

Q∑
i=1

Ti(θq)
1 + λ(θq)Ti(θq)

= 0. (2.6)

Since Lh(θq) attains its maximum at pi = Q−1 for all i ∈ {1, . . . , Q}, we can
take

`h(θq) = −2 log
{

Lh(θq)
Q−Q

}
(2.7)

to be the log empirical log-likelihood ratio for θq. From (2.5),

`h(θq) = 2
Q∑

i=1

log[1 + λ(θq)Ti(θq)], (2.8)

where λ(θq) is the solution of (2.6).
If we choose h = 0 in the above formulation, then gh(Xi, θq) = Gh(θq −

Xi) − q is I(Xi ≤ θq) − q, so the estimating equation is free of N . Then the
results in Kitamura (1997) are applicable to this unsmoothed empirical likelihood
formulation for the quantile.

3. Main Results

We make the following assumptions.

C1: {Xi}N
i=1 is a strictly stationary α-mixing sequence. The mixing coef-

ficients α(k) satisfy
∑∞

k=1 kα1/p(k) < ∞ for some p > 1. The spectral density
function φ of {I(Xk < θq)}N

k=1 has φ(0) > 0.

C2: K is a bounded and compactly supported rth order kernel satisfying
(2.1); the smoothing bandwidth h satisfies Nh2r → 0 with Nh → ∞ as N → ∞.

C3: The distribution function F of Xi is absolutely continuous with a density
f which has continuous (r − 1)th derivatives in a neighbourhood of θq, with
f(θq) > 0.

C4: The block length satisfies M → ∞ and M = o(N1/2) as N → ∞ and
the gap L between the starting points of two adjacent blocks satisfies kL ≤ M

and (k + 1)L > M for some k > 1.
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One assumes h = o(N−1/(2r)) in C2 is to reduce the effect of the bias that
results from kernel smoothing; it is satisfied by the optimal bandwidth for esti-
mating the quantile function. Indeed, the bandwidth that minimizes the mean
square error for quantile estimation with a rth order kernel is h = O(N−1/(2r−1))
(Chen and Tang (2005)), provided the underlying distribution function is suffi-
ciently smooth. Hence, the standard bandwidth for quantile estimation can be
employed for the empirical likelihood intervals. Condition C4 is standard when
data blocking for dependent data (Künsch (1989) and Kitamura (1997)).

We first establish the order of magnitude for the Lagrange multiplier λ(θq),
which is a key result in establishing stochastic expansions for lh(θq).

Theorem 1. Under Conditions C1−C4, λ(θq) = Op{M(N−1/2 + hr)}.

The next theorem shows that a scaled version of the empirical likelihood
ratio converges to the χ2

1 distribution.

Theorem 2. Under Conditions C1−C4 and as N → ∞,

N

MQ
lh(θq)

d→ χ2
1.

Theorem 2 readily leads to an empirical likelihood confidence interval for θq

at 1 − α level of confidence:

Iα,h =
{

θq

∣∣∣∣ N

MQ
`h(θq) ≤ cα

}
,

where cα is the upper α-quantile of χ2
1 such that P (χ2

1 > cα) = α. Theorem
2 ensures that Iα,h will attain the nominal coverage level 1 − α asymptotically.
A major attraction of the proposed confidence interval is that it avoids any
secondary estimation of the variance of the kernel quantile estimator θ̂q,h given
by (2.2).

If we choose not to carry out the kernel smoothing in the empirical likelihood
formulation, which effectively assigns h = 0 as discussed at the end of last section,
then Theorem 2 is still valid as a special case of Kitamura (1997). Let l0(θq) be
the unsmoothed empirical likelihood ratio. Then, a 1−α confidence unsmoothed
empirical likelihood confidence interval for θq is

Iα,0 =
{

θq

∣∣∣∣ N

MQ
`0(θq) ≤ cα

}
.

We expect that the smoothed confidence intervals Iα,h have shorter length than
Iα,0. This is based on the fact (Chen and Tang (2005)) that the kernel estimator
for θq reduces the variance of the unsmoothed sample quantile estimator to the
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second order. This is confirmed by the simulation study reported in the next
section.

4. Simulation Results

We report results from a simulation study that is designed to evaluate the
performance of the empirical likelihood confidence intervals for the quantile θq.
For comparison purposes, we carried out simulation for both the kernel smoothed
intervals Iα,h and the unsmoothed intervals Iα,0. We are interested in the lengths
and coverage levels of the confidence intervals.

We considered two time series models in the simulation: an AR(1) model

Xt = 0.5Xt−1 + εt,

and an AR(2) model

Xt =
5
6
Xt−1 −

1
6
Xt−2 + εt.

In both models, the εt are independent and identically distributed N(0, 1) ran-
dom variables. Clearly, both models are strictly stationary and α-mixing. In
the simulations, the initial value X0 was generated from the stationary normal
distribution.

Two levels of quantiles were considered: the 5% and 50% (median) quan-
tiles; the former is a level commonly used in risk assessment. The sample sizes
considered were N = 300 and 500. The block length M was 12 for N = 300 and
16 for N = 500. We set the gap between two successive blocks L to be M/2 in all
cases. We employed the second order (r = 2) Epanechnikov kernel throughout.
Three bandwidths were used for the kernel smoothed interval: h1 = 1.50N−1/4,
h2 = N−1/4 and h3 = 0.50N−1/4. We also considered confidence intervals based
on the asymptotic normality of the kernel smoothed quantile estimator as given
in Chen and Tang (2005) with the asymptotic variance estimated based on the
spectral density estimation approach proposed there.

The confidence intervals for the 5% and 50% quantiles with confidence lev-
els 0.95 and 0.99 are reported in Table 1 for the AR(1) model, and in Table
2 for the AR(2) model. We observe from Tables 1 and 2 that both smoothed
and unsmoothed confidence intervals had satisfactory coverage in all cases. The
observed empirical coverage was not sensitive to the choice of the smoothing
bandwidth h. From our discussion in the previous section, we anticipated the
kernel-smoothed confidence intervals to be substantially shorter than the un-
smoothed counterpart; this turned out to be the case. Our simulation clearly
exhibited the usefulness of kernel smoothing in the context of interval estimation
for dependent observations. The empirical likelihood confidence intervals were
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Table 1. Average coverage levels and lengths (in parentheses) of the empirical
likelihood confidence intervals and the confidence intervals based on Chen
and Tang (2005) for quantiles of the AR(1) process.

(a) N = 300, M = 12, l = 6 for AR(1) process.

Nominal Bandwidth
q Coverage Unsmoothed 1.50N−1/4 N−1/4 0.50N−1/4 Chen-Tang

0.05 0.95 0.963 0.940 0.942 0.942 0.954
(0.622) (0.502) (0.518) (0.526) (0.864)

0.99 0.992 0.987 0.987 0.987 0.988
(0.820) (0.672) (0.694) (0.706) (1.137)

0.50 0.95 0.952 0.948 0.947 0.947 0.960
(0.337) (0.308) (0.314) (0.317) (0.590)

0.99 0.985 0.982 0.982 0.982 0.992
(0.450) (0.413) (0.421) (0.426) (0.776)

(b) N = 500, M = 16, l = 8 for AR(1) process.

Nominal Bandwidth
q Coverage Unsmoothed 1.50N−1/4 N−1/4 0.50N−1/4 Chen-Tang

0.05 0.95 0.963 0.944 0.947 0.948 0.956
(0.461) (0.394) (0.404) (0.411) (0.642)

0.99 0.994 0.988 0.990 0.990 0.992
(0.614) (0.527) (0.541) (0.549) (0.776)

0.50 0.95 0.952 0.948 0.949 0.949 0.952
(0.259) (0.240) (0.244) (0.246) (0.450)

0.99 0.989 0.986 0.986 0.987 0.994
(0.345) (0.321) (0.327) (0.330) (0.592)

substantially shorter than the explicit confidence intervals based on the asymp-
totic normality, although there were not much difference between the coverage
levels. The intervals based on asymptotic normality were symmetric, and this led
to the intervals being too wide, while the distribution of θ̂q,h was quite skewed
in the case for extreme quantiles.
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Table 2. Average coverage levels and lengths (in parentheses) of the empirical
likelihood confidence intervals and the confidence intervals based on Chen
and Tang (2005) for quantiles of the AR(2) process.

(a) N = 300, M = 12, l = 6 for AR(2) process.

Nominal Bandwidth
q Coverage Unsmoothed 1.50N−1/4 N−1/4 0.50N−1/4 Chen-Tang

0.05 0.95 0.963 0.941 0.942 0.942 0.946
(0.781) (0.642) (0.658) (0.667) (1.082)

0.99 0.992 0.987 0.988 0.987 0.984
(1.029) (0.860) (0.883) (0.895) (1.424)

0.50 0.95 0.952 0.948 0.947 0.946
(0.423) (0.391) (0.397) (0.401) (0.804)

0.99 0.985 0.982 0.982 0.983 0.987
(0.565) (0.525) (0.533) (0.538) (1.058)

(b) N = 500, M = 16, l = 8 for AR(2) process.

Nominal Bandwidth
q Coverage Unsmoothed 1.50N−1/4 N−1/4 0.50N−1/4 Chen-Tang

0.05 0.95 0.963 0.946 0.947 0.948 0.950
(0.579) (0.502) (0.514) (0.520) (0.773)

0.99 0.994 0.989 0.990 0.990 0.992
(0.768) (0.672) (0.687) (0.695) (1.018)

0.50 0.95 0.952 0.949 0.949 0.949 0.952
(0.325) (0.305) (0.309) (0.311) (0.624)

0.99 0.989 0.987 0.987 0.987 0.992
(0.434) (0.408) (0.414) (0.417) (0.821)

scholarship.

Appendix: Outline of Proofs

Let Ti(θq) = M−1
∑M

j=1 gh(X(i−1)L+j , θq), T̃β(θ) = Q−1
∑Q

i=1[Ti(θq)]β for a
positive integer β, go

h(Xj , θq) = gh(Xj , θq) − E{gh(Xj , θq)}, and τi(θq) = M−1∑M
j=1 go

h(X(i−1)L+j , θq). Furthermore, let SQ = T̃2(θq), and let φ to be the spec-
tral density function of {I(Xk < θq)}N

k=1 We need the following lemmas whose
proofs, along with the proof of Theorem 2, are available in the full version of the
paper.

Lemma A.1. Under Conditions C1−C4, T̃β(θq) = Op((M−1/2 + hr)β) for any
integer β ≥ 2.

Lemma A.2. Under Conditions C1−C4, MSQ
p→ 2πφ(0) > 0.
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Lemma A.3. Under Conditions C1−C4, T̃1(θq) = Op(N−1/2 + hr).

Lemma A.4. Take ξQ = Q−1
∑Q

i=1 τ2
i (θq). Under Conditions C1−C4, MξQ

p→
2πφ(0).

Proof of Theorem 1. By following the standard procedure in empirical likeli-
hood, for instance that outlined in Owen (1990),

0 = |g(λ(θq))|

≥ |λ(θq)|
Q

Q∑
i=1

T 2
i (θq)

1 + λ(θq)Ti(θq)
− 1

Q

∣∣∣∣ Q∑
i=1

Ti(θq)
∣∣∣∣

≥ |λ(θq)|
1 + |λ(θq)|max1≤i≤Q|Ti(θq)|

MSQ − |MT̃1(θq)|.

From Lemma A.2, MSQ =2πφ(0)+op(1). Recall also Lemma A.3, that |MT̃1(θq)|
= Op(MN−1/2). This means that

|λ(θq)|
1 + |λ(θq)|max1≤i≤Q |Ti(θq)|

= Op

(
MN− 1

2

)
.

As MN−1/2 = o(1), hr = o(N1/2M−1), where N1/2M−1 → ∞ as N → ∞. From
a result in Künsch (1989), we see that

max
1≤i≤Q

|Ti(θq)| = max
1≤i≤Q

|τi(θq) + coh
r + o(hr)|

= o
(
N

1
2 M−1

)
+ O(hr) = o

(
N

1
2 M−1

)
.

Then we conclude that |λ(θq)| = Op(MN−1/2) because

1 + |λ(θq)| max
1≤i≤Q

|Ti(θq)| = 1 + op(1).
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