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Summary

Recently a flexible class of semiparametric copula-based multivariate GARCH
models has been proposed to quantify multivariate risks, in which univariate GARCH
models are employed to capture the dynamics of individual financial series, and
parametric copulas are employed to model the contemporaneous dependence among
GARCH residuals with nonparametric marginals. In this paper, we address two im-
portant questions regarding statistical inference for this class of models: (1) Under
what moderately mild sufficient conditions can we justify the asymptotic distribution
of the pseudo maximum likelihood estimator (MLE) of the residual copula parameter
stated in Chen and Fan (2006a)? (2) How do we test the correct specification of
a parametric copula for the GARCH residuals? In order to answer both questions
rigorously, we establish a new weighted approximation for the empirical distributions
of the GARCH residuals, which is of interest in its own right. Simulation studies
and real data examples are provided to examine the finite sample performance of the

pseudo MLE of the residual copula parameter and the proposed goodness-of-fit test.
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1 Introduction

On June 26, 2004, governors of the G-10 central banks endorsed the publication of
the revised capital accord, known as Basel 11, in which the Basel Committee requires
banks to adopt a more holistic approach that focuses on the interaction between the
different risk categories in risk management; see McNeil, Frey and Embrechts (2005)
for a succinct account of the developments of Basel II. Consequently, banks now face
the important problem of how to adequately model dependence between different risk
factors. Since copulas capture dependence structures among individual risk factors
that are invariant to any monotonic transformation of the individual risks, they are
becoming standard tools in risk management. Similarly, in Solvency II, the interna-
tional Actuarial Association recommends the use of copulas to capture dependence
structure of insurance portfolios . Since then, major software providers have been
building various copula models to serve the industrial needs. For details on copulas,
we refer to Joe (1997) and Nelsen (2005). Because individual risk series in finance
and insurance are typically serially dependent, Chen and Fan (2006a) introduced a
class of Semiparametric COpula-based Multivariate DYnamic (SCOMDY) models,
in which the conditional mean and conditional variance of individual risk series are
parametrically specified, but the joint distribution of the (standardized) innovations
is semiparametrically specified as a parametric copula evaluated at the nonparametric
marginals. This class of models is very flexible in capturing a wide range of temporal

and contemporaneous dependence structures of multivariate (nonlinear) time series.

An important class of the SCOMDY models is the so-called semiparametric
copula-based multivariate GARCH models, where a scalar GARCH model is used
to capture volatility of each individual risk series and a parametric copula is used
to model the contemporaneous dependence between GARCH residuals. We now
formally introduce this class of SCOMDY models. Suppose that the observations
{Vi = (Y, ..., Y) '}, follow the model (1.1)—(1.2):

Pj 95
Yie=Vhisein hie=c;+ Y 05 i+ Bishjeis i=1,...,r,  (L1)
i=1 i=1
where {e; = (€14,.-.,64)T }7-; is a sequence of i.i.d. random vectors with Ele;;] =
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0, E[(€j)*] = 1, and the joint distribution function F, of ¢, is assumed to take the

semiparametric form:

F€ (61, e ,Cr) = C(Fe,l(Gl)a caay Fe’T(C,,«); 00), (12)
where C(z1, ..., x,;0) is a parametrized copula function up to unknown € © C R™,
and for y =1,...,r, F,; is the marginal distribution function of €;,, which is assumed

to be continuous but otherwise unspecified. By Sklar’s Theorem (see Nelsen (2005)),
any multivariate distribution with continuous marginals can be uniquely represented
by its copula function evaluated at its marginals. Let C. denote the unique copula cor-
responding to the true joint distribution F, of the GARCH residual vector ¢;. We call
C. the residual copula, which is defined as C¢(1,...,7,) = Fo(F  (71), ..., F . (2,)),
where F(-) is the generalized inverse of F;(-), j = 1,...,7. Model (1.2) is tan-
tamount to assuming that the true residual copula belongs to a parametric family:

Ce(z1,...,2;) = C(21,...,2,;0y) for some unknown 6y € © C R™.

This simple multivariate GARCH model bypasses the overparametrization issue
that is encountered in many multivariate GARCH models; see Bauwens, Laurent and
Rombouts (2006) for a survey on multivariate GARCH models. Although simple,
the model (1.1)-(1.2) is still flexible enough to capture both dynamic and concurrent
movements of multivariate risk factors, and is especially useful for modelling portfolio
risks such as conditional VaR. See, e.g., Hull and White (1998) and Breymann, Dias
and Embrechts (2003) for applications to exchange rate data, and Giacomini, Haerdle,
Ignatieva and Spokoiny (2006) to stock data. However, before banks and insurance
companies can readily apply this class of semiparametric copula-based multivariate
GARCH models (1.1)-(1.2), one has to develop valid statistical inference method-
ologies for these models. In particular, since different parametric residual copula
specifications generally imply different dependence structures among multiple risk
factors, estimation of the residual copula parameter and tests for the correct speci-
fication of the parametric residual copula are of great importance. In this paper we

shall address both issues.

Estimation and inference for copulas that directly couple multivariate observed

variables have been pursued extensively. For example, in the context of nonparametric



copulas, Fermanian, Radulovic and Wegkamp (2004) considered empirical copula es-
timation, while Fermanian and Scaillet (2003) and Chen and Huang (2006) proposed
kernel smoothing. For parametric copulas coupled with nonparametric marginals,
Genest, Ghoudi and Rivest (1995) investigated pseudo maximum likelihood estima-
tion (MLE), while Chen, Fan and Tsyrennikov (2006) considered sieve MLE. Chen
and Fan (2006b) studied the pseudo MLE and its property in estimating copulas that
generate nonlinear Markov models. For i.i.d. data, Klugman and Parsa (1999), Fer-
manian (2005), Scaillet (2006), and Genest, Quessy and Remillard (2006) examined
goodness-of-fit tests of parametric copulas. Chen and Fan (2005) developed model

selection tests for multiple parametric copula comparison.

The main technical difficulty in establishing the asymptotic distribution of the
pseudo MLE of the copula parameter is that the score function and its derivatives
in copula-based models could blow up to infinity near the boundaries. Chen and
Fan (2005, 2006b) overcome this difficulty by making use of the weak convergence
of the empirical distribution function in a weighted metric. Although Chen and Fan
(2006a) developed copula model selection tests for SCOMDY models, their tests rely
on the asymptotic property of the pseudo MLE ) (see Section 2 for its definition)
of the residual copula parameter §. Crucial to the validity of their model selection
tests is the surprising result that the asymptotic distribution of 9 is not affected
by the initial step estimation of the GARCH parameters. Chen and Fan (2006a)
established this result by means of a heuristic argument with stringent conditions and
by assuming the validity of a weighted approximation for the empirical distributions
of GARCH residuals. Currently, there are sporadic results on the convergence of
empirical distributions using residuals of non-linear time series; see, for example,
Berkes and Horvath (2003), Horvath, Kokoszka and Teyssiére (2001) and Koul and
Ling (2006). However, to the best of our knowledge, a weighted approximation result
is not available for empirical distributions of residuals obtained from an initial step

estimation of time series models.

In this paper, we first establish a weighted approximation for the empirical
distributions of residuals of univariate GARCH models, which is important in its own

right. This weighted approximation allows us to provide a rigorous justification of



the limit distribution result for the pseudo MLE 9 under moderately mild sufficient
conditions; see Section 2. In addition, we develop a consistent test for the correct
specification of the residual copula C¢(z1,...,x,) by a particular parametric copula
class C = {C(z1,...,2,;0) : 0 € O}. This extends existing goodness-of-fit tests for
i.i.d. data to GARCH residuals. In Section 3, we provide some simulation studies
and real data examples to demonstrate finite sample properties of the pseudo MLE
for # and the goodness-of-fit test for the parametric copula. Proofs are given in the

on-line version of this paper.

2 Estimation and Testing

2.1 Estimation of GARCH models

For each j =1,...,7, let v; = (¢, 1, - -, ;s Bjt, - 5j7qj)T be the true GARCH
parameters associated with the model (1.1). Let ¥; = (¢, &;,1, ..., &p;, Bj,l, ... ,Bquj)T
denote the pseudo MLE of v; based on the sample {Y},;}7,, which is the MLE if ¢,

is standard normal.

Similar to Berkes and Horvath (2003), for ¢; > p;, define

(

djo(v;) = ¢;/(1 = Bjp — -+ = Bjg;)
djn(75) = e
dj2 () = a2 + Biad;i(v;)

~

djp; (Vi) = jp; + Bindjpi—1(7) + -+ Bjip;—1dj1(75)
djpi+1(Vi) = Biadjp; (v5) + -+ + Bjp;din (7))

djq; (Vi) = Bjndjg 1(7) + -+ Bjgy 151 (75);



for ¢; < p;, define

)

djo(v) = ¢;/(1 = Bj1 — -+ = Big;)
dia(75) = @

dja(vi) = ajo + Bindia(v;)

\ d]',pj (f)/j) = Qjp; t ﬁj,ldjmjfl(r)/j) +oot ﬁj,q]' djapj*q]‘ (7);
for i > max(p;, g;), define

dji(7;) = Bindjia(V;) + Biadii-2(V;) + - - + Big;dii—q; (%)
Set wjk(75) = djo(v5) + 22321 d5i(75)Y s and

T .
Fj = {U = (Ula ceay upj+q]‘+1) U > O,Upj_|_2 + -+ ’U,pj_|_qj_|_1 S Aa < 1,
0 <Al <min(uy, ..., Up;1q41) < mMax(u, ..., Up 4q41) < A3, ¢ AT < A}

Remark 1. When Ee;l-’1 < oo and v; € I';, it follows from Berkes and Horvath (2003,
equations 1.8 and 3.4) that

hj,k = Wik (%‘)
1w, () 12 (2.1)
Vi — Zt 1( )AJ w00q) T op(n=%),
1( ) 1(
where A; = E{iw;,l(z;)(wj 1(2 )T} and
0 0 0
! ) =\ ; 1 D — ; 1 ey 7 y T.
wj,t(%) (80j w; (i), 8%71“’],15(%)’ ’35]',% w; (7))

Put ;1 (v;) = 1 and ;4 (7;) = djo(y;) + Sob) dy i(7)Y7,_; for 2 <k < n. Then we
can estimate ¢; by
Y Yo

V()

1171,1:(%) ' ) ' (2'2)

ét == (él,ta sy é?‘,t)T = (



2.2 Estimation of residual copula parameters

We estimate the true marginal distribution of €;,, F, ;(x), by

n—v—+1

. 1 L
Fjw)= ————=> I(¢; < x),
t=v

where v = v(n) is an integer. We then estimate the residual copula parameter 6 by

é, the pseudo MLE based on the pseudo sample

A A

{(F€;1 (élyt)’ R Fear(é\ryt))T}?:V’ (2'3)
ie.,
f = argmaxy ﬁ Yo doge(Fei(ény), - .., For(ért); 0)
:= arg maxg l,,(0),
where ¢(z1,...,2,;0) = ﬁC(xl, ..., Z,;8) is the copula density function. This

estimation approach was employed by Genest, Ghoudi and Rivest (1995) for indepen-
dent data and by Chen and Fan (2006a) for dependent data.

2.3 Weighted approximation for residual empirical distribu-

tions

Let U be a Gaussian process with
EU(z) =0, E{U@)U()} =] [{=i A v} — [ [{ziv:},
i=1 i=1

where x = (z1,...,2,)" and y = (y1,...,9,)".

The following Conditions 1 and 2 are imposed for the study of empirical process

and weighted empirical process of the estimated residuals of GARCH models.

1. For j = 1,...,r, 7, € [y, Ee;{l < 00, and there exists g > 0 such that
lim; ot #P(€5, < 1) = 0;



2. Forj =1,...,r, the support of ¢;; is (—00, 00), F¢ ; has continuous density F; ,,
and there exist 83 € (0,1/4) and Az > 0 such that

sF' ( x)
sup sup

P ts, T ()1 - o))

forj=1,...,r

THEOREM 2.1. Suppose that Conditions 1-2 hold and v/logn — oo, v/n — 0 as
n — oo. Then
[vn—v+1 {Fej(ac) F ;(z)}-U((1, ,l,FEJ(Z),l,...,l)T)—%IFE’)j(m)Tj|

sup,

TPy () (1 Fey ()17 (2.4)
= 0p(1),
where (U(T,(z1,...,%)),T1,---,7r)" is a vector valued Gaussian process with zero
mean and covariance structure
E(m;mi)
= B{(&, —1)(e) — DIE{(GE )T AT B (G0 (T A 1E<w;1§3:§>},( |
2.5

E{U(T (21, .., 2))75}

= E{(Gj,1 —DI(Fi(e11) <z1,..., Frlern) < xr)}E{(Zi )T}A LB w; (%) },

w;,t(75)

(2.6)

and T, (z1,...,x,) is defined immediately after Theorem 2.2 below.

Remark 2. Theorem 2.1 establishes a weighted approximation for the empirical dis-
tributions of the residuals (¢;;) in GARCH models. Later on, we shall use Theorem
2.1 to derive the asymptotic distributions of the pseudo MLE of the residual copula
parameter 6 and of the goodness-of-fit test statistic for testing the parametric specifi-
cation of the residual copula. For (unweighted) approximation to empirical process of
squared residuals (€7 ;) in ARCH and GARCH models, we refer to Horvéth, Kokoszka
and Teyssiére (2001) and Berkes and Horvath (2003).

2.4 Asymptotic properties of pseudo MLE of 6

Let 6y denote the true value of  and assume the following consistency conditions of

A

6.



Conditions C1-C4:

1. loge(xy, ..., z,;0) is a continuous function of # for each (zy,...,z,)" € [0,1]";
2. © is a compact subset of R™;
3. Esupyee |loge(F.i(e1,1), .., Fer(er1); 0)| < o0;

4. For any Ay € (0,1/2) and A; € (1/2,1), there exist 3y € (0,1), My >0, ;1 >0
and M; > 0 such that

sup [log c(z1, . .., ;)| < Mo{Aj_yz:} "
)
for NI_ z; < Ay,
sup | log e(z1, .. -, ;3 0)| < Mo{1 — V;ﬂ:ﬁi}iﬂo
=)
for VI_,x; > A, and

,
iug |loge(zy,...,2.;0) —loge(ys, ...,y 0)| < M Z |z, — yi|ﬂ1
€ i=1

for % < N_17; SViiz; < Ay + 1_2A1 and % <N_1Y SVI_yi < Ay + %.

Note that Conditions C1-C3 are standard conditions for consistency of MLE
based on i.i.d. data. Condition C4 is similar to that imposed by Genest, Ghoudi
and Rivest (1995) and Chen and Fan (2005) for i.i.d. data; it controls the speed of
divergence of logarithm of the copula density at the boundaries, and is satisfied by

all the commonly used copula densities.

THEOREM 2.2. Suppose that Conditions 1 and C1-C4 hold, and v(n)/n — 0 as
n — 00. Thené&@o as n — o0o.

Remark 3. Since the approximation rate between the estimated residuals ¢;; and
the residuals ¢;; is poor for small ¢, we employ v in the preceding Theorem to obtain
a better approximation rate. The same idea was employed in Hall and Yao (2003)
for deriving the limit distribution of pseudo-MLE for GARCH models.

9



Before we state the asymptotic normality result, we introduce some additional

notations. Put

0 0

A nif) = (8—910(961"'-vxr;9),...aEC(xl,...,xr;ﬁ))T,
o i) = G
and fori=1,...,r,
51,00 0) = 2 (o, 20:0).
0x;
Define
Ci(z1) = 21,

Ci(zilzr, ... xim1) = P(Fei(ein) <zl Fer(ern) =21, Feimi(€im11) = io1)

Ti(x1,- ., 2;) = (Ci(x1), Caza|21), . - ., Ci(@s|T, . . ., Ti1))

2

0
2(0) = (E{ 8(98(9 log C(F€71(6171)ﬂ R/ Ffﬂ"(eﬂl); 0)})1§Za]§m
? J

We impose the following additional regularity conditions for asymptotic nor-

mality.
Conditions N1-N6:

1. For j = 2,...,r, the function Cj(z;|T; ,(v1,...,7;-1)) is differentiable with

respect to 1, ...,x;_1 over the interior of 0,17~ and

7j—1
Z/ . ax x]|T (iEl,. . .,.’L’jfl))‘d.’ﬂl s dxj,1 < My e (0,00);
- i

2. There exists 2 € (0,1/2) such that

T

sup H(%‘)ﬂz(l - xi)ﬂ2|5(Tr_(x17 ., 2);00)| < o0,

0<z1,..., 2z, <1 i1

10



and

/f[(x,-)ﬂ2(1 )P dS(T (21, - . 202 00))| < o0
i=1
. For any A, € (0,1/2) and A5 € (1/2,1), there exist 8, € (0,08s), My > 0,
Bs > 0 and My > 0 such that
16 (w1, - 23 00)| < Myxi{NT_ 2;} P
for ANI_ x; < Ay,
16 (21, - 23 00)| < My(1 — 25){1 — Vi_ a;} %

for VI_,x; > As and

16(z1, -+, @i 00) — 6(y1, - - s O0)| < Ms Y |y — |

=1

for &4 < N2 S Vix; < As + 1= Af” and A‘* < N_1Yi SVI_y < As + %;

.For1<i,j7<m loge(zy,...,x,;0) is a continuous function of € in an

g 89 80
open neighborhood of 6, for each (z1,...,z,)" € [0,1]";

. There exists an open neighborhood ©, of 6 such that

2

E 1
e 99,00, 29; ° ol

for 1 <1,5 <m;

Fe,l(el,l)a ceey Fe,T(eT,l); 0)‘ <0

. For any Ag € (0,1/2) and A; € (1/2,1), there exist S5 € (0,1), Mg >0, 57 >0

and M; > 0 such that

2
loge(zy, ..., 2, 0)| < Mg{Al_ a;} P

S0 | 56,00,

for NI_,z; < A,
2

sup | loge(xy, ...,z 0)| < Me{l — \/;-":1:13i]>_ﬁ6

pce, 00;00;
for VI_,x; > A7 and
2 2 T 5
7 T 1 ey Urd M i = Yl
sup |80180J 0og C(‘Tla y L 0) 80 80 og C(yl Y 0)| < 7 Z |l' Y |

6cOq i=1

for 88 < Al_1z; < Vi_z; < Ag+ 3227 and 88 < ALy < Vg < Ag + 281

11



Note that conditions N4-N5 are standard for proving asymptotic normality of
MLE based on i.i.d. data. Conditions N1-N2 are imposed by Csorgé and Révész
(1975) for multivariate empirical processes. Conditions N3 and N6 are similar to the
ones imposed by Genest, Ghoudi and Rivest (1995) and Chen and Fan (2005) for
asymptotic normality based on i.i.d. data; they are employed to control the speed
of divergence of partial derivatives of the logarithm of the copula density at the

boundaries, and are again satisfied by all the commonly used copula densities.

THEOREM 2.3. Suppose that Conditions 1-2, C1-C4 and N1-N6 hold, and
v(n)/logn — oo, v(n)/n—0 as n— oc.

Then

V(6 — 6o)
& S0 {[ 8(T (1, - - -, 3,);00) dU (1, ..., z,)

+ 3 [ i,z 00)U((L, .. L, 1, D) (2, - o2 00) day - . day
= Z.

Remark 4. Theorem 2.3 states that under moderately mild sufficient conditions,
the limit distribution of 8 is independent of the GARCH filtering. In Chen and Fan
(2006a), they obtained the normal limit distribution by means of heuristic arguments
under stringent conditions and by assuming the existence of the weighted approxi-
mation for the empirical distributions of GARCH residuals. Since the variance given
in Chen and Fan (2006a) is expressed in terms of a conditional distribution, it seems
difficult to check if the limit in Theorem 2 equals to that of Chen and Fan (2006a). It
is known, however, that both limits are normal distribution and are independent of
the parameter estimation in GARCH models. Owing to this independence of GARCH
models, we can therefore employ a parametric bootstrap method to estimate he vari-
ance of 0 to construct confidence intervals for 6. In the simulation study below, we
illustrate the independence property of GARCH models and examine the accuracy of

the parametric bootstrap method for constructing confidence intervals.
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2.5 A goodness-of-fit test of residual copulas

The results established in the preceding subsection assume the correct specification
of the residual copula by the parametric copula class C = {C(z1,...,z,;0) : 6 € ©}.

In this subsection, we propose a consistent test for this assumption. Let
Hy: P(Ccler,...,e,) =Cleq,...,6500)) =1 for some 6y € O

and
Hy: P(Ce,...,6) =Cler,...,6;0)) <1forall §e€0.
Define the empirical estimator of C,(x1,...,z,) as

N

I~ a .
Ce(xl,---:xr) = EZI(Fe,l(el,t) < xla'-'aFe,T(er,t) < xr)-
t=1

Then our test statistic is

A

T, = /{C’e(xl, ey y) — C(21, - - ,xT;HA)}Zc(xl, ooy 0)day .. dxy,

where 6 is the pseudo MLE of 8, under Hy. Denote

. 0 0
C o2 0) = (=—C(z1,...,2::0),...,—C(z1,...,2:0))7T,
(@11 230) = (gClar, oo, @r30), oy 5o Clo o 230))
THEOREM 2.4. Assume conditions of Theorem 2.3 hold. Further, suppose
max;<i<r SupOSwSl Fel,z (Fe; (x))FeTz (‘/E) <00
SUPgeco, SUPo<g4,...,2,<1 C(z1,...,2;0)| <00 (2.7)
SUPo<gy,...,z,<1 ZLl %C(»Tl, <oy Ty 90) < oo.

Then under Hy,
nTy 5 [{U(T (a1, .., 2,)) + 20, o0 C(a1,. .., @i Bo)
xU((1,...,1,z;1,...,1)T) — ZTC'(xl, e Ty 00) Yoe(, . o x5 60p) dy . L dy,

where Z is given in Theorem 2.3.

Remark 5. As in the estimation (see Remark 4), the asymptotic distribution of the
test statistic under Hj is also independent of GARCH filtering. This motivates us to
employ a parametric bootstrap method to obtain the critical point of the test instead
of simulating one from the limit distribution. The details are given in the real data

examples below.
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3 Simulations and Real Data Examples

We generate 1,000 random samples each with a sample size n = 500 from model (1.1)

with residual copula specified as the mixture copula
C(Ul, ceey Upy 01, 02, )\) = )\Cl(ul, ceey Upy 91) + (1 — /\)Cg(ul, ceey Upy 02),

where

C’l(ul, .. .,ur;01) = {ZU;OI —-r—+ 1}_1/91,91 >0
=1

and

Co(ut, -, up; 62) = eXP{—[Z(—log(ui))oz]l/az};92 > 1.
i=1

To demonstrate the property that the pseudo MLE is independent of the pa-
rameter estimation in GARCH models, we consider 6; = 3.0, 6, = 2.0, A = 0.3 or
0.7, the marginal distributions of ¢, are N(0,1), » = 3 and GARCH model as either
ca=c=c=1011 =02 a0; =0.3, a3y =04, B11 = P21 = P31 = 0.2 (case (i)
orci=co=c3=02, 011 =09 =a3; =02, f11 =06, fo1 =0.5, f31 = 0.4 (case
(ii)). The average and the corresponding standard deviation of the proposed pseudo
maximum likelihood estimator are reported in Table 1, along with the true values of
the model parameters. This table shows that the proposed method works reasonably
well and the proposed pseudo maximum likelihood estimator is independent of the
GARCH filtering, as indicated by Theorem 2.3. We also observe that the standard
deviation of 6; for the case A = 0.3 is larger than that for the case A = 0.7, and the
standard deviation of éz for the case A = 0.3 is smaller than that for the case A = 0.7.

This observation is in line with the role of the parameter A in the mixture copula.

For constructing confidence intervals, we draw 400 random samples each with
size n = 500 from C(x1, T, T3; 0,, 0, 5\) for each random sample. And for each boot-
strap sample, we compute the bootstrap version of the MLE, say éf, é;, A*. Use these
400 bootstrap MLE’s, we then estimate the variance of él, 92,5\ so that confidence
intervals can be obtained. Based on 1,000 random samples, the coverage probabilities
for 01,6, A\ with level 0.9 are 0.903, 0.928, 0.899 for case (i) with A = 0.3; 0.900,
0.926, 0.893 for case (i) with A = 0.7; 0.908, 0.909, 0.890 for case (ii) with A = 0.3;

14



0.898, 0.920, 0.903 for case (ii) with A = 0.7. These numbers show that the proposed
parametric bootstrap method works well, i.e., the simulation study further confirms

the property of independence of GARCH Filtering given in the Theorem 2.3.

Next we apply the proposed estimate and test to two real data sets. The first one
includes 2,275 daily log-returns of S&P 500 index, Cisco System and Intel Corporation
from January 2, 1991 to December 31, 1999; see Figure 1 and Fan, Wang and Yao
(2006). The second data set contains 2,635 daily log-returns of stock prices of Nortel,
Lucent and Cisco from April 4, 1996 to September 22, 2006; see Figure 2. Here, we fit
the mixture copula C(z1, xa, x3; 01, 02, A) to the residuals from filtering a GARCH(1,1)
for each series; see Tables 2 — 5 for parameter estimates. As mentioned in Remark 3,

we employ the following parametric bootstrap method to obtain p-values of the test.

We draw 200 random samples with size 2,275 for the first data set and size
2,635 for the second data set from C(z1, zs, z3; 01,05, \). Based on each sample, we
compute the bootstrap version of T, say 7,f. Hence we have T*(1),...,77%(200), and
the p-value is calculated as 55 ?% I(T (i) > Ty,), see Tables 3 and 5. The p-values
in Tables 3 and 5 clearly reject the mixture copula for both data sets. Since this
mixture copula is mainly designed to capture the two tails of a data set, it is less
effective in capturing both the tail part as well as the middle part of a data set.
Therefore, seeking a more flexible parametric residual copula model to capture the

whole span of the data set constitutes the next challenging task.
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Table 1: Estimation results for mixture copula C'(uy, ug, us; 6y, 602, A). Standard

deviations are given in parenthesis.

Case (i) | Case (i) | Case (ii) | Case (ii)
A=03|A=07| A=03 | A=0.7
c | 1.033 | 1.111 0.241 0.260
(0.292) | (0.306) | (0.117) | (0.122)
arp | 0.206 | 0.215 0.209 0.219
(0.073) | (0.071) | (0.065) | (0.062)
Bii| 0207 | 0.197 0.566 0.563
(0.181) | (0.177) | (0.149) | (0.137)
c; | 1.062 | 1.129 0.237 0.254
(0.269) | (0.278) | (0.109) | (0.110)
a1 | 0.309 | 0.327 0.208 0.217
(0.083) | (0.081) | (0.068) | (0.067)
Bo1 | 0.195 | 0.188 0.457 0.456
(0.146) | (0.135) | (0.173) | (0.174)
c3 | 1.071 | 1.124 0.219 0.236
(0.245) | (0.247) | (0.086) | (0.091)
as; | 0.408 | 0.437 0.206 0.216
(0.089) | (0.085) | (0.070) | (0.067)
Bsi| 0.192 | 0.192 0.381 0.375
(0.114) | (0.108) | (0.191) | (0.185)
0, | 2.956 | 2.959 2.984 2.981
(0.504) | (0.242) | (0.537) | (0.250)
0y | 2.064 | 2.166 2.061 2.171
(0.091) | (0.163) | (0.102) | (0.195)
A | 0298 | 0.693 0.295 0.690
(0.064) | (0.061) | (0.065) | (0.060)
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Table 2: Parameter estimates for GARCH(1,1) of the daily log-returns of S&P 500

index, stock prices of Cisco and Intel.

S&P 500 index | Cisco systems | Intel Corporation
c 0.0096 0.3272 0.1336
a 0.0636 0.0737 0.0186
B 0.9247 0.8879 0.9597

Table 3: Copula parameter estimates and test statistic of the daily log-returns of
S&P 500 index, stock prices of Cisco and Intel.

Cs(; 01,02, N)
Parameter estimation | (1.0549, 1.4618, 0.4716)
Test statistic nT,, 0.1806
P-value 0.000

Table 4: Parameter estimates for GARCH(1,1) of the daily log-returns of stock

prices of Nortel, Lucent and Cisco.

Nortel Lucent Cisco
c|7.0x107%]1.0%x107°|8.0x 1076
a | 0.0360 0.0436 0.0627
B 0.9609 0.9504 0.9301

Table 5: Copula parameter estimates and test statistic of the daily log-returns of

tock prices of Nortel, Lucent and Cisco.

02(; 01, 02, )\)
Parameter estimation | (1.05839, 1.3456, 0.4284)
Test statistic n7, 0.2301
P-value 0.000
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4 Proofs

Proof of Theorem 2.1. For u = (u4,...,u,)?, put
fja(w) = 03 (v + (n = v +1)7%u) [\ /Ry,
mie(w) = wii (v + (n— v+ 1)72u) /Ry,
&5 (s,u) = I(ejp < sija(w)) = Fogsija(u)) — {(ejs < smjp(w) — Fog(smia(u))},
€7 (s,u) = I(eje < smya(w)) — Foj(smie(u)) — {I(ej0 < 8) — Foy(s)},
Eio(s,u) = &7 (5,u) + &7 (5, 0),

Si(s,u) = Z &ir(s,u).

Following the proof of Theorem 2.2 of Berkes and Horvath (2003), we only need to
show that for any A > 0 and € > 0 there exist v = y(¢), d = 6(¢) and N = N(e) such
that forn > N

|55(s, u)|
P(sup sup >evn—v+1)<e (4.1)
lu|<A  0<F(t)<(ynlogn)-1 {FC,](S)(l - Ff:j(s))}ﬂs
|195(s, u)|
P(sup sup >evn—v+1)<eg, 4.2
(|u|§A (ynlogn)—1<F(t)<é {Fe,j(s)(l - Fe,j(s))}ﬂs ) (42)
1S5(s, u)|
P(sup sup >evn—v+1)<e  (4.3)
[u|<A  0<1-F(t)<(ynlogn)~1 {Fﬁ,j(s)(l - Ff,j(s))}ﬂS
|55(s, u)|

>evn—v+1)<e  (4.4)

P(sup sup
<A (ynlogn)-1<1—F(t)<s 1Fe;i(8)(1 — Fe;(s))}%

Similar to the proof of Lemma 6.1 of Berkes and Horvath (2003), there exists a
constant C'(A) > 0 such that for any s, z > 0 and |u| < A

P(IS;(s0)] 2 sV = FT) < )

T T (4.5)

Using Lemmas 4.1-4.3 of Berkes and Horvath (2003) or (5.42) and (5.43) of Hall and
Yao (2003), we have

sup  sup [fzaw) — 1] = op(1). (4.6)
lu|<A  v<t<n
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(= Log—returns: S&P SO0 indes<

o so00 1000 1soco zooo

(B> Log—returns: Stock Price of Cisco

o so00 1000 1soco zoo0o

(S Log—returns: Stock FPrice of Intel

o so00 1000 1soco zoo0o

Figure 1: Daily Log-returns of S&P 500 index (a), Stock Price of Cisco Systems (b)
and Stock Price of Intel Corporation (c) from January 2, 1991 to December 31, 1999.
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=) Log—returns: Stock Price of Nortel

o soo 1000 1soco =Zocoo =2soo

(B> Log—returns: Stock Price of Lucent

o soo 1000 1soo =Zocoo =2soo

(o> Log—returns: Stock Price of Cisco

o soo 1000 1soo zooo zsoo

Figure 2: Daily Log-returns of stock prices of Nortel (a), Lucent (b) and Cisco
from April 4, 1996 to September 22, 2006.
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It is known that

P( sup

7z (n—v+1)1! Zl(ej’t <s)—Fi(s)>evn—v+1)<e
0<F(s)<(ynlogn)~1! Fe,j (S —y

(4.7)

for n large enough.

By Condition 2 and (6.8)-(6.10) of Berkes and Horvath (2003),

P(Sup|u|§A SUPo< F(s)<(yn logn)*l{Ff,j(s)(l - Ff,j(s))}iﬂ?’
((n— v+ 1) 300 {Fei(shje () — Fej(s)}
>ev/n—v+1) < € (4.8)

for n large enough. Using Condition 2, (4.6), (4.7) and (4.8), we can show that

P(Sup\u|§A SUPo<F(t)<(yn logn)*l{Ff,j(s)(l - Ff,j(s))}iﬂa
((n—v+ 1) 130 {6 < sMjp(w) — Fej(smja(w)} 2 evn —v +1)
<e (4.9)

for n large enough. Hence (4.1) can be proved by using (4.7) - (4.9).
By (4.5),

1S;(s, )|
P sup
oo, s TR (L~ Fuy ()1

as n large enough. Like the proof of Lemma 6.3 of Berkes and Horvath (2003), we
can show (4.2) by using (4.10). Similarly we can show (4.3) and (4.4). Hence the

theorem.

>eyn—v+1)<e (4.10)

Proof of Theorem 2.2. We only consider the case v = 1 since the other cases can

be dealt with similarly. Write

Foj(e)I(es > 0) = Fojles{ 2205321, > 0)
wJ,t(’YJ)

Similar to the proof of Lemma 5.1 of Berkes and Horvath (2003), we can show that

{ S 1Fei(E4,0) — Fej(eje) [ I > 0) 0
L | Fej(€0) — Fej(eja) (€14 < 0) 2 0,
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ie.,

0. (4.11)

- Z [ Fej(€) — Fejlee)
As in the proof of Theorem 2.1 of Berkes and Horvath (2003), we can show that

lim sup |F.;(t) = F.i(t)] =0 as. (4.12)

N—=0 _ooLt<oo

+E 30 log{e(Fr (&), - ,Fe,r(&,t), 0)H ( (6g,) > Ay + 15
—= > log{c(Fealens), - - - Feplers); ) M (Njoy Frylejn) < 5 )
—% >t log{C(Fe,l(el,t), o Fep(e ,t)ﬂ)}l (V] e,J(ey,t) > Ay 4 157)
+157% {loge(Fui(éry), - Fup(ér4); 0 L1(€1y), FE,,(e,,t) 0)} x
x](% <N F, j( i) < Vi FLi(é4) < Ay + 1 QA )X
xl(% < Ni_iF, ](ej,t) < VI Foj(ejy) < Ap + 521

€

XI(&</\T- Fj

x[(% <Ny = AI)I(Vg':lFe,j(ej,t) > Ap+ %)

€,J
1t) , Fer(er ) 0)}x
))I(ﬂ < N Fejlejn) < Vi Fejlege) < A+ 1581
— Z?:f[logc( 1(€1t) s Fer(€r);0) 3%
xI(Vi_ Fej(€50) > Ay + %)I(% <N Fej(ej) < Vi Fejlejn) < Ay + 15081)
= Ii+---+ I.

"q>
m> A /(; /-\

A

< .

T‘ﬁ .

H’ﬁ>

A

P

_|_

By Condition C4, as Aj — 0,

S A Feg (60 TNy Fog (630) < A7)
% >iet Ej:1{Fe,j(Gj,t)}_ﬂol(ﬁ’e,j(éj,t) < A})
Moyt Y eI (t/n < A)

O({Ag}H %)

|11

A I/\
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and

L] < 2037 N Fojlein)} PINZ Foy(eg) < Af)
o Sy YA Fejlegn)} PO I(Fe () < AY)

= O, ({a5} ),

<
<

Similarly,
=O0({1-A7}'™) and L =0,({1-A]} )

as A} — 1. By (4.11), (4.12) and Condition C4,
% 2?21 Z;:l |F67.7 (é\]a ) F€7.7 (ejz )|/81
e 2 [P (60) — Fey(6,0) 1™

J
Ly Y [ Fe(ei) = Frjeg) P
= Op(l)-

Is <
<

Note that

L] =137 {loge(Fui(ény),-- -, Fuy
XI(% < Aj:lFe,j(ej,t) < \/ F
+% Yor{loge(Feal(érs),. .., Fer

A

xI(52 < Ni_yFij(&,) < v;_

rt); O M (Vi | Fej(€0) — Fejlege)| > 52)x
i) <AL+ ISRNI(5 > AT F j(ej)
Ert r,t); )}I( 1‘F,J(€J,t) F,j(fj,t) 3
(@) < Ay + 52N I(52 > A Fej(ege)
< L3 [loge(Fea(ére), - Fe,r(€ DO I(VI_y | Fj(é50) — Fujlejn)l > 52)%
I(% <N Foj(80) < Vi Fej(€50) < Ay + BAOI(52 > AT F i(ej4))
+% Z?:l | log C(Fe,l(é\l,t), b FE;T( ) )|'I( Fej(eja ) S AO)'

It follows from (4.11), (4.12) and Condition C4 that

Is =0,(1) as Ay —0.
Similarly,
Ii=0,(1) as Ay —1, Ig=0,(1) as Ayg—0, Iy=o0,(1) as A; —1.

Therefore,

A

gug |E Z{logc 1(€1); -5 Fer(60):0) —loge(Fea(ens), - - -, Fer(€r); 0)} = 0p(1).
€
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By Theorem 4.2.1 of Amemiya (1985) and Conditions C1-C3,

gumelogc Foi(ers),- - Ferlens); 0) — E{loge(Fea(enn), -, Forler); 0)} 2 0.
€0

(4.14)
Thus, by (4.13) and (4.14),

2ug|;210gc Foi(é1), .., Fer(ér);0) — E{log c(F.i(e11), ..., Fop(ern); 0)] 2 0.
S

(4.15)
It follows from Jensen’s inequality that
0og C( 6,1(6171)? ) 6,7‘(67“,1)’ 9) < IOgE C( 571(61,1)? ) 6,7‘(67“,1)’ 9) for 6 7§ 00’
log C(Fe,1(€1,1), ) Fe,r(Gr,l); 90) C(Fe,1(€1,1), SRR Fe,r(Gr,1); 90)
ie.,

E]Og c(Feyl(eLl), cee, Fe,r(er,l); 0) < FE log C(F€71(61,1), ceey Fe,r(er,l); 00) for 6 ?é 00.
(4.16)
Thus the theorem follows from (4.15), (4.16) and Theorem 4.1.1 of Amemiya (1985).

Before proving Theorem 2.3, we need a lemma which generalizes Lemma 5.1 of
Claeskens and Van Keilegom (2003) to the higher dimensional case. Let U; =
Uiy Ue)ty oo U = (Uny, ..., Upp)” denote independent random vectors with
multivariate uniform distribution on [0, 1]". For z = (1, ...,z,)T, define the empiri-
cal process

1 n T
Un@) =vVn—v+1{———) I{Uy<m,...,Upp < z,) = [[ =i}
v =1

n—V+1h

Let z(--%) denote z = (z1,...,2,)T with x; replaced by 1 when j is not one of
i1y ...y dg, o W)* denote = (24,...,7,)T with z; replaced by 1 when j is one of
i1, . .., and xg-“’ “)* denote the j-th element of z(1=i*)* Put
r r
Valwr,omn) =3 (-1 30 AT n(ar)
k=1 i1 A iy j=1

and

Vi(zy, ..o x,) = Z(—l)k Z {H xg-il""’ik)*}U(ac(il"“’ik))_

k=1 iW#. A =1
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LEMMA 4.1. For any B € (0,1/2),
Va(2) — V(2)]
sy s (@) (1= @)

Proof. By induction, this lemma can be proved by following the proof of Lemma 5.1
of Claeskens and Van Keilegom (2003).

= 0,(1). (4.17)

Proof of Theorem 2.3. Define

/Bn(xla- . ) VT — v+ {n U1 Zt v ( 51(61 t) < ‘Tla---aFe,r(fr,t) S ‘Tr)

—C(z1,...,z;0)}.
Write
Vn— u+'2t v ( el(ﬁlt) Fer(ﬁrt) 90)
= [4( xl,...,x,)dﬁn(xl,...,xr,ﬁo)
+ [8(z1,...,2;00)c(x1, - .., 25 00) dy . . . dzy
= [0(T7 (z1,...,2);00) dBn(T7 (21, .., 2r))
d

JO6(T (x1,- .- 2r); 600) dUn (w1, . .., T;)
JO(T, (z1,.. ., 20); 00) d{Un (21, ..., 2p) = U(21,...,20)}
+f(5 (T, r); 00) AU (3, . )

D" [6(Ty (@1, -, 2r);00) d{Va(z, ..., 2) = V(21,...,2,)}
)™ ST, (- ); 60) {30 (1) Xy, (T )
(Up(2(t)) — U (g N} + [ §(T (1,2, 20); 00) dU (244 . . ., 27
= L+ 1+ 1.

(4.18)
By Lemma 4.1 (i.e., (4.17)) and Condition N2,

L = /{Vn(xl, e @y) = V(z1, . xe) }AO(T (21, - -y 20);00) = 0p(1).  (4.19)
Tteratively applying the same trick to U, (z(t%)) — U(z(#1-+%)), we can show that

I, = o0p(1). (4.20)

For any x = (x1,...,2,)T, define D, = {(a1,...,a,) 1 a; < x5, =1,...,r}. It follows
from Condition N1 and Theorem 1 of Csorg6 and Révész (1975) that

sgp |Bn(z) = U(T, D) = 0(1) a.s. (4.21)
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Using Theorem 2.1, Condition N3 and Taylor expansion, we can show that

A

ﬁZ? AS(F F, a(€), o Fer(€r2):00) — 6(Fe(eng), - -, Fer(€rt); 00)}
= WZt Dy 15(Fe,l(el,t)u---aFe,r(er,t)QGO){Fm( )_ Fei(eig) H1 +0p(1)}
= mZt b 2oiz1 0i (Fe,l(el,t)u---aFE,r(CT,t)QGO){Fez( i) — Feiéin) H1 + 0p(1)}
+W Doty 2oi1 Oi(Feleng), -, Ferlen); Oo){Fei(éi) — Feilei) {1+ 0p(1)}
= — l/+1 o> 0i(Fea(ens)s o, Ferlers); 00){U((Q, ..., 1, Feyi(éig), 1, ..., 1)T)
-%qwu@o«ﬁfiiﬂ% %ﬂﬂgg$>ﬂl+%u»
n—u+1 t:u Zg:1 5i(F€,1(€1,t)= e aFe,r(er,t)a bo) X
xFﬁ’,i(ei,t)\/n —v+1{& —€{1+0,(1)}
= it 2t i1 0i(Fea(ene)s - Fer(ens); 0){U (A, -, 1, Feglein), 1, -, 1)T)
FheLe) ViV 10 - %ﬂEggng1+%a»
- ,,+1 Sy i Oi(Fei(ens), - -y Fep(ers); 00)5€iFY i(€i)vVn — v+ 1(% — %)
ij% {1+0,(1)}
= Yo [z, .,z 00)U((QQ,. .., 12,1, .., 1)) X
XC(T1, ..., Tp;00) dzy . .. dzy + 0p(1).

(4.22)

Using Conditions N4-N6 and similar arguments in proving (4.15), we can show that

Supaeeo ‘n v+1 Zt v 39 99; lOgC( 61( it/ 67“(67”?5) 0)

) (4.23)
E{60i60j IOg C(F6,1(61,1)7 er(Er l)a 0)}‘ _) 0

for 1 <i,5 < m. Hence the theorem follows from (4.18), (4.19), (4.20), (4.22), (4.23)
and Theorems 4.2.1 and 4.1.3 of Amemiya (1985).

Proof of Theorem 2.4. It follows from Theorem 2.1 that

Supzj |Vn_V+1{FEJ( ej]( )) —.’l3j}—U((l,...,l,xj,l,...,l)T) (4 24)
_ _ R w'  (v;) .
—5F () Fl(F(z)Vn — v+ 1(%; — %’)TE(wj,j(zj.))\ = 0p(1).
Applying Lemma 1 of Vervaat (1972) to (4.24), we have
sups, Vv L (Fofe) ~m} + UL L T
/ ~ w’1( ) :
+2Fej( )Fe,j(Fe,j(‘rJ)) n—v+ 1(7] - fY])TE(wj,l(zj)” = OP(1)7
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that is,

A

Sup,, IVn— v+ 1F (F (@) F(x5) — _-(xj)l}+U((l,...,l,ﬂ:j,l,...,l)T)
+LF () FL(Fo (o)W — v+ 1(3; — 1) TE(220) | = o,(1).

w],l('Y])
(4.26)
Write
Co(z1,. .. xp) — C(x1, ..., Ty 00)
= manAIE, (q» Foa(Fy (@) 2489), -,
Fer(€rt) <F€T(Fe,r(xr) Z::z: ) (4.27)
—C(Fea (B (1) 22500 P (B () 2220)): 60)}
anthﬂRMRAM)ﬁﬁ8ﬁ~wﬂAﬂﬂw)Zﬂ$Dﬂw

Vi () (4.28)

and

(4.29)

. w4 (%)
= L3 — )T (11 0,(1))
as t and n large. Hence the theorem follows from (4.26) - (4.29), Theorem 2.3, (2.7)

and Taylor expansions.
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