
Appendix

Proof of Theorem 1. Define

Xn(t) =

[

Λ̂∗(D) − Λ̂∗(t)

D − t
− Λ̂∗(t) − Λ̂∗(0)

t

]

g(t(D − t)), 0 < t < D

and

X0
n(t) =

[

Λ̂∗
0(D) − Λ̂∗

0(t)

D − t
− Λ̂∗

0(t) − Λ̂∗
0(0)

t

]

g(t(D − t)), 0 < t < D,

where Λ̂∗(t) = − log{[exp(−Λ̂(t)) − 1 + p̂]/p̂}, Λ̂(t) is the Nelson-Aalen estimator of

Λ(t) defined in (3.8), p̂ is defined in (3.4), and Λ̂∗
0(t) = − log{[exp(−Λ̂(t)) − 1 + p]/p}.

Note that Λ∗(0) = Λ̂∗
0(0) = Λ(0) = 0. Then

X(t) = tq−1(D − t)
q−1 {tΛ∗(D) −DΛ∗(t)} .

For any given small ε > 0, let c1 ∈ (0,min{X(τ )−X(τ − ε),X(τ )−X(τ + ε)}), which

depends on ε, τ1, τ2, θ and q. Then X(τ ) −X(t) > c1 whenever |t − τ | > ε. Noticing

that Xn(t) attains its maximum at τ̂n, for sufficiently large n, we have

Pr{| τ̂n − τ |> ε} ≤ Pr{X(τ ) −X(τ̂n) > c1}

≤ Pr{X(τ ) −X(τ̂n) +Xn(τ̂n) −Xn(τ ) > c1}

≤ Pr{| Xn(τ̂n) −X(τ̂n) | + | Xn(τn) −X(τ ) |> c1}

≤ Pr

{

sup
τ1<t<τ2

| Xn(t) −X(t) |> c1
2

}

≤ Pr

{

sup
τ1<t<τ2

| Xn(t) −X0
n(t) |> c1

4

}

+ Pr

{

sup
τ1<t<τ2

| X0
n(t) −X(t) |> c1

4

}

≤ Pr

{

Dτ p−1
1 (D − τ2)

p−1
sup

τ1<t<τ2

| Ũ0
n(t) | +τ p

2 (D − τ2)
p−1 | Ũ0

n(D) |> c1
4

}

+ Pr

{

sup
τ1<t<τ2

| Xn(t) −X0
n(t) |> c1

4

}

, (A.1)

where U0
n(t) = Λ̂∗

0(t) − Λ∗(t). Consequently, there exist c2 > 0 and c3 > 0, depending

on c1, τ1, τ2,D and q, such that

Pr{| τ̂n − τ |> ε} ≤ Pr

{

sup
τ1<t<τ2

| U0
n(t) |> c2

}

+ Pr{| U0
n(D) |> c3}

+ Pr

{

sup
τ1<t<τ2

| Xn(t) −X0
n(t) |> c1

4

}

= I + II + III. (A.2)
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From the definition of Λ∗(t) we find that

| U0
n(t) | =

∣

∣

∣

∣

log

{

1

p

[

exp(−Λ̂(t)) − 1 + p
]

}

− log

{

1

p
[exp(−Λ(t)) − 1 + p]

}
∣

∣

∣

∣

=

∣

∣

∣

∣

exp(−η(t))
exp(−η(t)) − 1 + p

∣

∣

∣

∣

· |Λ̂(t) − Λ(t)|, (A.3)

where η(t) is a number between Λ̂(t) and Λ(t). Thus exp(−η(t)) lies on the segment

between Ŝ(t) = 1− F̂n(t) and S(t) = 1−F (t) = 1− pF0(t). Under the i.i.d. censoring

model, according to Wang (1987), supt∈[0,τF0 ] |F̂n(t) − F (t)| −→ 0 almost surely for

τF0 ≤ τG. Thus for any α < 1 − pF0(D) and sufficiently large n,

exp(−η(t)) > [1− F (D)] − α = [1 − pF0(D)] − α = φ(D)

provided that τF0 > D. It follows from (A.3) that

| U0
n(t) |≤ 1

φ(D) − 1 + p
| Λ̂(t) − Λ(t) |= 1

φ(D) − 1 + p
| Un(t) |,

where Un(t) = Λ̂(t) − Λ(t) is a martingale. By (A.2) and (A.3) there exists c4 > 0

depending on c1, c2, τ1, τ2,D, q, p and F0, such that

I ≤ Pr

{

sup
τ1<t<τ2

| Un(t) |> c4, τ2 ≤ Y(n)

}

+ Pr{Y(n) < τ2}

≤ Pr

{

sup
τ1<t<τ2

| Un(t ∧ Y(n)) |> c4

}

+

n
∏

i=1

Pr{Yi < τ2}

≤ c−2
4 E

[

sup
τ1<t<τ2

| Un(t ∧ Y(n)) |
]2

+ (Pr{Y1 < τ2})2. (A.4)

We know that

Λ̂(t ∧ Y(n)) − Λ(t ∧ Y(n)) =

∫ t∧Y(n)

0

{

n
∑

i=1

Hi(s)

}−1

dMn(s) (A.5)

is a mean zero, square integrable martingale, and

E[Λ̂(t ∧ Y(n)) − Λ(t ∧ Y(n))]
2 = E

∫ t∧Y(n)

0

{

n
∑

i=1

Hi(s)

}−1

λ(s)ds, (A.6)

where Mn(t) =
∑n

i=1Ni(t) −
∫ t

0

∑n
i=1Hi(s)λ(s)ds is the basic martingale.
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In view of (A.5) and (A.6) and the martingale inequality (Hall and Heyde, 1980,

p.15), the first term on the right hand side of (A.4), denoted by I1, satisfies

I1 ≤ 2c−2
4 E[Un(τ2 ∧ Y(n))]

2 = 2c−2
4 E

∫ τ2∧Y(n)

0

I(s ≤ Y(n))Hn(s)λ(s)ds.

Thus I1 converges to zero as n→ ∞ since
∫ τ2∧Y(n)

0
Hn(s)λ(s)ds → 0 almost surely.

Next, by (A.2), II ≤ Pr{| Un(D) |} > c3,D ≤ Y(n)} + Pr{Y(n) < D}. Similarly,

II converges to zero as n→ ∞.

In order to prove III → 0, we rewrite Xn(t) and X0
n(t) as

Xn(t) = tq−1(D − t)q−1
{

t
[

Λ̂∗(D) − Λ̂∗(t)
]

− (D − t)Λ̂∗(t)
}

(A.7)

and

X0
n(t) = tq−1(D − t)q−1

{

t
[

Λ̂∗
0(D) − Λ̂∗

0(t)
]

− (D − t)Λ̂∗
0(t)

}

. (A.8)

By (A.1), (A.7) and (A.8),

III ≤ Pr

{

sup
τ1<t<τ2

| Xn(t) −X0
n(t) |> c1

4
,D < Y(n)

}

+ Pr{Y(n) ≤ D}

≤ Pr

{

2 sup
0<t<D

∣

∣

∣
Λ̂∗(t) − Λ̂∗

0(t)
∣

∣

∣
· τ q

2 (D − τ2)
q−1 >

c4
8

}

+ Pr

{

sup
τ1<t<τ2

∣

∣

∣
Λ̂∗

0(t) − Λ∗(t)
∣

∣

∣
· τ q−1

2 (D − τ2)
q >

c4
8

}

+ Pr{Y1 ≤ D}n

= I2 + I3 + (Pr{Y1 ≤ D})n, say.

It is easy to see that

I2 ≤ Pr

{

|log p̂− log p| + sup
0<t<D

∣

∣

∣

∣

∣

log
exp(−Λ̂(t)) − 1 + p̂

exp(−Λ̂(t)) − 1 + p

∣

∣

∣

∣

∣

>
c4
8

}

. (A.9)

Since p̂ converges to p in probability under conditions of Maller and Zhou (1996, p.67),

logx is a continuous function for x > 0, and sup0<t<D |Λ̂(t) − Λ(t)| → 0 almost surely

(cf. Anderson et al., 1993, p.193), (A.9) shows that I2 converges to zero as n → ∞.

Similarly, I3 → 0 as n→ ∞. This completes the proof of Theorem 1.

In order to show the asymptotic properties in Section 4, we need some Lemmas.

We first state some conditions from Hu (1998), which correspond to Conditions of 3, 1,

4, 2, 5 of Huang (1996), respectively. Note that op∗(1) in the following representations

3



indicates convergence to zero in outer probability in case that the term involved is not

Borel measurable.

Condition 1. (Stochastic Equicontinuity Condition)

|√n(Pn − P0)l̇µ(µ̂, ν̂) −√
n(Pn − P0)l̇µ(µ0, ν0)|

1 +
√
n|µ̂− µ0|

= op∗(1),

where |µ̂− µ0| = op∗(1) and |ν̂ − ν0| = op∗(1) .

Condition 2.
√
nPn l̇µ(µ0, ν0) = Op∗(1).

For i.i.d. observations, Condition 2 holds automatically if P0 l̇
2
µ(µ0, ν0) < ∞ by

the central limit theorem.

Condition 3. (Smoothness Condition) For (µ, ν) ∈ Dn,

|P0l̇µ(µ, ν) − P0 l̇µ(µ0, ν0) − P0 l̈µµ(µ0, ν0)(µ − µ0) − P0 l̈µν(µ0, ν0)(ν − ν0)|

= o(|µ − µ0|) + o(|ν − ν0|),

where Dn =
{

(µ, ν) : |µ− µ0| ≤ ηn ↓ 0, |ν − ν0| ≤ cn−1/2
}

for some constant c.

Condition 4.
√
nP0 l̈µν(µ0, ν0)|ν̂ − ν0| = Op(1). When ν̂ is a

√
n-consistent, this

condition holds automatically.

Condition 5. under the true probability P0,

√
n

[

(Pn − P0)l̇µ(µ0, ν0)

ν̂ − ν0

]

d→ Λ =

[

Λ1

Λ2

]

, (A.10)

where Λ ∼ N4 (0,Σ) with Σ being a 4 × 4 positive definite matrix.

The following Lemmas 1–4 are due to Hu (1998), which also correspond to Theorem

6.1 in Huang (1996) for the semiparametric model with a infinite-dimensional parameter

space.

Lemma 1. (Consistency) Suppose that µ0 is the unique solution to P0l̇µ(µ, ν0) = 0

and ν̂ is an estimator of ν0 such that |ν̂ − ν0| = op∗(1). If

sup
µ∈Θ1,|ν−ν0|≤ηn

|Pn l̇µ(µ, ν) − P0l̇µ(µ, ν0)|
1 + |Pn l̇µ(µ, ν)| + |P0l̇µ(µ, ν0)|

= op∗(1)

for every sequence {ηn} ↓ 0, then the µ̂ almost surely solving Pn l̇µ(µ̂, ν̂) = op∗(1)

converges in outer probability to µ0.
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Proof. See Theorem 3.1.1 of Hu (1998).

Lemma 2. Suppose that the class of functions {ψ(µ, ν) : |µ− µ0| < γ, |ν − ν0| < γ} is

P0-Donsker for some γ > 0, and that P0|ψ(µ, ν|X) − ψ(µ0, ν0|X)|2 → 0, as |µ−µ0| → 0

and |ν − ν0| → 0. If µ̂
p∗→ µ0 and |ν̂ − ν0|

p∗→ 0, then

|
√
n(Pn − P0) (ψ(µ̂, ν̂) − ψ(µ0, ν0)) | = op∗(1).

Proof. See Lemma 3.1.1 of Hu (1998).

We should note that the conditions of Lemma 2 imply Condition 1. But they give

a set of simple sufficient conditions for Condition 1, so we will verify the conditions of

Lemma 2 in the proof of Theorem 4 below.

Lemma 3. (Rate of Convergence) Suppose that µ̂ satisfies Pn l̇µ(µ̂, ν̂) = op∗(n
−1/2)

and is a consistent estimator of µ, which is the unique point for which P0l̇µ(µ, ν0) = 0,

and ν̂ is an estimator of ν0 satisfying |ν̂ − ν0| = Op∗(n
−1/2). Then under Conditions

1-4,
√
n(µ̂− µ0) = Op∗(1).

Proof. See Theorem 3.1.3 of Hu (1998).

Lemma 4. (Normality) Suppose that µ0 is the unique solution to P0l̇µ(µ, ν0) = 0 and

ν̂ is an estimator of ν0 satisfying |ν̂−ν0| = Op∗(1). Then under Conditions 1 and 3-5,
√
n(µ̂− µ0)

d→ (−P0 l̈µµ(µ0, ν0))
−1
N4 (0, V ) , where V = V ar(Λ1 + P0l̈µν(µ0, ν0)Λ2).

Proof. See Corollary 3.1.2 of Hu (1998).

Lemma 5. For l̇β(µ, ν|X) and l̇θ(µ, ν|X)defined in (4.3) and (4.4), if |µ−µ0| ≤ ηn ↓ 0

and |ν − ν0| ≤ cn−1/2, then P0|l̇µ(µ, ν)) − l̇µ(µ0, ν0))|
2

= op(1).

Proof. We only show that

P0|l̇β(µ, ν)) − l̇β(µ0, ν0))|
2

= op(1),

when |µ− µ0| ≤ ηn ↓ 0 and |ν − ν0| ≤ cn−1/2, as the proof for l̇θ is similar. Denote

A(µ, ν, y) =
(1 − δ)(1 − p)y

1 − p+ p exp(−βy))

and

B(µ, ν, y) = − δθ

β(β + θ)
+

(1 − δ)(1 − p)y

1 − p+ p exp(−βy − θ(y − τ ))
.
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Then

l̇β(µ, ν)) − l̇β(µ0, ν0)) = [A(µ, ν, y)I(y ≤ τ ) − A(µ0, ν0, y)I(y ≤ τ0)]

+ [B(µ, ν, y)I(y > τ ) −B(µ0, ν0, y)I(y > τ0)] + [δ/β − δ/β0] .

Thus it suffices to show

P0|A(µ, ν, y)I(y ≤ τ )− A(µ0, ν0, y)I(y ≤ τ0)|2 = op(1) (A.11)

and

P0|B(µ, ν, y)I(y > τ ) −B(µ0, ν0, y)I(y > τ0)|2 = op(1). (A.12)

Note that A(µ, ν, y) is continuous for (µ, ν) ∈ C0 × Cη,

|A(µ, ν, y)I(y ≤ τ ) − A(µ0, ν0, y)I(y ≤ τ0)|2

= |[A(µ, ν, y)I(y ≤ τ ) − A(µ, ν, y)I(y ≤ τ0)]

+ [A(µ, ν, y)I(y ≤ τ0) − A(µ0, ν0, y)I(y ≤ τ0)]|2

= A2(µ, ν, y)I2(τ0 < y ≤ τ ) + [A(µ, ν, y) −A(µ0 , ν0, y)]
2I2(y ≤ τ0),

and P0(I
2(τ0 < y ≤ τ )) = p[F0(τ ) − F0(τ0)] → 0 as τ → τ0. Thus (A.11) is proved.

The proof of (A.12) is similar.

Proof of Theorem 2. To prove the consistency of the pseudo estimator µ̂, we mainly

need

sup
µ∈C0,|ν−ν0|≤ηn

|Pn l̇µ(µ, ν) − P0l̇µ(µ, ν0)| = op∗(1)

for every sequence {ηn} ↓ 0. Then the consistency of µ̂ follows from Lemma 1. Since

|Pn l̇µ(µ, ν) − P0 l̇µ(µ, ν0)| ≤ |(Pn − P0)l̇µ(µ, ν)| + |P0(l̇µ(µ, ν) − l̇µ(µ, ν0))|,

and by (4.4) the second term obviously tends to zero when |ν− ν0| ≤ ηn ↓ 0, it suffices

to show that the class of functions Fη ≡ {l̇µ(µ, ν) : µ ∈ C0 ⊂ R2, |ν − ν0| ≤ η} is a

VC-class for some η > 0, where C0 is defined in (4.1). This implies that the uniform

strong law of large numbers holds, i.e., supf∈Fη
(Pn −P0)f

p→ 0 (see Van der Vaart and

Wellner, 1996, Chap. 2.6–2.7, for details).

Let F1η = {I(−∞,τ ](y) : |τ−τ0| ≤ η1}. Then the VC-index of the class of functions

F1η is 2 by Example 2.6.1 of Van der Vaart and Wellner (1996). Thus the class of

functions
{

(1 − δ)(1 − p)yI(y ≤ τ )

1 − p+ p exp(−βy) : β > A1, v ∈ Cη

}
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is Donsker by Lemma 2.6.18 and Example 2.10.8 of Van der Vaart and Wellner (1996),

because (1 − δ)(1 − p)/(1 − p+ p exp(−βy)) is bounded.

Let F2η = {I(τ,∞)(y) : |τ − τ0| ≤ η1}, we apply Lemma 2.6.18 of Van der Vaart

and Wellner (1996) to show that F2η is VC-class. Thus the class of functions

{

δθ

β(β + θ)
I(y > τ ) : µ ∈ C0, |τ − τ0| ≤ η1

}

is Donsker since δθ/β(β + θ) is bounded. It is similar to show that the other classes of

functions are also Donsker. Thus the class of functions of Fη is VC-class by applying

Example 2.10.7 and Theorem 2.10.6 of Van der Vaart and Wellner (1996). Finally, by

Lemma 1, µ̂ is consistent.

Proof of Theorem 3. We first verify the stochastic equicontinuity condition:

|
√
n(Pn − P0)[l̇µ(µ̂, ν̂) − l̇µ(µ0, ν0)]| = op∗(1). (A.13)

Let Fγ = {l̇µ(µ, ν) − l̇µ(µ0, ν0) : |µ − µ0| ≤ γ, |ν − ν0| ≤ γ}. Simular to the proof of

Theorem 1 we can show that Fγ is a VC-class. Thus (A.13) follows from Lemma 2

together with Lemma 5.

Next, the smoothness Condition 3 holds by (4.5) and Lemma 5, and Pn l̇µ(µ0, ν0)

converges in distribution to a normal random variable by the central limit theorem.

Thus
√
n|µ̂− µ| = Op∗(1) by Lemma 3.

Proof of Theorem 4. By the consistency of p̂ and τ̂ together with Slutsky’s the-

orem and the central limit theorem, we can show that (A.10) holds with normally

distributed Λ1 with mean zero and positive variance. Hence by Lemma 4,
√
n(µ̂− µ0)

is asymptotically normal with mean 0 and variance {P0l̈µµ(µ0, ν0)}
−2
V .
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