Appendix

Proof of Theorem 1. Define
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where A*(t) = —log{[exp(—A(t)) — 1 + p]/p}, A(t) is the Nelson-Aalen estimator of

}
A(t) defined in (3.8), p is defined in (3.4), and A%(t) = —log{[exp(—A(t)) — 1 + p]/p}.
Note that A*(0) = A%(0) = A(0) = 0. Then

X(t) = 971D — )T {tA*(D) — DA*(t)}.

For any given small € > 0, let ¢; € (0, min{X(7) — X (7 —¢), X(7) — X(7 +¢)}), which
depends on &, 71, 72,0 and gq. Then X (7) — X(t) > ¢; whenever |t — 7| > . Noticing

that X, (t) attains its maximum at 7, for sufficiently large n, we have
Pr{| 7 — 7 |> e} < Pr{X(7) — X(T) > 1}
<Pr{X(r) — X(7n) + Xn(Tn) — X0 (7) > 1}
< Pr{| Xo(7n) = X(70) | + | Xn(70) — X(7) [> 1}
gm{ wp|xuw—xan>%}
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{Sw o) = XO(t) |> ;}, (A1)
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where U9(t) = Ag(t) — A*(t). Consequently, there exist co > 0 and c3 > 0, depending
on c¢1,71, T2, D and ¢, such that

Pr{| 7, — 7 |> e} < Pr{ sup | Ug(t) |> 02} + Pr{] US(D) |> c3}

T1<t<T2

+Pr{ sup | Xn(t) — X0(t) [> 64—1}

T1<t<T2
=T+ 1I+1III. (A.2)



From the definition of A*(¢) we find that
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exp(=n(t)
~Jexp(=n(t) —

[ Un(t) | =

A0~ 1+5] } - 10 {5 fexn(-a) - 1451}

-|AQ@) = A1), (A.3)

=
L+p
where 7(t) is a number between A(t) and A(t). Thus exp(—n(t)) lies on the segment
between S(t) = 1 — F,,(t) and S(t) = 1 — F(t) = 1 — pFy(t). Under the i.i.d. censoring
model, according to Wang (1987), sup;cjo s, | |E,(t) — F(t)] — 0 almost surely for
Tr, < T7g. Thus for any o < 1 — pFy(D) and sufficiently large n,

exp(=n(t)) > [1 = F(D)] —a = [1 = pFy(D)] —a = ¢(D)

provided that g, > D. It follows from (A.3) that

L A AW = e [T .

0
1= o)~ 1+7

<D 1t

where U, (t) = A(t) — A(t) is a martingale. By (A.2) and (A.3) there exists ¢4 > 0
depending on c¢1, ¢, 71,72, D, q, p and Fp, such that

I< Pr{ sup | Up(t) |> ca,m2 < Y(n)} +Pr{Y,) < 72}
T1<t<T2

< Pr{ sup | Un(t AY(p)) [> 04} + HPr{Yi < To}

T1<t<T2 i—1
2
< cZQE { sup | Un(t AY(y)) |} + (Pr{Y; < 7'2})2. (A.4)
T1<t<T2

We know that

R tAY () -
AEAYm) = AEAY ) = /0 {Z Hi(s)} dM,,(s) (A.5)

is a mean zero, square integrable martingale, and

. t/\§/(n)
BIA(EA i)~ AEAYi)2 = E [
0

{Z Hi(s)} A(s)ds, (A.6)

where M, (t) = >"7" | N;(t fo S Hi(s)\(s)ds is the basic martingale.
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In view of (A.5) and (A.6) and the martingale inequality (Hall and Heyde, 1980,
p.15), the first term on the right hand side of (A.4), denoted by I, satisfies

T2AY(n)
I < 2¢?E[Uy (12 A Y(n))]2 = QCZQE/ I(s < Y(p))Hn(s)A(s)ds.
0

Thus I; converges to zero as n — oo since fOTZAY(") H, (s)\(s)ds — 0 almost surely.

Next, by (A.2), II < Pr{| Un(D) |} > c3,D < Yy} + Pr{Y(,) < D}. Similarly,

11 converges to zero as n — o0.

In order to prove I11 — 0, we rewrite X,,(t) and X2 (¢) as
X, (t) = t471(D — ¢)a~1 {t [A*(D) - A*(t)} (D - t)f\*(t)} (A7)

and

X5t = 71D = e [Ay(D) - Ai)] - (D-pAsm ). (A48)

By (A.1), (A.7) and (A.8),

1171 < Pr{ sup | Xn(t) — X2(t) |> %,D < Y(n)} + Pr{Y(,) < D}

T1<t<T2
< Pr {2 sup ’f\*(t) - [\;;(t)’ (D — )Tt > 6—4}
0<t<D 8
+ Pr{ sup |Aj(t) — A*(t)‘ 7dTND — 1) > 6—4} + Pr{Y; < D}"
T1<t<T2 8

= IQ + Ig + (PI‘{Yl S D})n, say.
It is easy to see that

log SPCAB) — 145
exp(—A(t)) —1+p

I, <Pr {|logﬁ —logp| + sup
0<t<D

> %4} . (A.9)

Since p converges to p in probability under conditions of Maller and Zhou (1996, p.67),
log « is a continuous function for > 0, and supy;. p |A(t) — A(t)| — 0 almost surely
(cf. Anderson et al., 1993, p.193), (A.9) shows that I, converges to zero as n — oc.

Similarly, Is — 0 as n — oco. This completes the proof of Theorem 1. 1

In order to show the asymptotic properties in Section 4, we need some Lemmas.
We first state some conditions from Hu (1998), which correspond to Conditions of 3, 1,

4, 2, 5 of Huang (1996), respectively. Note that o,+(1) in the following representations
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indicates convergence to zero in outer probability in case that the term involved is not

Borel measurable.

Condition 1. (Stochastic Equicontinuity Condition)

v/ (Po = Po)lu(fi, ) = /n(Po = Po)lu(po, vo)|
1+ Vn|f — pol

where |1 — po] = 0p«(1) and |0 — vp| = 0p= (1) .

= Op* (1)7

Condition 2. /Pyl (1o, v0) = Op-(1).

For i.i.d. observations, Condition 2 holds automatically if POZZ(,UOa vy) < oo by

the central limit theorem.

Condition 3. (Smoothness Condition) For (u,v) € Dy,

|P0iu(ﬂa V) — POju(NO: vo) — Polup (o, vo) (1 — pr0) — Polyw (o, vo) (v — 1))
= o(lp = pol) + oflv — wo),

where Dy, = {(p,v) : | —po| < mn 1 0,|v — 15| < cn_1/2} for some constant c.

Condition 4. /1Pyl (10, 10)|7 — vo| = Op(1). When © is a \/n-consistent, this

condition holds automatically.

Condition 5. under the true probability P,

sl —{Do)lu(uo,m))] 4 {Al], (A.10)

vV —1) A2
where A ~ N4 (0,%) with ¥ being a 4 x 4 positive definite matrix.

The following Lemmas 14 are due to Hu (1998), which also correspond to Theorem
6.1 in Huang (1996) for the semiparametric model with a infinite-dimensional parameter

space.

Lemma 1. (Consistency) Suppose that po is the unique solution to Pyl (p,v0) = 0
and U is an estimator of vy such that |0 — vo| = op«(1). If
[Py (s v) = Polu(p, vo)|

sup : : = 0p-(1)
peds Jv—vo|<nn 14 |Puly (1, v)| + | Poly (1, v0)|

for every sequence {n,} | 0, then the ji almost surely solving Pnl,(i1,?) = 0p-(1)

converges in outer probability to pg.



Proof. See Theorem 3.1.1 of Hu (1998). 1

Lemma 2. Suppose that the class of functions {p(u,v) : |pu — po| < v, |v — ol <~} is
Py-Donsker for some y > 0, and that P0|¢(,u, V| X) = (po, 0| X)|* — 0, as |p—po| — 0

and |v — vp| — 0. If,u—>,u0 and |0 — vp| —>0 then
[V (Pr = Po) (¥(j, ) = b(po, v0)) | = 0p=(1).

Proof. See Lemma 3.1.1 of Hu (1998). 1

We should note that the conditions of Lemma 2 imply Condition 1. But they give
a set of simple sufficient conditions for Condition 1, so we will verify the conditions of

Lemma 2 in the proof of Theorem 4 below.

Lemma 3. (Rate of Convergence) Suppose that i satisfies Pul,(fi,0) = op«(n~"1/?)
and 1s a consistent estimator of p, which is the unique point for which Poiu (1, 1v9) =0,
and U is an estimator of vo satisfying |0 — vo| = Op-(n~1/2). Then under Conditions
14, Vil — o) = Oy (1).

Proof. See Theorem 3.1.3 of Hu (1998). 1

Lemma 4. (Normality) Suppose that po is the unique solution to POZH (1, v9) = 0 and
U is an estimator of vy satisfying |0 —vy| = Op=(1). Then under Conditions 1 and 3-5,
Vn(p — o) = (—Poluu(po,v0))  Na(0,V), where V= Var(Ar + Polyuy (1o, vo)A2).

Proof. See Corollary 3.1.2 of Hu (1998). 1

Lemma 5. For ig(p, v|X) and lo(p, v|X)defined in (4.3) and (4.4), if |pp—po| < nn 1 0
and v — vo| < en=V/2, then Poll,(u,v)) — 1,.(po, Vo))|2 = 0p(1).

Proof. We only show that

Polis(, 1)) — (110, 10))]” = 0p(1),

when g — po| <1, 1 0 and v — 1| < cn_1/2, as the proof for Iy is similar. Denote

(1-0)(1—p)y
Alp,v,y) = 1 —p+pexp(—PBy))
and
50 (1-0)(1—p)y

B ) = =558y T 1= p+ pesp(—py— 6 — )
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Then

la(p,v)) — ig(po,0)) = [A(p, v, )1 (y < 7) — A(po, vo, y)I(y < m0)]
+ [B(p, v, y)I(y > 7) — B(po, vo,y)I(y > 70)] + [6/8 — 6/ o] -

Thus it suffices to show

PolA(p, v, y)I(y < 7) — Alpo, vo, y)I(y < m0)|° = 0,(1) (A.11)
and
Po|B(u, v, y)I(y > 1) — B(po, vo, )1 (y > 10)|” = 0,(1). (A.12)

Note that A(u,v,y) is continuous for (u,v) € Cy x Cy,

A, v, )1 (y < 7) = Ao, vo, y)I(y < 10)/?
= [[A(w, v, )1 (y < 7) = Alp, v, y)I(y < 710)]
+ [A(p, v, ) I(y < 70) — Ao, v, )1 (y < 10)][
= A%(p, v y) I (10 < y < 7) + [Alp, v,y) — Ao, vo,9)* T (y < 70),

and Py(I?(19 < y < 7)) = p[Fo(r) — Fo(10)] — 0 as 7 — 79. Thus (A4.11) is proved.
The proof of (A.12) is similar. I

Proof of Theorem 2. To prove the consistency of the pseudo estimator /i, we mainly

need

swp (Pl ) — Pol (s 0)| = 0pe (1)
u€C0,|V—V0|§77n

for every sequence {n,} | 0. Then the consistency of ji follows from Lemma 1. Since

| Pl (11, v) = Polyu(v0)| < [(Pr = Po)lu (s, )] + [P, v) = L o))

and by (4.4) the second term obviously tends to zero when |v — | < n,, | 0, it suffices
to show that the class of functions Fy, = {i,(u,v) : p € Co C R%,|v —wp| < 7} is a
VC-class for some n > 0, where Cj is defined in (4.1). This implies that the uniform
strong law of large numbers holds, i.e., sup;cp, (Pn — Fo) f 2 0 (see Van der Vaart and
Wellner, 1996, Chap. 2.6-2.7, for details).

Let F1) = {I(—o0,r](¥) : |7 —70| < m1}. Then the VC-index of the class of functions
F1,, is 2 by Example 2.6.1 of Van der Vaart and Wellner (1996). Thus the class of

functions

{(1 —0) (1 —p)yl(y <7)

B> A,veC
1 —p+ pexp(—By) B> 4 "}
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is Donsker by Lemma 2.6.18 and Example 2.10.8 of Van der Vaart and Wellner (1996),
because (1 —0)(1 —p)/(1 —p+ pexp(—Fy)) is bounded.

Let Fay = {I(7,00)(%) : |7 — 70| < m}, we apply Lemma 2.6.18 of Van der Vaart
and Wellner (1996) to show that Fy, is VC-class. Thus the class of functions
00

{mf(y>7) : € Co, |7 — 10| §771}

is Donsker since §0/3(8 + 0) is bounded. It is similar to show that the other classes of
functions are also Donsker. Thus the class of functions of F}, is VC-class by applying
Example 2.10.7 and Theorem 2.10.6 of Van der Vaart and Wellner (1996). Finally, by

Lemma 1, [i is consistent. 1

Proof of Theorem 3. We first verify the stochastic equicontinuity condition:
V(P = Po)llu(ft ) = L0, 10))] = 0p+ (1) (4.13)

Let Fy, = {l,(u,v) — I, (10, 0) : |t — pol < 7, |v — vo| < ~}. Simular to the proof of
Theorem 1 we can show that F, is a VC-class. Thus (A.13) follows from Lemma 2

together with Lemma 5.

Next, the smoothness Condition 3 holds by (4.5) and Lemma 5, and Py, (0, o)
converges in distribution to a normal random variable by the central limit theorem.
Thus /n|f — | = Op+(1) by Lemma 3. 1

Proof of Theorem 4. By the consistency of p and 7 together with Slutsky’s the-
orem and the central limit theorem, we can show that (A.10) holds with normally
distributed A; with mean zero and positive variance. Hence by Lemma 4, \/n (i — o)

. 9
is asymptotically normal with mean 0 and variance {FPyl,,, (1o, v0)} V. I



