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Abstract: Computer experiments with different levels of accuracy have become

prevalent in many engineering and scientific applications. Design construction for

such computer experiments is a new issue because the existing methods deal almost

exclusively with computer experiments with one level of accuracy. In this paper,

we construct some nested space-filling designs for computer experiments with two

levels of accuracy. Our construction makes use of Galois fields and orthogonal

arrays.
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1. Introduction

Experimentation to study complex real world systems in engineering and

sciences can now be conducted at different levels of accuracy. Complex mathe-

matical models, implemented in large computer codes, are widely used as a proxy

to study the real systems. Conducting the corresponding physical experiments

would be costly. For example, each physical run of the fluidized bed process

in the food industry to coat certain food products with additives can take days

or even weeks to finish (Reese, Wilson, Hamada, Martz and Ryan (2004)) while

running the associated computer code only takes minutes per run. Because a

large computer program can be run at different levels of sophistication with

vastly varying computational times, multiple experiments with various levels of

accuracy or fidelity have become prevalent in practice.

Study of such multiple experiments involves two aspects: experimental plan-

ning, and modeling and analysis of data. While some headway has been made

to tackle the modeling issue (Kennedy and O’Hagan (2001), Reese et al. (2004),

Qian, Seepersad, Joseph, Allen and Wu (2006) and Qian and Wu (2008)), no sys-

tematic study has hitherto been done to address the planning issue. This issue

poses new challenges as the existing methods deal almost exclusively with com-

puter experiments with one level of accuracy (Santner, Williams and Notz (2003)
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and Fang, Li and Sudjianto (2005)). The purpose of this article is to propose and

construct some suitable designs in this new situation. For ease in presentation,

we only consider the situation involving two experiments that are called the low-

accuracy experiment (LE) and the high-accuracy experiment (HE), where HE is

more accurate but more expensive than LE. The sets of design points for LE and

HE are denoted by Dl and Dh, respectively. Throughout we assume that the

design region for both Dl and Dh is the unit hypercube. Construction of Dl and

Dh is guided by three principles:

Economy – the number n2 of points in Dh is smaller than the number n1 of

points in Dl;

Nested relationship – Dh is nested within Dl, i.e., Dh ⊂ Dl;

Space-filling – both Dl and Dh achieve uniformity in low dimensions.

These principles were implicitly used in Qian et al. (2006) but not formally

given therein. The principle of economy is concerned with different computing

times of HE and LE; as LE is cheaper than HE, more LE runs can be afforded.

The principle of nested relationship makes it easier to model data from HE and

LE. It implies that, for every point in Dh, results from both LE and HE are avail-

able. This part of data can thus be used for modeling and calibrating the differ-

ences between these two experiments (Kennedy and O’Hagan (2001), Qian et al.

(2006) and Qian and Wu (2008)). The principle of space-filling is based on the

belief that interesting features of the true model are as likely to be in one part

of the design space as in another. Designs that spread the points in a design

space uniformly are often referred to as space-filling designs. Uniformity of de-

sign points can be achieved in several ways. Our focus in this paper is to consider

designs that are space-filling in low dimensions (McKay, Beckman and Conover

(1979), Owen (1992) and Tang (1993)). Other approaches include the use of

distance criteria, as in Johnson, Moore and Ylvisaker (1990) and discrepancies

as in Fang, Lin Winker and Zhang (2000), for design selection.

Considering the three principles, this paper constructs some nested space-

filling designs. A nested space-filling design consists of two sets of design points,

Dl and Dh, with a nested structure Dh ⊂ Dl such that both Dh and Dl achieve

uniformity in low dimensional projections. The basic idea is to construct an

OA-based Latin hypercube (Dl) (Tang (1993)) that contains a sub-design (Dh)

with an orthogonal array structure. The remainder of the article is organized as

follows. Section 2 considers a motivating example. The main construction results

are presented in Section 3. Section 4 concludes the paper with a discussion and

some further results.
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Before moving on to the next section, we make a note on the terminology

used in this paper. When we say that a design is space-filling in low dimensions
or achieves uniformity in low dimensions, we mean that when projected onto

low dimensions, the design points are evenly scattered in the design region. The

precise meanings of these phrases will be made clear when we present our concrete

results, as in Theorem 2 and Lemma 1.

2. Background and Motivating Example

2.1. Background material

We introduce Latin hypercubes, orthogonal arrays, and OA-based Latin hy-

percubes. An n×m matrix D = (dij) is called a Latin hypercube of n runs for m

factors if each column of D is a permutation of 1, . . . , n. There are two natural

ways of generating design points in the unit cube [0, 1]m based on a given Latin
hypercube. The first is through xij = (dij − 0.5)/n, with the n points given

by (xi1, . . . , xim) with i = 1, . . . , n. The other is through xij = (dij − uij)/n,

with the n points given by (xi1, . . . , xim) with i = 1, . . . , n, where uij are inde-

pendent random variables with a common uniform distribution on [0, 1]. The
difference between the two methods can be seen as follows. When projected

onto each of the m variables, both methods have the property that one and only

one of the n design points fall within each of the n small intervals defined by

[0, 1/n), [1/n, 2/n), . . . , [(n − 1)/n, 1]. The first method gives the mid-points of
these intervals while the second gives points that are uniformly distributed in

their corresponding intervals.

An orthogonal array of size n, m constraints, s levels, and strength t ≥ 2
is an n × m matrix with entries from a set of s levels, usually taken as 1, . . . , s,

such that for every n × t submatrix, each of the st level combinations occurs

the same number of times. Such an array is denoted by OA(n,m, s, t). Regu-

lar fractional factorial designs, as discussed in Wu and Hamada (2000), are the
most familiar examples of orthogonal arrays. Let A be an OA(n,m, s, t) with

its s levels denoted by 1, . . . , s. Then in every column of A, each level occurs

q = n/s times. For each column of A, if we replace the q ones by a permuta-

tion of 1, . . . , q, replace the q twos by a permutation of q + 1, . . . , 2q, and so on,
we obtain an OA-based Latin hypercube (Tang (1993)). In addition to achiev-

ing maximum stratification in one dimensions, OA-based Latin hypercubes have

attractive space-filling properties when projected onto t or lower dimensions.

2.2. A motivating example

We discuss an example taken from Qian et al. (2006). The example deals with

designing a heat exchanger for a representative electronic cooling application.

The response of interest is the heat transfer rate in the heat exchanger. Five
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Figure 1. Bivariate projections among x1, x2, x3 of a 64-run OA-based Latin

hypercube Dl.

design variables x1, x2, x3, x4, x5, including mass flow rate of entry air and tem-

perature of entry air, can potentially affect the thermal process. These variables

are assumed to take values in the unit hypercube [0, 1]5. Two types of computer

experiments – an HE based on finite element simulations (FLUENT (1998)) and

an LE based on finite difference simulations (Incropera and DeWitt (1996) and

Seepersad, Dempsey, Allen, Mistree and McDowell (2004)) – are used to analyze

the impact of these factors on the heat transfer rate. The HE and LE have dif-

ferent levels of accuracy and computational times: each HE run requires two to

three orders of magnitude more computing time than the corresponding LE run;

the HE runs are generally more accurate than the LE runs by 10% to 15%. To

construct Dh and Dl, Qian et al. (2006) used the following two-step procedure:

Step 1: Take Dl to be an OA-based Latin hypercube with n1 runs;

Step 2: A subset Dh with n2 runs is selected from Dl using the maximin distance

criterion (Johnson, Moore and Ylvisaker (1990)).
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Figure 2. Bivariate projections among x1, x2, x3 of the 16-run design Dh

selected from Dl in Figure 1 using the maximin distance criterion.

In this example, n1 and n2 are 64 and 16, respectively. An OA(64, 5, 8, 2) from

Neil Sloane’s webpage (http://www.research/att.com/˜njas) is used to construct

an OA-based Latin hypercube. This is Dl in step 1. Figure 1 depicts the bivariate

projections of Dl and, for brevity, only those among the variables x1, x2, x3 are

presented. Computing a 16-run design Dh in step 2 is carried out by using a

simulated annealing algorithm (Belisle (1992)) with 2,000 iterations. Figure 2

presents the bivariate projections of Dh among x1, x2, x3, showing that Dh is

far from being space-filling in two dimensions.

Table 1 gives a special version of OA(64, 5, 8, 2), constructed using a general

method in Section 3. We now use this orthogonal array to obtain an OA-based

Latin hypercube, which serves as our new Dl. The bivariate projections of this

design are similar to those in Figure 1.

Now let Dh be obtained by selecting the 16 points from Dl that correspond to

runs 1-4, 9-12, 17-20, and 25-28 of the array in Table 1. The bivariate projections

are given in Figure 3. We see that this design Dh has an underlying orthogonal

array structure. In fact, the matrix given by collecting runs 1-4, 9-12, 17-20,
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Table 1. An OA(64, 5, 8, 2) that contains a nesting OA(16, 5, 4, 2). More
precisely, the matrix consisting of runs 1-4, 9-12, 17-20, and 25-28 becomes
an OA(16, 5, 4, 2) if the eight levels are collapsed into four levels according
to the scheme: (1, 2) → 1, (3, 4) → 2, (5, 6) → 3, (7, 8) → 4.

1 1 1 1 1 1

2 1 3 3 5 7

3 1 5 5 8 4

4 1 7 7 4 6
5 1 8 8 7 2

6 1 6 6 3 8

7 1 4 4 2 3

8 1 2 2 6 5

9 3 1 3 3 3

10 3 3 1 7 5
11 3 5 7 6 2

12 3 7 5 2 8

13 3 8 6 5 4

14 3 6 8 1 6

15 3 4 2 4 1
16 3 2 4 8 7

17 5 1 5 5 5

18 5 3 7 1 3

19 5 5 1 4 8

20 5 7 3 8 2

21 5 8 4 3 6
22 5 6 2 7 4

23 5 4 8 6 7

24 5 2 6 2 1

25 7 1 7 7 7

26 7 3 5 3 1

27 7 5 3 2 6
28 7 7 1 6 4

29 7 8 2 1 8

30 7 6 4 5 2

31 7 4 6 8 5
32 7 2 8 4 3

33 8 1 8 8 8

34 8 3 6 4 2

35 8 5 4 1 5

36 8 7 2 5 3
37 8 8 1 2 7

38 8 6 3 6 1

39 8 4 5 7 6

40 8 2 7 3 4

41 6 1 6 6 6

42 6 3 8 2 4
43 6 5 2 3 7

44 6 7 4 7 1

45 6 8 3 4 5

46 6 6 1 8 3

47 6 4 7 5 8
48 6 2 5 1 2

49 4 1 4 4 4

50 4 3 2 8 6

51 4 5 8 5 1

52 4 7 6 1 7

53 4 8 5 6 3
54 4 6 7 2 5

55 4 4 1 3 2

56 4 2 3 7 8

57 2 1 2 2 2

58 2 3 4 6 8

59 2 5 6 7 3
60 2 7 8 3 5

61 2 8 7 8 1

62 2 6 5 4 7

63 2 4 3 1 4
64 2 2 1 5 6

and 25-28 of the OA(64, 5, 8, 2) in Table 1 becomes an OA(16, 5, 4, 2) if the eight

levels are collapsed into four levels according to the following scheme:

(1, 2) → 1; (3, 4) → 2; (5, 6) → 3; (7, 8) → 4.

The OA(64, 5, 8, 2) in Table 1 is a special case of the general results to come in

Section 3.
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Figure 3. The bivariate projections among x1, x2, x3 of Dh obtained from

the Latin hypercube Dl constructed using the orthogonal array in Table 1.

3. General Results

3.1. Galois fields and Rao-Hamming construction

We give a brief account of Galois fields and the Rao-Hamming construction

for orthogonal arrays. Interested readers can refer to Hedayat, Sloane and Stufken

(1999) for more detailed discussion. A field F is a nonempty set equipped with

two binary operations + and ∗ on F such that the following properties hold:

1. a + b = b + a for all a, b ∈ F ;

2. (a + b) + c = a + (b + c) for all a, b, c ∈ F ;

3. there exists a unique element 0 ∈ F such that a + 0 = a all a ∈ F ;

4. for any a ∈ F , there exists a unique element −a ∈ F such that a + (−a) = 0;

5. a ∗ b = b ∗ a for all a, b ∈ F ;

6. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ F ;

7. there exists a unique element 1 ∈ F such that a ∗ 1 = a all a ∈ F ;
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8. for any a ∈ F, a 6= 0, there exists a unique element a−1 ∈ F such that

a ∗ a−1 = 1;

9. a ∗ (b + c) = a ∗ b + a ∗ c for a, b, c ∈ F .

All rational numbers form a field with respect to the usual addition and

multiplication; so do all real numbers. A field with a finite number of elements is

called a finite field or Galois field, and we use GF (s) to denote a Galois field with

s elements. Let p be a prime number. Then the set of residues {0, 1, . . . , p − 1}

modulo p forms a Galois field GF (p) of order p under addition and multiplication

modulo p. Let g(x) = b0 + b1x + · · · + buxu, where bj ∈ GF (p) and bu = 1 be

an irreducible polynomial of degree u. Then the set of all polynomials of degree

u − 1 or lower {a0 + a1x + · · · + au−1x
u−1|aj ∈ GF (p)} is a Galois field GF (pu)

of order pu under addition and multiplication of polynomials modulo g(x). For

any polynomial f(x) with coefficients from GF (p), there exist unique polynomials

q(x) and r(x) such that f(x) = q(x)g(x)+r(x) where the degree of r(x) is smaller

than u. This r(x) is the residue of f(x) modulo g(x), which is usually written as

f(x) = r(x) (mod g(x)). For every prime p and every integer u ≥ 1, there exists

a GF (pu). In fact, all Galois fields have this form. Another important result is

that the multiplicative group GF (pu) \ {0} is cyclic, allowing easy calculations

under multiplication.

Let s = pu. The Rao-Hamming construction gives an OA(n,m, s, 2) where

n = sk and m = (sk − 1)/(s − 1) for any integer k ≥ 2. This is done as follows.

Let zj be a column vector of length k with the jth component equal to one and

all the others equal to zero for j = 1, . . . , k. We then obtain a k × m matrix Z

with m = (sk − 1)/(s − 1) by collecting all the column vectors given by

z = c1z1 + · · · + ckzk, where cj ∈ GF (s)

and the first nonzero entry in (c1, . . . , ck) is one. Taking all linear combinations

of the row vectors of Z with coefficients from GF (s), we obtain an OA(n,m, s, 2)

with n = sk and m = (sk − 1)/(s − 1).

3.2 Construction of nested orthogonal arrays

Let s1 = pu1 and s2 = pu2 be two powers of the same prime p where u1 >

u2 ≥ 1. If a polynomial with coefficients from GF (p) has degree u2−1 or lower, it

belongs to both GF (s1) and GF (s2). So GF (s2) is a subset of GF (s1), although

it is not necessarily true that GF (s2) is a subfield of GF (s1). For GF (s1) to have

a subfield of order s2, we must have that u2 divides u1.

All polynomials considered in this paper have their coefficients from GF (p)

and we make no further mention of this. We use A to denote the OA(n1,m1, s1, 2),

where n1 = sk
1 and m1 = (sk

1 − 1)/(s1 − 1), given by the Rao-Hamming construc-

tion as discussed in Section 3.1. Recall that the rows of this array A are all the
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linear combinations of the row vectors of Z with coefficients from GF (s1), where

Z consists of all column vectors z = c1z1 + · · ·+ckzk, where cj ∈ GF (s1) and the

first nonzero entry in (c1, . . . , ck) is one. Now consider a subarray A1 of A, ob-

tained by taking all linear combinations of the row vectors of Z1 with coefficients

from GF (s1), where Z1 is a submatrix of Z given by collecting all the column

vectors z = c1z1 + · · · + ckzk, with cj ∈ GF (s2) ⊂ GF (s1) and the first nonzero

entry in (c1, . . . , ck) is one. Clearly, A1 is an OA(n1,m2, s1, 2) where n1 = sk
1 and

m2 = (sk
2 − 1)/(s2 − 1). It should be stressed that all the calculations in the con-

struction of A1, as well as that of A, are performed in GF (s1), notwithstanding

that the subset GF (s2) of GF (s1) is used for selecting the columns of A1.

Let us focus on A1. Let g1(x) be the chosen irreducible polynomial that

defines GF (s1). Now consider how the entries of A1 are obtained during the

construction of A1. Calculations for an entry of A1 in GF (s1) can be carried

out in two stages. In the first stage, we only conduct polynomial calculations

without being modulo g1(x) and let the resulting polynomial be f(x). In the

second stage, the residue of f(x) modulo g1(x) is found and it is this residue

that becomes the entry of A1. For convenience in presentation, we use fg1
(x) to

denote the residue of f(x) modulo g1(x). Using this notation, all entries of A1

have the form of fg1
(x).

Now consider the submatrix A2 of A1 given by those linear combinations of

the row vectors of Z1 with coefficients from GF (s2), a subset of GF (s1). The ma-

trix A2 may not be an orthogonal array in itself, but becomes an OA(n2,m2, s2, 2)

if its s1 levels are suitably collapsed into s2 levels, where n2 = sk
2 and m2 =

(sk
2 − 1)/(s2 − 1). Level collapsing is done modulo g2(x), the irreducible polyno-

mial that defines GF (s2). We are ready to present the results.

Theorem 1. Consider A1 and A2 as constructed above. Then we have that

(i) the matrix A1 is an OA(n1,m2, s1, 2), and

(ii) provided that 2u2 ≤ u1+1, the submatrix A2 of A1 becomes an OA(n2,m2, s2,

2) when the s1 levels are collapsed into s2 levels according to the scheme:

fg1
(x) → (fg1

)g2
(x).

Proof. Only part (ii) of Theorem 1 requires a proof. Let fg1
(x) be an entry of

A2, where f(x) denotes the polynomial for this entry before being modulo g1(x).

Then the matrix A∗

2 obtained by replacing every entry fg1
(x) of A2 by fg2

(x) is

an OA(n2,m2, s2, 2), as A∗

2 is simply the Rao-Hamming construction based on

GF (s2). Part (ii) of Theorem 1 is established if we can show that

(fg1
)g2

(x) = fg2
(x) (3.1)

for every f(x) that may result from calculating the entries of A2. Note that f(x)

would be the entry of A2 if calculations modulo g1(x) were not performed. Since
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the degree of polynomial f(x) is at most 2(u2 − 1), which is less than or equal to

u1 − 1, we must have that fg1
(x) = f(x). Thus (3.1) holds.

Equation (3.1) does not hold in general. So the condition 2u2 ≤ u1 + 1 is

needed to ensure the validity of part (ii) of Theorem 1. The level collapsing

scheme in Theorem 1 may look a bit abstract but the idea is simple. Once A2

and A1 have been constructed, the s1 levels are all the polynomials of degree

u1 − 1 or lower, and the irreducible polynomial g1(x) plays no further role in

level collapsing. A polynomial of degree u1 − 1 or lower, as one of the s1 levels,

is simply mapped to its residue modulo g2(x).

Example 1. Let p = 2, u1 = 3, u2 = 2, s1 = pu1 = 8 and s2 = pu2 = 4. The

condition 2u2 ≤ u1 + 1 is satisfied. We use g1(x) = x3 + x + 1 and g2(x) =

x2 + x + 1, both irreducible, to define GF (8) and GF (4). We obtain A1 and

A2 using the construction method described earlier for k = 2. From Theorem

1, A1 is an OA(64, 5, 8, 2), and A2 becomes an OA(16, 5, 4, 2) when the eight

levels, 0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1 are collapsed into four levels

0, 1, x, x + 1 according to (0, x2 + x + 1) → 0, (1, x2 + x) → 1, (x, x2 + 1) → x,

(x + 1, x2) → x + 1. For example, x2 is mapped to x + 1 because the residue of

x2 modulo g2(x) = x2 + x + 1 is x + 1.

3.3. Construction of nested space-filling designs

The pair of nested orthogonal arrays A2 ⊂ A1 does not automatically gen-

erate nested space-filling designs if the s1 levels are arbitrarily labeled. In con-

structing OA-based Latin hypercube using A1, the s1 levels of A1, originally

represented by the polynomials of degree u1 − 1 or lower, have to be first labeled

as 1, . . . , s1. Although any such labeling of the s1 levels will give an OA-based

Latin hypercube which is space-filling in two dimensions, the subset of points

corresponding to A2 may not have good space-filling properties. Care should

be taken in labeling the levels to ensure that this subset of points also achieves

stratification in two dimensions.

The key idea here is that the s1 levels of A1 must be labeled in such a

way that the group of levels that are mapped to the same level should form a

consecutive subset of {1, . . . , s1}. We now give a precise description of how the

levels should be labeled. The level collapsing scheme in Theorem 1 through g2(x)

divides the s1 levels into s2 groups, each of size e = s1/s2. Two levels f1(x) and

f2(x) belong to the same group if f1(x)−f2(x) = 0 (mod g2(x)). These s2 groups

can be arbitrarily, or randomly if one wishes, labeled as groups 1, . . . , s2. Then

the e levels within the ith group can be arbitrarily, or randomly if one wishes,

labeled as (i − 1)e + 1, . . . , (i − 1)e + e for i = 1, . . . , s2.
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Example 2. In Example 1, the four groups of levels are (0, x2 + x + 1), (1, x2 +

x), (x, x2 + 1), and (x + 1, x2). One choice of level labeling according to the

just described method is to label (0, x2 + x + 1) as levels 1 and 2, (1, x2 +

x) as levels 3 and 4, (x, x2 + 1) as levels 5 and 6, and (x + 1, x2) as levels 7

and 8. The OA(64, 5, 8, 2) in Table 1 is obtained in precisely this way. This

particular choice of level labeling does not lose any generality. If one wishes

to randomize, one could randomly permute the four groups of levels and then

randomize the two levels within each group to obtain a permutation of the eight

levels 1, . . . , 8; the levels in this permutation could then be sequentially relabeled

as levels 1, . . . , 8. For example, randomly permuting the four groups of levels

might give (3, 4), (1, 2), (5, 6), (7, 8) and further randomizing the two levels within

each group might give (4, 3), (1, 2), (6, 5), (7, 8). Then levels 4, 3, 1, 2, 6, 5, 7, 8

are relabled as 1, 2, 3, 4, 5, 6, 7, 8.

Suppose that the levels of A1 in Theorem 1 have been appropriately labeled

as 1, . . . , s1 in accordance with the above method. Naturally, the entries of A2

also come from this set of levels. We now use A1 to obtain an OA-based Latin

hypercube design as discussed in Section 2.1 and let Dl denote the set of points.

Let Dh be the subset of points of Dl that correspond to A2. Then Dh and Dl

provide two space-filling designs with Dh nested within Dl. We make this precise

in the following theorem.

Theorem 2. Let Dh ⊂ Dl be as constructed above. Then we have that

(i) in addition to achieving maximum stratification in one dimensions, design

Dl achieves stratification on s1 × s1 grids in two dimensions, and

(ii) Dh achieves stratification on s2 × s2 grids in two dimensions.

4. Discussion and Further Results

The nested space-filling designs Dh ⊂ Dl constructed in Section 3 achieve

more than just what the three principles require. Both Dh and Dl achieve strat-

ification in two dimensions, but design Dl does that on finer grids and therefore

provides a better coverage of the design space in two dimensions. This is fairly

natural as Dl has more design points and thus more can be expected from it in

terms of filling the design space.

The above discussion leads to an alternative approach. One might wish to

consider nested designs Dh ⊂ Dl with the property that, while both Dh and Dl

still achieve stratification in two dimensions, Dl also achieves stratification in

three dimensions. This approach is especially attractive when one feels that the

response variable depends on the input variables in such a complex fashion that

three-way interactions could play a significant role in predicting the response.

Construction of such nested space-filling designs is considerably simpler. Let
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A be an OA(n1,m, s, 3), an orthogonal array of strength three with its s levels

denoted by 1, . . . , s. Consider the submatrix B of A obtained by selecting those

rows of A with the entries in the first column being level 1. We now obtain two

matrices A1 and A2 with A1 given by deleting the first column of A and A2 being

the submatrix of A1 with its rows corresponding to B. Then we have that A1 is

an OA(n1,m− 1, s, 3) and A2 is an OA(n2,m− 1, s, 2), where n2 = n1/s. Let us

use A1 to construct an OA-based Latin hypercube. Denote the resulting design

by Dl and the subset of points corresponding to A2 by Dh. Then Dh and Dl give

a pair of nested designs with varying degrees of space-filling properties.

Lemma 1. Let Dh ⊂ Dl be as constructed above. We have that

(i) design Dl achieves stratification on s × s × s grids in three dimensions, and

(ii) design Dh achieves stratification on s × s grids in two dimensions.

Two useful results for orthogonal arrays of strength three are that an OA(s3, s+

1, s, 3) can be constructed if s is an odd prime power and an OA(s3, s + 2, s, 3)

can be constructed if s is an even prime power. These results are due to Bush

(1952), and are also available from Section 3.2 in Hedayat, Sloane and Stufken

(1999).

Example 3. Let s = 22 = 4. We can construct an OA(64, 6, 4, 3) using the

second result just mentioned. From this array, we obtain A1 and A2 where A1

is an OA(64, 5, 4, 3) and A2, nested within A1, is an OA(16, 5, 4, 2). Let Dl be

a Latin hypercube based on A1 and Dh be the subset of points corresponding

to A2. Then design Dh achieves stratification on 4 × 4 grids in two dimensions

whereas Dl achieves stratification on 4 × 4 × 4 grids in three dimensions. It is

interesting to compare this pair of nested space-filling designs with that discussed

in Section 2.2, although the two Dh’s are similar, the two Dl’s are quite different.

The Dl in this example achieves stratification in three dimensions while the Dl

in Section 2.2 achieves stratification in two dimensions, but on finer 8 × 8 grids.

The idea of using orthogonal arrays of strength three naturally generalizes.

If an orthogonal array of strength t is used, we can construct Dl and Dh such

that Dl achieves stratification in t dimensions and Dh achieves stratification in

t − 1 dimensions.

The two methods for constructing nested space-filling designs both produce

a much larger n1 than n2, a desirable feature as the LE is much cheaper than the

HE. In situations where the costs of running the LE and HE are not so drastically

different, as in the case of the motivating example in Section 2.2, one can follow

a simple strategy which we briefly describe. Let A2 be an OA(n2,m, s, t) and

A1 be an OA(n1,m, s, t) obtained by juxtaposing A2 several times. If Dl is an

OA-based Latin hypercube constructed from A1 and Dh the subset of points

corresponding to A2, then Dh and Dl provide a pair of nested designs that
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both achieve stratification on st grids in t dimensions. One can also consider

independently randomizing the levels of each A2 within A1 - this has no effect

on the space-filling properties of Dh and Dl in t dimensions, but can possibly

improve their space-filling properties in higher dimensions. This method, though

simple, is very flexible and deserves consideration in practical applications.

We conclude the paper with a brief discussion on the modeling and analysis

of computer experiments with two levels of accuracy. Gaussian process models

are popular for computer experiments and can be used for the data from both

the LE and the HE. Integration of the two sets of results from analyzing LE and

HE data is not straightforward but the basic idea is simple. Since the HE is more

accurate than the LE, the objective is to build a prediction model that is capable

of producing results close to the HE data. We can achieve this by first fitting

a Gaussian process model to the LE data and then adjusting the fitted model

using the HE data so that the resulting model can better predict the HE data.

For details on this analysis method, we refer to Kennedy and O’Hagan (2001),

Reese et al. (2004), Qian et al. (2006) and Qian and Wu (2008).
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